-
纳米纤维素由于高强度、高模量、高比表面积、可生物降解及生物相容性好等优点,被广泛应用于增强复合材料、吸附材料、过滤材料、生物医药材料等领域,是近年来纤维素领域的研究热点[1]。纳米纤维素主要包括纤维素纳米纤丝(cellulose nano-fibril,CNF)和纤维素纳米晶体(cellulose nano-crystal,CNC)。CNF主要通过高速剪切力和摩擦力将纤维素分子胀化、分离成直径为纳米级、长度为微米级的微纤丝束,主要加工设备有高压均质机、高速研磨机和微射流分散仪;CNC主要通过硫酸酸解制得,是一种长径比为10~30左右的棒状纤维素晶体[2-3]。与CNC相比,CNF有更高的长径比,且更适于产业化。在高剪切力加工制备CNF之前,通常会对纤维素进行预处理,2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)氧化预处理是一种主要的预处理方法[4]。通过TEMPO预氧化,再采用高剪切处理,可制备长径比高、晶体结构破坏小且在水中分布均匀的CNF。根据原材料和制备工艺的差异,制得CNF的形态也不尽相同。SAITO等[5]研究了松树Pinus spp.木浆、棉花Gossypium spp.和细菌纤维素通过TEMPO预处理制备的CNF。在相同的制备工艺下,松树木浆CNF的直径为3~5 nm,棉花CNF的直径约为10 nm,而细菌纤维素CNF的直径则达到了20 nm左右。五节芒Miscanthus floridulus是常见的野外群生禾本科Gramineae植物,资源丰富,纤维素质量分数高(47.9%)[6],可作为纳米纤维素的原材料,作者曾研究五节芒CNC的制备工艺[6],但目前对五节芒CNF的制备及性能研究未见报道,因此,本研究以五节芒纤维素为原料,先通过TEMPO对其进行氧化处理,再采用高压均质来制备五节芒CNF,并表征了五节芒CNF的形态、表面羧基含量及其悬浮液的稳定性和流变行为,以期为五节芒CNF的制备及应用提供理论基础。
Stabilization and rheological behavior of Miscanthus floridulus cellulose nanofibril prepared by TEMPO-mediated oxidation
-
摘要: 五节芒Miscanthus floridulus的纤维素含量高。为高效利用五节芒,采用2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)氧化处理五节芒纤维素,再通过高压均质制备了五节芒纤维素纳米纤丝(CNF)。透射电镜(TEM)观察发现,五节芒纤维素纳米纤丝为纤维状结构,直径为(10.0±2.3) nm,长度在微米级,表面羧基质量摩尔浓度为1.98 mmol·g-1;Zeta电位结果表明:五节芒纤维素纳米纤丝悬浮液具有极好的储存稳定性。稳态流变测试表明:纤维素纳米纤丝悬浮液随着固含量提高,黏度升高,剪切变稀行为增强;动态流变测试表明,由于五节芒纤维素纳米纤丝的高长径比,其悬浮液在固含量为0.56%时,即表现出明显的凝胶行为;Cox-Merz规则在纤维素纳米纤丝固含量较低时适用,而当纤维素纳米纤丝固含量为0.56%时不适用。Abstract: To better use the stalk of Miscanthus floridulus, a species of perennial grass with high cellulose content, a M. floridulus cellulose nanofibril (CNF) was prepared by 2, 2, 6, 6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidation and successively isolated by high pressure homogenization. Analysis consisted of using a transmission electron microscopy (TEM), NaOH conductometric titration, zeta potential, steady and dynamic rheology tests, and the Cox-Merz rule. Results of TEM observations showed that M. floridulus CNF had a fibril structure (10.0±2.3) nm in diameter and several micrometers in length; its surface carboxyl content was 1.98 mmol·g-1 measured by NaOH conductometric titration. Zeta potential results revealed that M. floridulus CNF suspensions were very stable. The steady rheology test found that M. floridulus CNF suspensions performed shear thinning behavior--the higher the CNF content, the higher the viscosity with a stronger shear thinning behavior. The dynamic rheology test showed that M. floridulus CNF suspensions exhibited a storage and loss modulus platform with low frequencies at a content of 0.56%, which indicated a gel structure had formed. Furthermore, the Cox-Merz rule applied in M. floridulus CNF suspensions at low CNF content but did not apply at CNF content of 0.56%. Therefore, the M. floridulus CNF can be prepared successfully by TEMPO-mediated oxidation method, and perform good storage stability. The M. floridulus CNF suspension can form gel at low concentration suggests its potential in thickener and flocculant applications.
-
-
[1] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses:a new family of nature-based materials[J]. Angew Chem, 2011, 50(24):5438-5466. [2] 卿彦,蔡智勇,吴义强,等. 纤维素纳米纤丝研究进展[J]. 林业科学,2012,48(7):146-152. QING Yan, CAI Zhiyong, WU Yiqiang, et al. Study progress on cellulose nanofibril[J]. Sci Silv Sin, 2012, 48(7):146-152. [3] 叶代勇. 纳米纤维素的制备[J]. 化学进展,2007,19(10):1568-1575. YE Daiyong. Preparation of nanocellulose[J]. Progr Chem, 2007, 19(10):1568-1575. [4] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1):71-85. [5] SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules, 2006, 7(6):1687-1691. [6] 陈宇飞, 吴强, 徐光密,等. 五节芒纳米纤维素晶体制备工艺的正交分析[J]. 浙江农林大学学报,2014,31(3):399-403. CHEN Yufei, WU Qiang, XU Guangmi, et al. Orthogonal experiments and analysis on cellulose nano-crystals extracted from Miscanthus floridulus[J]. J Zhejiang A & F Univ, 2014, 31(3):399-403. [7] JIANG Feng, HSIEH Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures[J]. Carbohydr Polym, 2013, 95(1):32-40. [8] OKITA Y, SAITO T, ISOGAI A. Entire surface oxidation of various cellulose microfibrils by TEMPO-Mediated Oxidation[J]. Biomacromolecules, 2010, 11(6):1696-1700. [9] COX W P, MERZ E H. Correlation of dynamic and steady flow viscosities[J]. J Polym Sci, 1958, 28(118):619-622. [10] WU Qiang, MENG Yujie, WANG Siqun, et al. Rheological behavior of cellulose nanocrystal suspension:Influence of concentration and aspect ratio[J]. J Appl Polym Sci, 2014, 131(15):338-347. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.04.016