-
农作物秸秆具有十分巨大的利用潜力和价值,通过制备复合材料等方式成为生物质资源利用的重点方向之一[1-2]。但秸秆表面由硅和蜡质形成的非极性表层结构会影响胶黏剂在秸秆纤维表面的润湿和吸附,无法形成良好的胶合界面,导致复合材料性能下降[3]。为了获得表面性能良好的秸秆纤维原料,增加秸秆纤维与胶黏剂的相容性,需要对秸秆纤维进行表面改性处理。常用的改性处理方式有物理、化学和生物改性等3种[4],相比之下,生物改性更加环保,但目前应用较少,发展潜力巨大[5-6]。秸秆纤维的生物改性方法包括酶处理和微生物发酵等[7],其中酶处理法用到的生物酶较多,如纤维素酶、木聚糖酶、果胶酶以及降解木质素的氧化酶等[8],但处理过程中释放的糖易被内源性微生物迅速消耗;生物发酵利用某些微生物的消耗分解作用,可得到表面性能良好的秸秆纤维,但通常需要数周,历时较长。QU等[9]使用微生物接种剂,包括枯草芽孢杆菌Bacillus subtilis、地衣芽孢杆菌Bacillus licheniformis、罗氏链霉菌Streptomyces gougerotii和黑曲霉Aspergillus niger,发酵改性小麦Triticum aestivum秸秆,降低了小麦秸秆纤维的长度和宽度,去除秸秆表面蜡质,提高了纤维结晶度。LI等[10]对比了碱处理和酶处理秸秆纤维对秸秆/高密度聚乙烯复合材料的影响,结果表明碱和酶处理均提高了复合材料的界面性能,界面附着力良好。XU等[11]利用不同的酶(纤维素酶、半纤维素酶、漆酶和蛋白酶)及不同的发酵方式(好氧发酵、混合厌氧发酵和浸泡厌氧发酵)对小麦秸秆进行组合处理,结果表明处理之后的小麦秸秆表面蜡质脱落,秸秆纤维的物理结构发生改变,结晶度均大于对照组。可见,生物改性预处理可有效改善纤维与聚酯间的界面相容性,提高秸秆基复合材料的力学性能和热稳定性,在减少环境污染、改善秸秆纤维性能以及提高木质纤维素生物质的综合利用等方面具有广阔的发展前景[12-14]。本研究利用微生物发酵改性秸秆,并将改性秸秆纤维与脲醛树脂混合制备复合材料,探讨了微生物发酵时长对秸秆纤维及制备的复合材料的性能的影响,为秸秆基复合材料的制备应用及发展提供理论依据。
-
水稻Oryza sativa秸秆取自江苏省农业科学院农业资源与环境研究所,风干后(含水率9.17%)粉碎至1~2 cm备用;微生物菌剂(秸秆腐熟剂)购买于南京宁粮生物工程有限公司,含有枯草芽孢杆菌、酵母Saccharomyces、粪肠球菌Enterococcus faecalis、蛋白酶、纤维素酶等。
-
30 kg水稻秸秆接种545 g微生物菌剂(微生物菌剂质量为秸秆绝干质量的2%),调节体系的碳氮比(C/N)为30∶1,含水率为65%,混合均匀后均分转移至自制生物发酵箱中(尺寸为1 m×1 m×1 m,3层箱壁结构,内、外壁为铁质,之间填充有保温泡沫),在30 ℃以上室温环境内静置培养,定期翻动物料以保证充足的新鲜空气。发酵至第5天,从各发酵箱中取出一半物料混合均匀后作为生物改性处理5 d的秸秆纤维,记为S5,剩余物料继续发酵至第10天后全部取出,混合均匀作为生物改性处理10 d的秸秆纤维,记为S10。未生物改性秸秆纤维记为S0。
-
采用“碱-酸-碱”三段制备工艺制备脲醛树脂,3个阶段甲醛与尿素的摩尔比分别为2.0∶1.0,1.5∶1.0和1.4∶1.0,第3阶段另加入占尿素总质量20%的聚乙二醇二缩水甘油醚(PEGDGE)进行增韧改性。物料及添加质量见表1。制得的脲醛树脂黏度为315.6 mPa·s,固含量为54.18%,游离甲醛含量(质量分数)为0.38%,pH 8.30。
表 1 脲醛树脂制备过程中物料添加情况
Table 1. Adding quality of materials during the preparation of urea-formaldehyde resin
阶段 37%(质量分数)
甲醛溶液/g尿素/g 聚乙烯
醇-124/g三聚氰
胺/gPEGDGE/g 1 1 000.0 371.0 5.3 2 106.0 10.6 3 53.0 106.0 将脲醛树脂与秸秆纤维按照20%的施胶量混合均匀(施胶量为脲醛树脂固体质量占复合材料总质量的比),使用平板硫化机(QLB-D 400×400×2,上海第一橡胶机械厂,中国)压制秸秆纤维复合材料,热压工艺为温度130 ℃,时间3 min,压力3.0 MPa,尺寸规格300.0 mm×300.0 mm×3.0 mm (长×宽×厚),密度为(0.80±0.05) g·cm−3。热压完成后将纤维板陈放48 h以平衡含水率并释放内部应力。秸秆S0、S5和S10制备的复合材料分别记为F0、F5和F10。
-
采用范式洗涤纤维测定法[15]测定生物改性秸秆的半纤维素、纤维素、酸不溶木质素以及灰分的变化,将20~40目的秸秆纤维使用纤维测定仪(F800,山东海能科学仪器有限公司,中国)先后经中性洗涤剂和酸性洗涤剂消煮后,使用质量分数为72%硫酸溶液浸没2 h以上,最后使用马弗炉灼烧,测定计算生物改性秸秆纤维组分变化。
-
使用XRD-D2PHASER型X射线衍射仪(Bruker AXS,德国)测定样品晶体结构变化,铜靶,衍射范围为5°~80°,测试步长为0.02。结晶度(ICr)计算方法为ICr=(1−Iam/I002)×100%。其中:I002是纤维素在结晶相的衍射强度(2θ)为22°~23°时结晶强度的最大值;Iam是在非晶相的衍射强度(2θ)为17°~18°时结晶强度的最小值。
-
在10 kV加速电压下采用扫描电子显微镜(SEM,EVO-LS10,Carl Zeiss Jena,德国)观察生物改性秸秆样品的表面微观结构变化。
-
使用JC2000D5型接触角测量仪(上海中晨数字技术设备有限公司,中国)测量水滴(极性液体)在复合材料表面的接触角变化,每间隔30 s拍照测量1次,测试总时长为10 min;使用相同方法测量二碘甲烷(非极性液体)在复合材料表面的接触角变化,然后利用Owens二液法[16]计算复合材料的表面能。
-
参照GB/T 17657—2013《人造板及饰面人造板理化性能试验方法》,采用三点弯曲方法,利用微机控制电子万能力学试验机(CMT4304,深圳新三思计量技术有限公司,中国)测量计算复合材料的抗弯强度(MOR)、弹性模量(MOE),加载速率 2 mm·min−1。每组测量5个试样。
-
参照GB/T 17657—2013《人造板及饰面人造板理化性能试验方法》,使用塑料摆冲击试验机(501J,深圳万测试验设备有限公司,中国)测量计算复合材料的冲击韧性,摆锤能量为2 J。每组测量10个试样。
-
由图1A可知:随着生物改性处理时间延长,秸秆纤维的半纤维素相对含量逐渐降低。这是因为半纤维素在天然状态下聚合度低,化学活性较强,在生物改性时更易降解。纤维素相对含量随生物改性处理时间延长先提高后降低,是因为纤维素结构存在不定形区和定形区,定形区结晶度较好不易降解,生物降解速度低于半纤维素[17]。生物改性处理前期,半纤维素快速而大量地降解,纤维素相对含量提高,而后由于半纤维素相对含量较低,微生物消耗纤维素的速率加快,纤维素的不定形区首先开始降解,随后定形区降解,相对含量开始下降。木质素与灰分为相对不易降解的物质[18],因此在10 d的生物改性处理时间内秸秆纤维的木质素和灰分的相对含量逐渐增加。
由图1B可知:S0、S5和S10的结晶度分别为43.6%、47.8%和41.4%。在微生物作用下,半纤维素及纤维素不定形区在改性处理前期优先降解,纤维素定形区占比增加,聚合度提高,因此在生物改性处理前期S5的结晶度相比于S0有较大幅度提高。随着生物改性处理时间的延长,半纤维素含量逐渐降低,微生物开始大量分解并消耗纤维素,S10的结晶度因此降低,甚至低于S0,可见生物改性处理10 d后秸秆纤维素定形区部分分解。
-
张晖[19]研究发现:随着生物改性处理时间的延长秸秆逐渐由浅黄色变为深褐色,可能是木质素逐渐暴露出来所导致,本研究结果与此一致。未改性的秸秆纤维表面(图2A)存在硅和蜡质层,并含有淀粉等物质,这些结构紧凑的层状结构会影响脲醛树脂在秸秆表面的浸入及渗透,可能导致秸秆纤维/脲醛树脂复合材料力学强度的降低[10]。生物改性处理5 d后,S5表面的淀粉被消耗,硅等无法被微生物消耗的物质逐渐脱落,同时蜡质层被破坏,只在秸秆纤维表面零散分布(图2B)。硅质和蜡质的减少可提高脲醛树脂与秸秆纤维的相容性,形成良好的胶合界面,在一定程度上提高复合材料的力学性能[20]。随着生物改性处理时间的延长,微生物由秸秆纤维表面进入细胞腔内部,消耗秸秆组分,破坏纤维结构,使纤维表面形成裂隙(图2C)。裂隙的形成会造成秸秆纤维自身强度下降,但另一方面,由于这些裂隙的存在,脲醛树脂更容易进入秸秆纤维内部,在胶合过程中可能形成 “胶钉”,提高复合材料强度[21-22]。
-
水滴在材料表面的接触角是表征材料表面润湿性直观而重要的手段,材料表面接触角越大表明材料疏水性越好,动态接触角则是量化润湿动力学的主要参数[23]。由图3A可知:与F0相比,生物改性处理秸秆纤维制备的复合材料接触角明显变大,在相同的测试时间内,F5的接触角更大,材料的疏水性更好。经过生物改性处理后秸秆纤维表面的蜡质等物质被去除,理论上秸秆纤维的润湿性更趋向于增强,但经过改性后,脲醛树脂更易附着在纤维表面或渗透进纤维内部,填充了纤维间隙,使得复合材料的疏水性增加。经过10 d的生物改性处理,S10表面出现裂隙,在复合材料制备过程中改性脲醛树脂易渗透到秸秆纤维内部,经热压固化后秸秆纤维表面的树脂固体含量低于S5表面, 因而F10的疏水性降低。
表面能是固体表面特征和表面现象形成的主要推动力,是描述和决定固体表面性质的重要物理量[24]。由图3B可知:未改性处理秸秆纤维中的半纤维素及纤维素含有大量的极性基团,F0的表面能因而更高;生物改性处理后秸秆中的半纤维素以及纤维素相对含量降低,极性基团减少,复合材料的表面能降低。另一方面,生物改性亦改变了秸秆纤维原有的表层结构,暴露出更多的木质素,这些木质素当中的羟基等极性基团有助于提高材料的表面能,导致F10的表面能高于F5[25],较低的表面能能够增加材料的抗污及抗氧化性能[26],有利于延长材料的使用寿命。
-
由图4A可知:F0、F5和F10的静曲强度和弹性模量依次增强,相比于F0,F5和 F10的静曲强度分别提高30.05%和59.00%,弹性模量分别提高12.24%和50.17%。生物改性处理可以去除秸秆纤维表面的硅和蜡等物质,从而改善脲醛树脂与秸秆纤维的相容性,提高复合材料的抗弯性能。同时,随着生物改性处理时间的延长秸秆纤维表面出现裂隙,脲醛树脂易进入秸秆纤维内部,在增强秸秆纤维的同时,制备的复合材料的胶合界面形成 “胶钉”,提高复合材料的强度。
如图4B所示:在不同生物改性处理时长的秸秆纤维制备的复合材料中, F5的冲击韧性更好,平均值为7 665.64 J·m−2,F10为7 143.26 J·m−2,而F0仅为6 786.40 J·m−2。复合材料的冲击韧性受到原材料自身力学性能、材料之间的相容性等多方面因素的影响[27-28],生物改性处理提高了秸秆纤维与脲醛树脂之间的相容性,脲醛树脂在秸秆纤维表面更加容易浸润和渗透,从而形成较为优异的胶合界面,提高复合材料的冲击韧性。随着生物改性处理时间的延长,秸秆纤维结构被微生物破坏,秸秆自身的冲击力学性能下降导致复合材料冲击韧性降低,F10的冲击韧性低于F5。
-
在特定微生物菌剂作用下,秸秆纤维的半纤维素最先降解,随后纤维素降解,而木质素和灰分则为不易降解物质。随生物改性处理时间延长,秸秆纤维的半纤维素相对含量逐渐降低,木质素和灰分的相对含量逐渐提高。生物改性前期由于半纤维素及纤维素不定形区被降解,纤维素定形区相对含量提高,因此S5的纤维素相对含量更高,结晶度更好。生物改性处理可去除秸秆纤维表面的硅质和蜡质,一定程度上提高了脲醛树脂与秸秆纤维的表面相容性,但随着改性时间的延长,秸秆纤维表面出现裂隙(S10)。生物改性处理减少极性基团,因而复合材料的疏水性更好,表面能更低,材料的耐久性和抗污性更加优良。同时脲醛树脂与秸秆纤维的相容性得以改善,F5和F10的抗弯强度和冲击韧性相比于F0有大幅提高,但因为生物改性处理后秸秆纤维结构被破坏,纤维自身的力学性能下降导致F10的冲击韧性低于F5。综合分析秸秆纤维的结晶度、微观形貌以及复合材料的表面性能和力学性能等,生物改性处理5 d为制备秸秆/脲醛树脂复合材料的适宜改性时长。
Properties of bio-pretreated straw fiber and its composite materials
-
摘要:
目的 探究生物预处理对秸秆纤维及其与脲醛树脂制备的复合材料性能的影响,为秸秆基复合材料的制备及发展提供理论依据。 方法 接种微生物菌剂(秸秆腐熟剂)对水稻Oryza sativa秸秆进行好氧发酵处理,测定不同处理时间下水稻秸秆中半纤维素、纤维素、木质素等的变化,测试并对比未经生物改性处理秸秆纤维(S0)、经生物改性处理5 (S5)和10 d (S10)秸秆纤维的结晶度和微观形貌,制备秸秆纤维/脲醛树脂复合材料,分别标记为F0、F5、F10,比较不同生物预处理时间下秸秆基复合材料的表面性能和力学性能。 结果 改性处理后秸秆表面的硅和蜡等物质被去除,但较长的生物改性处理时间(10 d)会破坏秸秆纤维自身结构。相比于S0和S10,S5的纤维素相对含量最高,为37.99%,结晶度也最好,为47.8%。3种秸秆基复合材料中F5疏水性最好,表面能最低,冲击韧性最大(7 665.64 J·m−2);F10抗弯性能更好,静曲强度和弹性模量分别为27.73和20 354 MPa,相比F0分别提高了59.00%和50.17%。 结论 生物改性处理可以改善秸秆纤维的表面性质,提高秸秆纤维/脲醛树脂复合材料的性能,生物改性处理5 d的秸秆纤维更好,制备的复合材料性能更优良。图4表1参28 Abstract:Objective This study aims to explore the influence of biological pretreatment on the properties of straw fiber and its composites prepared with urea formaldehyde resin, so as to provide theoretical basis for the preparation and development of straw based composites. Method Rice (Oryza sativa) straw was treated with microbial agent for aerobic fermentation. The changes of hemicellulose, cellulose and lignin in rice straw under different treatment time were measured. The crystallinity and microscopic morphology of straw fiber without biological pretreatment (S0), straw fiber bio-pretreated for 5 days (S5) and 10 days (S10) were tested and compared. Straw fiber/urea formaldehyde resin composites (F0, F5, F10) were prepared. Then the surface properties and mechanical properties of straw based composites under different biological pretreatment time were compared. Result Substances such as silicon and wax on the surface of straw fiber were removed after biological pretreatment, but the longer biological pretreatment time (10 d) could destroy the structure of straw fiber itself. Compared with S0 and S10, S5 had the highest relative content of cellulose (37.99%) and best crystallinity (47.8%). In contrast, F5 had the best hydrophobicity, lowest surface energy, and highest impact toughness (7 665.64 J·m−2). F10 had the best flexural performance. The static flexural strength and flexural modulus were 27.73 and 20 354 MPa, respectively, which were 59.00% and 50.17% higher than the composites prepared by S0, respectively. Conclusion Biological pretreatment can improve the surface properties of straw fiber and the properties of straw fiber/urea formaldehyde resin composites. The straw fiber bio-pretreated for 5 days is better, and the properties of the composites are superior. [Ch, 4 fig. 1 tab. 28 ref.] -
Key words:
- straw fiber /
- biological pretreatment /
- composites /
- surface properties /
- mechanical properties
-
木塑复合材料增材制造是一种新兴的木质材料成型技术,具有成型速度快、材料利用率高、绿色环保等特点。目前木塑复合材料增材制造方式主要包括熔融沉积(fused deposition modelling, FDM)技术[1]、选择性激光烧结(selective laser sintering, SLS)技术[2]和三维打印与胶黏(three dimensional printing and gluing, 3DP)技术[3]。木塑复合材料3DP主要是针对木质纤维物理力学特性,利用微滴喷射与紫外光固化技术,实现木塑粉末材料常温下的高精度成型[4]。成型过程结合了紫外线固化黏结剂(UV胶)常温成型特性和微滴喷射技术高精度、高通量和高驱动频率等特点,解决了传统3D打印中木质纤维不耐高温的问题,为木质材料的3D打印提供新方案。
在3DP工艺中,液滴质量和液滴速度等液滴参数是打印过程的重要变量[5−8],对3DP成型质量具有重要影响。木塑复合材料3DP中液滴参数受到喷射阀结构和液滴成形过程的影响,存在喷胶量偏大、高速打印液滴冲击导致粉层飞溅等问题,不能完全适应木塑复合材料3DP的成型需求。为实现对阀体结构参数和工艺参数的优化,提高打印过程的精度和稳定性。预试验测定了UV胶黏度、撞针工作速度等关键参数,基于喷射阀结构、撞针位移特性构和UV胶参数,建立了微滴喷射过程的流体体积函数(volume of fluid, VOF)仿真模型,并验证了模型的准确性。基于有限元模拟仿真和试验设计(design of experiment, DOE)方法[9],通过单因素试验阐释喷射参数对液滴参数的影响过程,得到了合理的仿真参数范围,正交试验得到了最优微滴喷射因素组合,为木塑复合材料3DP微滴喷射过程的研究提供理论模型和数据支持。
1. 材料与方法
1.1 设备与测定装置
采用的木塑复合材料3DP设备为自主设计研发,3DP设备系统主要由铺粉系统、微滴喷射系统、控制系统等部分组成。喷射阀作为喷射系统的重要部件,其工作原理如图1所示。撞针在工作中处于常开状态,用于控制阀体的开闭,其工作过程可分为开阀、下降、关阀和上升等4个阶段,在微滴喷射过程中,下降阶段撞针的动能和关阀阶段的压差是液滴质量产生的主要因素[10]。本研究重点对撞针下降阶段和关阀阶段进行仿真分析。
UV胶(A332,奥斯邦);科研级旋转流变仪(Kinexus Ultra+,耐驰);激光位移传感器(LK-G5001,基恩士);高速相机(FASTCAM NovaS16,活图隆)。
1.2 测定方法
采用旋转流变仪对UV胶进行恒定温度的流变特性测试。UV胶的流变特性曲线如图2所示。UV胶黏度受剪切速率影响明显。打印过程中喷嘴处UV胶的剪切速率高于100 s−1,需要考虑黏度变化对微滴喷射过程的影响[11]。采用激光位移传感器对针阀内撞针位移进行测定,测得撞针稳定振幅为0.185 mm,最大振幅为0.230 mm,撞针位移和时间呈线性关系,因为震荡时间较短,仿真过程中通常将撞针下降速度视为匀速[12],其速度为0.1~0.9 m·s−1。
1.3 仿真模型
1.3.1 微滴喷射关键参数
根据预试验结果和实际工况,喷射过程中工艺参数如下:UV胶的密度为1 050 kg·m−3,UV胶黏度为0.094γ−0.945 Pa·s (γ指剪切速率),撞针的下降速度为0.1~0.9 m·s−1,供胶压力为0.1~0.5 MPa。流体在流道内中流动状态可以分为层流和紊流,通常用雷诺数(Re)来表征流体流动情况[13]。取喷嘴处液体的最大流速为0.9 m·s−1,计算喷嘴处的Re远小于2 100,判定UV胶喷射过程流动状态为层流。根据已知公式推知,在微滴喷射过程中,供胶压力、撞针速度、UV胶黏度、喷嘴直径等喷射参数对微滴喷射过程有重要影响[14]。
1.3.2 仿真模型建立
建立包含阀体结构参数和工艺参数的简化喷射阀二维模型如图3所示。其中撞针球头半径(R)为1.00 mm,撞针直径(D)为0.1 mm,喷嘴长度(l)为1.4 mm,腔体高度(h)为5 mm,喷嘴直径(d)0.10~0.30 mm,撞针行程(s)取最大振幅为0.23 mm,阀座锥角(θ)为90°~130°,阀座间隙($ {{\delta}} $)为0.25~0.45 mm,空气域的面积为3 mm×10 mm。将撞针球面壁面设置为动网格,采用UDF中宏函数Define CG_motion控制撞针沿y轴方向匀速下降。为验证阀体结构参数和工艺参数对微滴喷射过程的影响,分别在喷嘴入口和出口处设置压力、流量和速度监测点,设置每一仿真步数为1 μs,输出一次点位的仿真数据。并二维(Q2D)与三维(Q3D)质量流率的计算公式:Q3D =1/2πR Q2D ,以积分换算的方式获得三维液滴的仿真质量参数。
1.4 仿真模型的验证
模拟属于瞬态模拟,需要进行网格无关性试验,研究网格数量与仿真结果的相关性[15]。取计算时间6 ms处主液滴最大速度验证。当网格密度为0.04、0.08、0.16 mm时液滴速度分别为1.130、1.120和1.122 m·s−1,速度变化范围在2%以内,达到了仿真的要求。为了兼顾仿真效率和准确度,取面网格密度为0.08 mm组进行后续仿真分析。
采用木塑复合材料3DP设备作为液滴发生装置,以A332UV胶作为分散剂,由空压机提供压力,经输气管与胶筒连通,利用高速相机进行图像采集,设置采集频率为5 kHz。高速相机获取液滴的速度范围为0.616~1.080 m·s−1,仿真过程中液滴的速度变化范围为0.730 ~1.120 m·s−1。此外运动初期仿真液滴速度高于液滴实际速度。这主要由撞针运动过程的震荡被仿真简化为匀速运动引起。仿真过程误差小于20%,达到仿真的要求。
1.5 试验设计
以撞针速度、供胶压力、喷嘴直径、阀座锥角和腔体间隙等喷射参数为自变量,选取出口速度、出口压力和质量流率为过程参数,以液滴质量和主液滴速度等液滴参数为评价指标,研究自变量对微滴喷射成形过程的影响。
以单因素试验(表1)结果为基础,选取撞针速度、供胶压力、喷嘴直径3组参数为试验因素设计3因子3水平试验绘制L9(43)正交试验表(表2)。A、B、C分别指代喷嘴直径、撞针速度、供胶压力共3个变量,下标1、2、3分别指代低、中、高共3个参数水平。
表 1 单因素试验各水平取值Table 1 Values for each level of single factor experiment水平 撞针速度/
(m·s−1)驱动气压/
MPa喷嘴直径/
mm阀座锥角/
(º)阀体间隙/
mm1 0.1 0.1 0.10 90 0.25 2 0.3 0.2 0.15 100 0.30 3 0.5 0.3 0.20 110 0.35 4 0.7 0.4 0.25 120 0.40 5 0.9 0.5 0.30 130 0.45 中间组 0.5 0.2 0.20 120 0.35 表 2 正交试验因素表Table 2 Orthogonal experiment table组合
编号喷嘴直径
(A)/mm撞针速度
(B)/(m·s−1)供胶压力
(C)/MPa液滴质量/
μg液滴速度/
(m·s−1)A1B1C1 0.10 0.3 0.1 1.162 2 0.90 A1B2C2 0.10 0.6 0.2 1.162 1 2.20 A1B3C3 0.10 0.9 0.3 1.166 8 3.60 A2B1C2 0.15 0.3 0.2 9.450 7 3.62 A2B2C3 0.15 0.6 0.3 7.299 5 3.38 A2B3C1 0.15 0.9 0.1 2.945 2 2.07 A3B1C3 0.20 0.3 0.3 21.563 4 5.84 A3B2C1 0.20 0.6 0.1 10.426 9 1.68 A3B3C2 0.20 0.9 0.2 12.048 1 3.95 2. 结果与分析
2.1 单因素试验结果
根据UDF函数设定,当撞针速度为0.1、0.3、0.5、0.7、0.9 m·s−1时撞针达到最大行程时间(即撞针与阀座撞击时间点)分别为2.296、0.765、0.458、0.327、0.254 ms。根据仿真试验,因阀座间隙液滴参数的影响较小,故未列出其对液滴参数的影响曲线。
2.1.1 喷嘴直径对微滴喷射的影响
由图4可知:液滴质量的变化率和终值均与喷嘴直径呈正相关。在喷嘴直径小于0.20 mm时,UV胶以液滴形式生成,喷嘴直径与液滴速度呈负相关,当喷嘴直径大于0.20 mm时,UV胶以液柱的形式喷射,出口速度和出口压力的峰值提前。随着喷嘴半径的升高,主液滴断裂时间延后,破碎液滴产生更高的相对初速度,因导致液滴速度呈先升高后降低的变化趋势。
2.1.2 阀座锥角对微滴喷射的影响
图5显示:出口速度和出口压力的峰值大小与液滴阀座锥角呈正相关。UV胶速度和压力在撞针与阀座接触时产生剧烈变化。在下降阶段,阀座锥角对微滴喷射过程影响较小,随着撞针接近阀座,液滴质量急剧变化,且数值大小呈与阀座锥角呈负相关。较小的阀座锥角具有更大的纵向速度分量,可以在撞击过程产生更大的液滴驱动力,从而获得更高的液滴质量和速度。
2.1.3 撞针速度对微滴喷射的影响
图6显示:速度和压力的峰值与撞针速度呈正相关。液滴质量与撞针速度呈负相关,主液滴速度与撞针速度呈正相关。撞针速度与UV胶流体剪切速率呈正相关,根据UV胶流变特性,UV胶流体黏度大幅减小,导致出口速度极值和质量流率随撞针速度升高。随着剪切速率升高,黏度变化范围减小,液滴出口速度和质量流率随撞针速度增高变化不再显著,且由于撞针运动时间的差异(T0.1=9T0.9),在撞针速度较低时,时间成为影响液滴质量的主要因素,在撞针速度为0.1 m·s−1时,得到较大的液滴质量。
2.1.4 供胶压力对微滴喷射的影响
图7A显示:供胶压力与液滴质量呈正相关,主液滴速度则随着供胶压力升高呈现先降低后升高的趋势。由图7B和C可得,供胶压力的主要作用阶段为下降阶段。随着供胶压力增高,下降阶段自喷嘴流出的液滴质量增加。关阀阶段,撞针惯性力成为液滴断裂和喷射的主要驱动力。当供胶压力较高时,在喷嘴处形成的液滴体积增加,相较于低供胶气压组,液滴断裂时间延后,导致主液滴速度产生非规律性变化。
由图8可得:阀体锥角较小时,液滴下落过程会产生破碎,不适合UV胶材料的微滴喷射。较小的撞针速度无法驱动UV胶液柱断裂形成稳定液滴,随着撞针速度增加,UV胶黏度减小,流动性增强,因此获得较高的液滴速度。当供胶压力和喷嘴直径过高时,过量液滴在关阀阶段前自喷嘴出口流出,使液滴获得较大的成形体积。根据单因素结论和仿真相图分析,能够实现单液滴喷射的参数范围为:撞针速度0.3~0.9 m·s−1,喷嘴直径0.10~0.20 mm,供胶压力0.1~0.3 MPa,阀座锥角120°~130°。因阀座锥角加工困难,且在范围内液滴质量和主液滴速度变化极小,以最小液滴质量为原则,确定阀座锥角为130°。选取撞针速度、喷嘴直径和供胶压力作为自变量进行正交试验。
2.2 正交试验分析
2.2.1 极差结果分析
如表3所示:以液滴质量为评测标准,3因素的排序为A>B>C;以主液滴速度为评价标准,3因素的排序为C>A>B。液滴质量的最优标准为A1B3C1,液滴速度的最优标准为A1B2C1。考虑在微滴喷射过程中,液滴质量为主要结果参数,因此按照一定的系数比对极差结果进行折算,得到液滴的最优参数组为A1B3C1。即撞针直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa。
表 3 正交试验极差表Table 3 Orthogonal experiment range table项目 液滴质量 项目 主液滴速度 A B C A B C K1 1.164 10.725 4.845 K1 2.233 3.420 1.550 K2 6.565 6.296 7.554 K2 3.023 2.420 3.257 K3 14.679 5.387 10.010 K3 3.790 3.207 4.240 R 13.516 5.339 5.165 R 1.557 1.000 2.690 2.2.2 方差结果分析
如表4所示:建立了喷射参数关于液滴质量和液滴速度的一次线性回归模型,液滴速度=3.016−0.782A1+0.008A2+0.774A3+0.404B1−0.596B2+0.190B3−1.466C1+0.241C2+1.224C3。液滴质量=7.469−6.306A1+0.904A2+7.210A3+3.256B1−1.173B2−2.083B3−2.625C1+0.084C2+2.540C3。对于液滴质量,各喷头参数的F由大到小分别为A、B、C,可以验证极差的结论,且喷嘴直径是影响液滴质量的显著因素(P<0.05)。撞针速度和供胶压力对微滴喷射参数影响较小。对于液滴速度,各喷头参数的F由大到小分别为C、A、B,供胶压力是影响液滴速度的显著因素(P<0.05)。因此在能完成喷射的前提下,减少喷嘴直径和供胶压力,可以得到更小的液滴质量和速度。
表 4 正交试验方差表Table 4 Orthogonal experiment variance table方差来源 液滴质量 液滴速度 df SS MS F P df SS MS F P A 2 277.694 138.847 51.72 0.019 2 3.6351 1.8175 6.75 0.129 B 2 48.948 24.474 9.12 0.099 2 1.6644 0.8322 3.09 0.245 C 2 40.050 20.025 7.46 0.118 2 11.1158 5.5579 20.63 0.046 误差 2 5.369 2.685 2 0.5388 0.2694 合计 8 372.061 8 16.954 0 R2=98.56% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=98.56\% $ R2=96.82% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=87.29\% $ 说明:df. 自由度;SS. 离差平方和;MS. 均方值。 根据以上分析,获得最优的喷射参数:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa、阀座锥角为130°。经过仿真结果分析,得到液滴质量为0.437 μg,液滴速度为0.96 m·s−1。对比最小数据,液滴速度增加了6%,但是液滴质量缩小62%。综合速度和质量指标,可得到A1B3C1为最优参数组合。
2.2.3 正交试验结果分析
正交试验得到了液滴速度和液滴质量的一次回归模型,验证了喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素,根据极差和方差分析,得到了最优的喷射参数:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa,阀座锥角为130°。
3. 讨论和结论
木塑复合材料 3DP 设备利用撞针式阀体驱动UV胶喷射到塑粉床,将UV胶这种黏结剂喷射与紫外光固化成型结合后,可以大大提高设备打印成型效率。木塑复合材料3DP是一种节能环保的成型技术,在木塑复合材料增材制造方面有很大的应用前景 [4, 16]。本研究针对目前设备存在的喷射稳定度低、喷胶量不易控制等问题,研究了撞针式阀体结构和工艺参数对液滴形成过程及液滴质量的影响,阐释了喷嘴直径、阀体锥角、供胶压力和撞针速度等参数对液滴成形参数的作用机制[17]。仿真试验中选择喷嘴直径0.10 mm、撞针速度0.9 m·s−1、供胶压力0.1 MPa的打印组合,得到0.437 μg液滴质量。相较于喷嘴直径为0.15与0.20 mm试验组,液滴质量得到明显改善。在实际试验中,换用0.10 mm喷嘴直径得到的液滴质量明显降低,且需要保持一定的撞针速度和供胶压力以实现喷射。在打印过程中喷嘴直径减小将增大喷射过程的黏滞力,形成较小的喷胶量,且需要较大的惯性力和供胶压力实现喷射过程,这与仿真结论一致。仿真试验表明对液滴质量影响因素的排序为喷嘴直径>撞针速度>供胶压力。实际过程中对于液滴质量的影响因素分别为喷嘴直径>供胶压力>撞针速度。可能因为当供胶压力过大时,开阀阶段残余的液滴质量、气道的内部结构均对仿真结果产生了影响,这是仿真模型中未考虑的部分。未来优化仿真过程的结构参数和初始条件,建立包含微滴喷射连续过程的流体体积函数有限元模型,以期实现在更加复杂的工况下分析应用,获得更可靠的研究结论。
本研究得到喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素。获得最优喷射参数组合:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa,阀座锥角为130°。本研究设计的木塑复合材料3DP微滴喷射流体体积函数模型可以实现对UV胶液滴参数的预测,实现对撞针运动过程中阀体参数对速度、体积和压力影响过程的分析,优化了木塑复合材料3DP的打印参数,为木塑复合材料3DP成型参数的研究提供数据基础。
-
表 1 脲醛树脂制备过程中物料添加情况
Table 1. Adding quality of materials during the preparation of urea-formaldehyde resin
阶段 37%(质量分数)
甲醛溶液/g尿素/g 聚乙烯
醇-124/g三聚氰
胺/gPEGDGE/g 1 1 000.0 371.0 5.3 2 106.0 10.6 3 53.0 106.0 -
[1] 王红梅, 屠焰, 张乃锋, 等. 中国农作物秸秆资源量及其“五料化”利用现状[J]. 科技导报, 2017, 35(21): 81 − 88. WANG Hongmei, TU Yan, ZHANG Naifeng, et al. Chinese crop straw resource and its utilization status [J]. Sci Technol Rev, 2017, 35(21): 81 − 88. [2] 霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究[J]. 农业工程学报, 2019, 35(13): 218 − 224. HUO Lili, ZHAO Lixin, MENG Haibo, et al. Study on straw multi-use potential in China [J]. Trans Chin Soc Agric Eng, 2019, 35(13): 218 − 224. [3] DONG Chensong. Review of natural fibre-reinforced hybrid composites [J]. J Reinf Plast Compos, 2018, 37(5): 331 − 348. [4] 杨雪慧, 汤丽娟, 章蓉, 等. 农作物秸秆表面改性处理的研究进展[J]. 南京林业大学学报(自然科学版), 2013, 37(3): 157 − 162. YANG Xuehui, TANG Lijuan, ZHANG Rong, et al. Review on progress of crop straws surface modification [J]. J Nanjing For Univ Nat Sci Ed, 2013, 37(3): 157 − 162. [5] BARAMEE S, SIRIATCHARANON A K, KETBOT P, et al. Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: structural modification and biomass digestibility [J]. Renew Energy, 2020, 160: 555 − 563. [6] MA Yingqun, SHEN Yanqing, LIU Yu. 秸秆处理技术的最新进展: 挑战与解决方案[J]. 中国农机化学报, 2020, 41(11): 152 − 161. MA Yingqun, SHEN Yanqing, LIU Yu. State of the art of straw treatment technology: challenges and solutions forward [J]. J Chin Agric Mech, 2020, 41(11): 152 − 161. [7] TIAN Jianghao, POURCHER A M, BIZE A, et al. Impact of wet aerobic pretreatments on cellulose accessibility and bacterial communities in rape straw [J]. Bioresour Technol, 2017, 237: 31 − 38. [8] QUÉMÉNEUR M, BITTEL M, TRABLY E, et al. Effect of enzyme addition on fermentative hydrogen production from wheat straw [J]. Int J Hydrog Energy, 2012, 37(14): 10639 − 10647. [9] QU Ping, HUANG Hongying, ZHAO Yongfu, et al. Physicochemical changes in rice straw after composting and its effect on rice-straw-based composites [J/OL]. J Appl Polym Sci, 2017, 134(22): 44878[2021-09-20]. doi: 10.1002/APP. 44878. [10] LI Jia, ZHANG Xiaolin, NIE Sunjian, et al. Effects of surface treatment on the properties of wheat straw fiber-reinforced rHDPE composites [J/OL]. Mater Res Express, 2019, 6(12): 125103[2021-09-20]. doi: 10.1008/2053-1591/ab4636. [11] XU Chao, LI Jun, YUAN Qiaoxia, et al. Effects of different fermentation assisted enzyme treatments on the composition, microstructure and physicochemical properties of wheat straw used as a substitute for peat in nursery substrates [J/OL]. Bioresour Technol, 2021, 341: 125815[2021-09-20]. doi: 10.1016/j.biortech.2021.125815. [12] GHAFFAR S H, FAN Mizi, MCVICAR B. Bioengineering for utilisation and bioconversion of straw biomass into bio-products [J]. Ind Crops Prod, 2015, 77: 262 − 274. [13] MA Yingqun, SHEN Yanqing, LIU Yu. State of the art of straw treatment technology: challenges and solutions forward [J/OL]. Bioresour Technol, 2020, 313: 123656[2021-09-20]. doi: 10.1016/j.biortech.2020.123656. [14] 王士强, 顾春梅, 赵海红. 木质纤维素生物降解机理及其降解菌筛选方法研究进展[J]. 华北农学报, 2010, 25(增刊 1): 313 − 317. WANG Shiqiang, GU Chunmei, ZHAO Haihong. The research progress on the mechanisms of lignocellulose biological degrading and the screening method on the degrading bacteria [J]. Acta Agric Boreali-Sin, 2010, 25(suppl 1): 313 − 317. [15] 李思蓓, 解玉红, 罗晶, 等. 秸秆预处理中木质纤维物质含量测定方法的研究进展[J]. 安徽农业科学, 2011, 39(3): 1620 − 1622, 1626. LI Sibei, XIE Yuhong, LUO Jing, et al. Research progress of content determination method of xylem fiber material in straw pretreatment [J]. J Anhui Agric Sci, 2011, 39(3): 1620 − 1622, 1626. [16] 刘永明, 施建宇, 鹿芹芹, 等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报, 2013, 27(11): 123 − 129. LIU Yongming, SHI Jianyu, LU Qinqin, et al. Research progress on calculation of solid surface tension based on Young’s equation [J]. Mater Rev, 2013, 27(11): 123 − 129. [17] MATHEWS S L, PAWLAK J, GRUNDEN A M. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams [J]. Appl Microbiol Biotechnol, 2015, 99(7): 2939 − 2954. [18] 付春霞, 付云霞, 邱忠平, 等. 木质素生物降解的研究进展[J]. 浙江农业学报, 2014, 26(4): 1139 − 1144. FU Chunxia, FU Yunxia, QIU Zhongping, et al. Research progresses of lignin biodegradation [J]. Acta Agric Zhejiang, 2014, 26(4): 1139 − 1144. [19] 张晖. 木质素的降色及其在木质素基化学品中的应用[D]. 广州: 华南理工大学, 2018. ZHANG Hui. Color Reduction of Ligin and Its Applications in the Ligin based Chemicals [D]. Guangzhou: South China University of Technology, 2018. [20] BOQUILLON N, ELBEZ G R, SCHÖNFELD U. Properties of wheat straw particleboards bonded with different types of resin [J]. J Wood Sci, 2004, 50(3): 230 − 235. [21] GUAN Mingjie, YONG Cheng, WANG Lu. Shear strain and microscopic characterization of a bamboo bonding interface with poly (vinyl alcohol) modified phenol-formaldehyde resin [J]. J Appl Polym Sci, 2013, 130(2): 1345 − 1350. [22] GUAN Mingjie, HUANG Zhiwei, ZENG Dan. Shear strength and microscopic characterization of a bamboo bonding interface with phenol formaldehyde resins modified with larch thanaka and urea [J]. Bioresources, 2016, 11(1): 492 − 502. [23] ZHAO Hongping, ZHU Jintang, FU Zhongyu, et al. Plasma surface graft of acrylic acid and biodegradation of poly (butylene succinate) films [J]. Thin Solid Films, 2008, 516(16): 5659 − 5663. [24] WANG Jun, BIAN Jianjun, WANG Gangfeng. Calculation of surface energy density of rough surface by atomic simulations [J]. Appl Surf Sci, 2019, 484: 184 − 188. [25] 王春红, 刘胜凯. 碱处理对竹纤维及竹纤维增强聚丙烯复合材料性能的影响[J]. 复合材料学报, 2015, 32(3): 683 − 690. WANG Chunhong, LIU Shengkai. Effects of alkali treatment on properties of bamboo fiber and bamboo fiber reinforced polypropylene composite [J]. Acta Mater Compos Sin, 2015, 32(3): 683 − 690. [26] 赵晓非, 杨明全, 章磊, 等. 仿生超疏水表面的制备与应用的研究进展[J]. 化工进展, 2016, 35(9): 2818 − 2829. ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, et al. Research progress in fabrication and application of bioinspired super-hydrophobic surface [J]. Chem Ind End Prog, 2016, 35(9): 2818 − 2829. [27] SWOLFS Y, GEBOES Y, GORBATIKH L, et al. The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites [J]. Compos Part A Appl Sci Manuf, 2017, 103: 1 − 8. [28] AL-MAHARMA A Y, SENDUR P. Review of the main factors controlling the fracture toughness and impact strength properties of natural composites [J/OL]. Mater Res Express, 2019, 6(2): 022001[2021-09-20]. doi: 10.1088/2053-1591/aaaec28. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210647