-
硝态氮(NO3--N)和铵态氮(NH4+-N)均是植物能够直接吸收利用的氮源,由于两者的形态和离子性质存在差异,植物对其吸收途径、运输方式和同化过程也不相同,常表现出对NO3--N和NH4+-N的选择性吸收[1-2],因此对植物生长和代谢产生不同生理效应[3-5]。有研究表明,不同形态氮素显著影响菠菜Spinacia oleracea的营养品质和抗氧化酶活性,完全供应NH4+-N时,菠菜叶片膜脂过氧化程度较高[6]。全铵或全硝营养下,掌叶半夏Pinellia pedatisecta叶片丙二醛质量分数较高,膜脂过氧化程度高,铵硝比为1:1时丙二醛质量分数最低,相关酶活性最高[7]。硝铵比为75:25和50:50条件下,菜用大豆Glycine max具有较低的抗氧化酶活性和丙二醛质量分数,受到的氧化胁迫较低[8]。可见,了解植物对NH4+-N或NO3--N的生理响应,探讨促进植物良好生长的氮素形态配比,对指导林地科学施肥具有重要意义。雷竹Phyllostachys violascens具有成林快、出笋早、笋期长等优点,是优良的散生笋用竹种,对区域水源涵养、水土保持、固碳释氧和调节气候等方面也发挥着巨大的生态保护作用[9-10]。自20世纪80年代以来,以大量施肥和冬季覆盖为主要措施的集约经营技术的推广,使雷竹林产量和经济效益明显提高。然而,长期过量施肥和林地覆盖会导致雷竹林地土壤劣变、立竹结构不合理、出笋量减少及氮素利用率下降、环境污染等负面问题[11],因此,合理施肥就成为雷竹林可持续经营的重要研究内容。为此,本研究以雷竹盆栽苗为试材,通过设置不同的硝铵配比处理,试图明确土壤中不同氮素形态供应对雷竹抗氧化系统的生理影响机制,探讨促进雷竹生长的最优硝铵比,以期为雷竹林合理施用氮肥提供参考。
-
由图 1可知,随着NH4+-N比例的增加,雷竹叶片和根系丙二醛质量分数均呈先降低后升高的变化趋势。相同的硝铵比处理下,叶片丙二醛质量分数均高于根系丙二醛质量分数,是根系的1.06~1.55倍。说明与根系相比,雷竹叶片对不同形态氮素营养的响应更为敏感。单一供应NO3--N或NH4+-N营养处理的雷竹叶片和根系丙二醛质量分数均高于硝铵混合营养供应。就叶片而言,T1,T4和T5处理间无显著性差异,均显著高于T2和T3处理,T3处理的丙二醛质量分数最低,分别是T1,T5处理的0.46,0.41倍;就根系而言,不同氮素形态处理间丙二醛质量分数差异显著,由高到低的处理分别是T1,T5,T4,T2和T3,T3处理的丙二醛质量分数分别是T1和T5处理的0.40,0.43倍。说明单一氮素形态营养处理提高了雷竹细胞膜的膜脂过氧化程度,可能对细胞膜造成伤害,而混合营养处理相反,有利于雷竹生长,并且在NO3--N/NH4+-N为1:1时最佳。
-
由表 1可知:随着NH4+-N比例的增加,雷竹叶片POD活性逐渐增加,叶片SOD,CAT活性和根系SOD,CAT,POD活性均呈先升高后降低的变化趋势。相同的硝铵比处理下,叶片抗氧化酶活性均高于根系,也说明叶片较根系对氮素形态的响应更为积极。不同氮素形态处理的雷竹叶片SOD活性有显著差异,以T4处理最高,分别较单一氮素形态的T1和T5处理增加了32.78%和113.39%。叶片CAT活性也以T4处理最高,与T5处理无显著差异,但显著高于其他处理,分别较T1和T5处理增加了201.83%和8.14%。叶片POD活性在各处理间差异显著,以T5处理最高。根系SOD活性以T3处理最高,与T2处理无显著差异,但显著高于其他处理,较T1和T5处理增加了12.13%和514.28%。根系CAT和POD活性以T4处理最高,前者较T1和T5处理提高了99.39%和8.37%,后者提高了74.98%和20.36%。说明施加合理的硝铵比混合氮素养分能提高雷竹叶片和根系的抗氧化酶活性,及时清除活性氧积累,有利于雷竹生长,其中以NO3--N/NH4+-N为1:1和1:2时最佳。
表 1 不同硝铵比处理下雷竹叶片和根系超氧化物歧化酶(SOD),过氧化氢酶(CAT)和过氧化物酶(POD)活性
Table 1. The SOD, CAT, and POD activities in leave and roots of Phyllostachys violascens with different ratios of NO3--N to NH4+-N
处理 SOD/(×16.67 nkat·g-1) CAT/(×16.67 nkat·g-1) POD/(×16.67 nkat·g-1) 叶片 根系 叶片 根系 叶片 根系 T1(1:0) 741±37 d 473±26 b 2 216±163 d 278±27 d 21 964±710 d 15 467±332 c T2(2:1) 794±31 c 510±7 a 4 409±121 c 357±18 c 23 304±912 cd 22 046±1 139 b T3(1:1) 864±12 b 531±12 a 5 557±441 b 436±16 b 25 206±957 c 23 003±2 606 b T4(1:2) 984±19 a 309±16 c 6 687±151 a 554±32 a 36 489±931 b 27 063±1 114 a T5(0:1) 461±31 e 86±8 d 6 184±277 a 511±45 a 55 299±1 540 a 22 486±694 b 说明:同列比较,不同小写字母表示差异显著(P < 0.05),相同小写字母表示差异不显著(P > 0.05)。 -
由图 2可知:相同的硝铵比处理下,雷竹叶片可溶性蛋白质质量分数远高于根系。随着营养供应中NH4+-N比例的增加,雷竹叶片和根系可溶性蛋白质质量分数均呈先升高后降低的变化趋势。其中,叶片可溶性蛋白质质量分数在T2,T5处理间无显著差异,显著低于T3,T4处理,而显著高于T1处理,在T5处理达到最高。根系可溶性蛋白质质量分数在T2和T4处理间无显著差异,显著高于T5和T1处理,而显著低于T3处理。硝铵混合营养供应下叶片和根系的可溶性蛋白质质量分数总体上高于单一氮素形态供应,说明适当的硝铵比混合营养供应有利于雷竹叶片和根系的蛋白质合成,其中NO3--N/NH4+-N为1:1和1:2时较佳。
Antioxidant system response to different forms and ratios of nitrogen in leaves and roots of Phyllostachys violascens
-
摘要: 氮素是植物必须的营养元素,对植物生长影响重大。由于硝态氮(NO3--N)和铵态氮(NH4+-N)的形态差异,两者对植物养分吸收和生理代谢的影响不同。针对雷竹Phyllostachys violascens培育中存在氮肥施用不当的问题,通过设置NO3--N和NH4+-N不同比例,即硝铵比为1:0,2:1,1:1,1:2,0:1的5个氮素形态营养处理,测定了雷竹叶片和根系的丙二醛、可溶性蛋白质质量分数和抗氧化酶活性。结果表明:相同的硝铵比处理下,雷竹叶片丙二醛、可溶性蛋白质质量分数和抗氧化酶活性均高于根系,叶片较根系对氮素营养的响应更为敏感。随着NH4+-N增加,雷竹叶片和根系丙二醛质量分数均呈先降低后升高趋势,且在硝铵比为1:1时最低;抗氧化酶活性总体上呈先升高后降低趋势,混合营养处理的抗氧化酶活性均较高,其中叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性在硝铵比为1:2时最高,过氧化物酶(POD)在纯铵处理时最高;根系SOD活性在硝铵比为1:1时最高,CAT和POD活性在硝铵比为1:2时最高;可溶性蛋白质质量分数也呈先升高后降低趋势,叶片和根系分别在硝铵比为1:2和1:1时最高。综合分析认为:混合氮素形态营养供应的雷竹叶片和根系的丙二醛质量分数较单一氮素形态供应低,且可溶性蛋白质质量分数和抗氧化酶活性均能维持在较高水平,说明混合氮素形态营养处理下雷竹受到的膜脂过氧化程度较低,抗逆性较强。Abstract: Nitrogen (N), a necessary plant nutrient for plant growth can be applied as nitrate nitrogen (NO3--N) or ammonium nitrogen (NH4+-N) but may have different effects on nutrient absorption and physiological metabolism of the plant. To determine a proper N fertilizer for Phyllostachys violascens cultivation, an experiment supplying N fertilizer with five different ratios of NO3--N and NH4+-N (1:0, 2:1, 1:1, 1:2, and 0:1) was conducted. Contents of malondialdehvde (MDA), soluble protein, and antioxidant enzyme activities were determined. Results showed that for the same treatment ratios of NO3--N and NH4+-N, MDA content, soluble protein, and antioxidant enzyme activities were higher in leaves than in roots. As the concentration of NH4+-N increased, the MDA content in leaves and roots first decreased and then increased with the lowest MDA having a ratio of 1:1. Antioxidant enzyme activities first increased and then generally decreased having higher levels with mixotrophism. Superoxide dismutase (SOD) and catalase (CAT) activities in leaves were highest with the 1:2 ratio; whereas SOD activity in roots was highest with the 1:1 ratio, and CAT and peroxidase (POD) activities were highest with the 1:2 ratio. Soluble protein content also increased first and then decreased with the highest for leaves in a 1:2 ratio and for roots in a 1:1 ratio. With mixed nutrition, MDA content was lower, but soluble protein content and antioxidant enzyme activities remained at much higher levels. Thus, with a mixture of NO3--N and NH4+-N at a 1:1 ratio, the degree of oxidative damage to leaves and roots of Phyllostachys violascens was least, and antioxidant enzyme activities were stronger, thereby boosting growth and biomass accumulation.
-
表 1 不同硝铵比处理下雷竹叶片和根系超氧化物歧化酶(SOD),过氧化氢酶(CAT)和过氧化物酶(POD)活性
Table 1. The SOD, CAT, and POD activities in leave and roots of Phyllostachys violascens with different ratios of NO3--N to NH4+-N
处理 SOD/(×16.67 nkat·g-1) CAT/(×16.67 nkat·g-1) POD/(×16.67 nkat·g-1) 叶片 根系 叶片 根系 叶片 根系 T1(1:0) 741±37 d 473±26 b 2 216±163 d 278±27 d 21 964±710 d 15 467±332 c T2(2:1) 794±31 c 510±7 a 4 409±121 c 357±18 c 23 304±912 cd 22 046±1 139 b T3(1:1) 864±12 b 531±12 a 5 557±441 b 436±16 b 25 206±957 c 23 003±2 606 b T4(1:2) 984±19 a 309±16 c 6 687±151 a 554±32 a 36 489±931 b 27 063±1 114 a T5(0:1) 461±31 e 86±8 d 6 184±277 a 511±45 a 55 299±1 540 a 22 486±694 b 说明:同列比较,不同小写字母表示差异显著(P < 0.05),相同小写字母表示差异不显著(P > 0.05)。 -
[1] KRONZUCHER H J, SIDDIQI M Y, GLASS A D M. Conifer root discrimination against soil nitrate and the ecology of forest succession[J]. Nature, 1997, 385(6611):59-61. [2] MALAGOLI M, CANAL A D, QUAGGIOTTI S, et al. Differences in nitrate and ammonium uptake between Scots pine and European larch[J]. Plant Soil, 2000, 221(1):1-3. [3] PASTOR J, POST W M. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles[J]. Biogeochemistry, 1986, 2(1):3-27. [4] 邢瑶, 马兴华.氮素形态对植物生长影响的研究进展[J].中国农业科技导报, 2015, 17(2):109-117. XING Yao, MA Xinghua. Research progress on effect of nitrogen form on plant growth[J]. J Agric Sci Technol, 2015, 17(2):109-117. [5] 张彦东, 白尚斌.氮素形态对树木养分吸收和生长的影响[J].应用生态学报, 2003, 14(11):2044-2048. ZHANG Yandong, BAI Shangbin. Effects of nitrogen forms on nutrient uptake and growth of trees[J]. Chin J Appl Ecol, 2003, 14(11):2044-2048. [6] 赵建荣, 秦改花.不同氮形态配比对菠菜营养品质及抗氧化酶活性的影响[J].土壤通报, 2008, 39(5):1067-1070. ZHAO Jianrong, QIN Gaihua. Effect of nitrogen forms on nutritional quality and antioxidative enzyme activities of spinach[J]. Chin J Soil Sci, 2008, 39(5):1067-1070. [7] 王乾, 王康才, 郑晨曦, 等.不同形态氮对掌叶半夏生长及块茎主要化学成分的影响[J].植物营养与肥料学报, 2014, 20(4):1038-1043. WANG Qian, WANG Kangcai, ZHENG Chenxi, et al. Effect of different nitrogenous forms on growth and chemical component in tuber of Pinellia pedatisecta Schott[J]. Plant Nutr Fert Sci, 2014, 20(4):1038-1043. [8] 陈磊, 朱月林, 杨立飞, 等.氮素不同形态配比对菜用大豆生长、种子抗氧化酶活性剂活性氧代谢的影响[J].植物营养与肥料学报, 2010, 16(3):768-772. CHEN Lei, ZHU Yuelin, YANG Lifei, et al. Effects of nitrogen forms and ratios on plant growth, seed antioxidant enzyme activities and reactive oxygen metabolism of vegetable soybean[J]. Plant Nutr Fert Sci, 2010, 16(3):768-772. [9] 王移, 梁音, 曹龙熹, 等.雷竹生态系统植物固碳效益及其动态变化[J].土壤, 2015, 47(2):329-333. WANG Yi, LIANG Yin, CAO Longxi, et al. Vegetation carbon storage efficiency and dynamic of Phyllostachys praecox ecology system[J]. Soils, 2015, 47(2):329-333. [10] 曾伟, 熊彩云, 肖复明, 等.不同密度退耕雷竹春季林冠截留特性[J].生态学杂志, 2014, 33(5):1178-1182. ZENG Wei, XIONG Caiyun, XIAO Fuming, et al. Spring canopy interception characteristics of Phyllostachys praecox、Prevernalis、stand converted from cropland at different densities[J]. Chin J Ecol, 2014, 33(5):1178-1182. [11] 刘丽, 陈双林.有机材料林地覆盖对雷竹林生态系统的负面影响研究综述[J].广西植物, 2009, 29(3):327-330. LIU Li, CHEN Shuanglin. Research summary of the negative influences of the mulched ecosystem of Phyllostachys praecox f. prevernalis forests with organic materials[J]. Guihaia, 2009, 29(3):327-330. [12] 浙江省质量技术监督局. DB33/T224-2015无公害菜竹栽培技术规程[S].杭州:浙江省质量技术监督局, 2015. [13] 陈建勋, 王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2002:54-124. [14] LIU P W, NEUMANN G, BANGERTH F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco[J]. J Exp Bot, 2000, 51(343):227-237. [15] 张朋, 王康才, 赵杰, 等.不同铵硝比例对杭白菊次生代谢及抗病性的影响[J].植物营养与肥料学报, 2014, 20(6):1488-1496. ZHANG Peng, WANG Kangcai, ZHAO Jie, et al. Effects of NH4+-N/NO3--N ratio on secondary metabolism and disease resistance of Chrysanthemum morifolium[J]. J Plant Nutr Fert, 2014, 20(6):1488-1496. [16] SMIMOFF N, WHEELER G L. Ascorbic acid in plants:biosynthesis and function[J]. Crit Rev Biochem Mol Biol, 2000, 35(4):291-314. [17] LONG S P. Modification of the response of photosynthetic productiivity to rising temperature by atmospheric CO2 concentrations:has its importance been underestimated?[J]. Plant Cell Environ, 1991, 14:729-739. [18] 卢凤刚, 郭丽娟, 陈贵林, 等.不同氮素形态及配比对韭菜产量和品质的影响[J].河北农业大学学报, 2006, 29(1):27-30. LU Fenggang, GUO Lijuan, CHEN Guilin, et al. Effects of different nitrogen forms and ratio on the yield and nitrate content of Chinese chive[J]. J Agric Univ Hebei, 2006, 29(1):27-30. [19] DAVIES K J. Protein damage and degradation by oxygen radieals (Ⅰ) general aspects[J]. J Biol Chem, 1987, 262(20):9898-9901. [20] 曹翠玲, 李生秀, 张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响[J].土壤通报, 2003, 34(4):295-298. CAO Cuiling, LI Shengxiu, ZHANG Zhanping. Effect of N form on the activity of protectiase and wheat yield at the vegetative and reproductive growth stage[J]. Chin J Soil Sci, 2003, 34(4):295-298. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.01.003