Volume 34 Issue 6
Nov.  2017
Turn off MathJax
Article Contents

GAO Lei, RAO Liangyi, CUI Feibo, LI Zhibin, DU Liuhong, LIU Lifeng. Soil and water conservation effects of plant measures in rocky areas of the Taihang Mountains[J]. Journal of Zhejiang A&F University, 2017, 34(6): 1079-1086. doi: 10.11833/j.issn.2095-0756.2017.06.016
Citation: GAO Lei, RAO Liangyi, CUI Feibo, LI Zhibin, DU Liuhong, LIU Lifeng. Soil and water conservation effects of plant measures in rocky areas of the Taihang Mountains[J]. Journal of Zhejiang A&F University, 2017, 34(6): 1079-1086. doi: 10.11833/j.issn.2095-0756.2017.06.016

Soil and water conservation effects of plant measures in rocky areas of the Taihang Mountains

doi: 10.11833/j.issn.2095-0756.2017.06.016
  • Received Date: 2016-11-07
  • Rev Recd Date: 2017-01-06
  • Publish Date: 2017-12-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(2)

Article views(2579) PDF downloads(270) Cited by()

Related
Proportional views

Soil and water conservation effects of plant measures in rocky areas of the Taihang Mountains

doi: 10.11833/j.issn.2095-0756.2017.06.016

Abstract: This study was undertaken to determine the regulation of runoff and sediment yield on slopes with typical plant cover measures and the influence of rainfall on soil moisture for slope-land in rocky areas of the Taihang Mountains. Based on standard runoff plot observations in the Baima Small Watershed in Pingshun County, Shanxi Province, runoff and sediment yield on slopes with typical plant cover measures for different rainfall patterns and rainfall intensities were compared. Analysis of changes in soil moisture content for each slope with bare land as a control was conducted with statistical analysis methods. Results showed that 1) heavy rain and rainstorms were the main rainfall patterns causing soil and water losses. With moderate rainfall intensity and high rainfall intensity, runoff and sediment yield of runoff plots on slopes accounted for up to 71.94%-73.60% of the total runoff and 80.78%-90.35% of the total sediment. 2) With various patterns of rainfall, runoff and sediment yield on slopes with different cover patterns were bare land > natural slope > artificial grasses > shrubs > forest. 3) The slope runoff plots for changes in soil moisture were identical with and rainfall distribution being consistent. Thus, shrub and forests could effectively control soil and water loss in this area with soil moisture changes being strongly influenced by rainfall.

GAO Lei, RAO Liangyi, CUI Feibo, LI Zhibin, DU Liuhong, LIU Lifeng. Soil and water conservation effects of plant measures in rocky areas of the Taihang Mountains[J]. Journal of Zhejiang A&F University, 2017, 34(6): 1079-1086. doi: 10.11833/j.issn.2095-0756.2017.06.016
Citation: GAO Lei, RAO Liangyi, CUI Feibo, LI Zhibin, DU Liuhong, LIU Lifeng. Soil and water conservation effects of plant measures in rocky areas of the Taihang Mountains[J]. Journal of Zhejiang A&F University, 2017, 34(6): 1079-1086. doi: 10.11833/j.issn.2095-0756.2017.06.016
  • 降雨是导致北方土石山区水土流失的主要动力,其时间和空间尺度上的变化对坡面径流和土壤侵蚀影响较大[1-2]。除降雨以外,整地方式、土壤特性、植被覆盖、坡度坡长等[3-6]也是影响坡面水土流失的重要因素。目前,国内外不少学者开展了坡面尺度上不同措施的水土流失特征研究[7-9],例如,利用土壤侵蚀模型评价水土保持措施对土壤侵蚀的影响研究[10-12]等。王忠科等[13]对河北张家口地区的水土保持措施效益进行了研究,发现水平梯田的拦沙蓄水效果最高,植物措施结合适当整地可以取得良好的水土保持效果,沟头防护措施可以减少沟道径流,有效抑制沟道土壤侵蚀。和继军等[14]评价了张家口地区水土保持措施空间配置的适宜性,认为水平沟、鱼鳞坑整地形式的荒坡地水土保持效益最好,人工种草和自然封禁次之。许海超等[15]就燕山土石山区下垫面条件对坡面侵蚀产沙的影响进行研究,认为鱼鳞坑、梯田、水平阶等整地工程在改变坡面下垫面条件的情况下,能够有效蓄水拦沙,防治坡面侵蚀。路炳军等[16]认为北京西部山区减流减沙效益最大的是人工苜蓿Medicago sativa草地,其次为天然草地和树盘/人工林,再次为石坎梯田/蔬菜,平播农作物的效益最小,但也明显优于裸地。由于各地区的地理环境和土地利用状况不同,自然降雨的特点也存在差异,因此不同地区的水土流失规律不尽相同。太行山地区属典型北方土石山区,是华北重要供水水源地。该区人口众多,生态环境脆弱,水土流失严重[17]。迄今为止,该区不同措施水土保持效应研究的报道较少,亟待开展这方面的研究工作。本研究以山西省平顺县白马小流域坡面径流小区的观测数据为基础,运用统计学方法,分析北方土石山区太行山地区的降雨、产流产沙特征,比较不同植物措施对坡面产流产沙的影响。研究结果可为该区生态环境建设、水土流失综合治理和坡面水土保持措施效应评价提供理论依据。

  • 研究区位于山西省平顺县青羊镇白马小流域,面积为4.47 km2,属于海河流域浊漳河水系,为典型北方土石山区。地理位置为36°07′19″~36°08′52″N,113°20′30″~113°22′11″E,海拔1 303.3~1 522.5 m,暖温带大陆性气候,土壤侵蚀类型以水蚀为主。多年平均气温为9.1 ℃,≥10 ℃的积温3 177.5 ℃,无霜期125.0 d,多年平均降水量为628.9 mm,主要集中在6-9月,且年际、年内变化较大,分配不均匀。多年平均蒸发量为1 631.6 mm,气候干旱。土壤类型为石灰性褐土,是该区最普遍的土壤类型,土层厚度为0~50 cm,抗蚀性差,水土流失严重。流域内植被主要是森林、灌丛、草地、荒山、玉米地等,主要植物有白羊草Bothriochloa ischaemum,紫蒿Artemisia verlotorum,黄栌Cotinus coggygria,黄刺梅Rosa xanthina,山桃Amygdalus davidiana,油松Pinus tabuliformis,山杨Populus davidiana,侧柏Platycladus orientalis,辽东栎Quercus wutaishansea,山杏Prunus armeniaca,虎榛子Ostryopsis davidiana,胡枝子Lespedeza bicolor,沙棘Hippophae rhamnoide和铁杆蒿Heteropappus altaicus等。

  • 根据平顺县白马小流域水土流失综合观测站的地形条件和当地植被类型,在试验区内共设置10个坡面径流试验小区。小区统一规格为长20 m宽5 m面积100 m2,其中包括1个标准小区,4个植物措施和5个植物+工程措施小区,于2006年开始观测。本研究选取标准小区和4个植物措施小区进行研究,所涉及的植物均为该区常见物种,可代表该区的水土保持植物措施情况。坡面小区在植被生长期内隔15 d进行1次乔灌草覆盖度调查,通过修枝、除草等措施控制植被覆盖度。径流小区外围砌有10 cm厚的水泥板,以防止外界径流流入,小区两侧各留有0.3 m宽的隔离带,上方设置排水沟,下方出口与分水箱连接。分水箱与集水箱连接,以收集降雨产生的径流和泥沙。各径流小区基本情况见表 1

    小区 坡度/(°) 坡向/(°) 土地利用 整地方式 土壤类型 土层厚度/cm 覆盖度/% 植株密度/(株·m-2)
    1 18°20′ 210 裸地(标准小区) 石灰性褐土 50 0 0
    2 18°20′ 210 自然坡(白羊草、紫蒿、黄栌) 自然荒草坡 石灰性褐土 50 50 22.00
    3 18°20′ 210 人工种草(白羊草) 条播 石灰性褐土 50 40 20.00
    4 18°20′ 210 灌木(黄刺梅) 鱼鳞坑 石灰性褐土 50 45 2.50
    5 18°20′ 210 乔木(山桃) 鱼鳞坑 石灰性褐土 50 42 0.16

    Table 1.  Basic situation of the runoff plots

  • 径流小区降雨数据观测:采用虹吸式自记雨量计(记录纸分度范围为0.1~10.0 mm; 记录误差为±0.05 mm)观测降雨,每天8: 00更换记录纸,根据降雨过程线分析降雨量、降雨历时和降雨强度;利用观测的降雨数据,应用降雨侵蚀力计算软件计算出降雨侵蚀力,计算公式:$E = \sum\limits_{k = 1}^n {\left( {{e_k}{P_k}} \right)} ;{e_k} = 0.119 + 0.873{\rm{log}}{i_k};R = E{I_{30}}$。其中:E为降雨总动能,MJ·hm-2ekk时段单位降雨动能,MJ· hm-2·mm-1Pkk时段降雨量,mm;ikk时段降雨强度,mm·h-1R为降雨侵蚀力,MJ·mm· hm-2·h-1I30为最大30 min降雨强度,mm·h-1

    径流量观测:每次自然降雨后,立即采用水位计(精度为≥±0.5%)测定分水箱中水深,计算地表径流总量、径流深及径流系数;若降雨量较大,致降雨从分水箱的出口流入集水箱,则立即测定集水箱中的水深,计算公式:H=103V/SV=S1H1+rS2H2。其中:H为坡面径流深(mm);V为坡面总产流体积(m3);S为径流小区面积(m2);S1为分水箱底面积(m2);S2为集水箱底面积(m2);H1为分水箱水深(m);H2为集水箱水深(m);r为一级分流系数。

    产沙量观测:充分搅匀分水箱中的泥水,分层取2 000 mL泥水混合样带回实验室,将样品过滤后烘干,用千分之一电子天平称其质量,以计算各坡面产沙模数,计算公式:M=104MS/SMS=10-6[m(1-c)+103(S1H1C1+rS2H2C2)]。其中:M为坡面产沙模数(t·km-2);MS为坡面总产沙量(t);m为水箱土总重量(g);c为分水箱土含水率;C1为分水箱含沙率(g·L-1);C2为集水箱含沙率(g·L-1)。

    土壤含水量观测:采用时域反射仪(TDR)法测定土壤含水量,隔15 d测定1次,测定深度为5,10,20,30 cm;

  • 收集整理2015年(4-10月)平顺县白马小流域的降雨数据,各坡面径流小区的产流产沙数据。本研究把能够导致坡面径流小区发生水土流失的降雨均视为侵蚀性降雨。在汛期的45场降雨中有12场侵蚀性降雨,将12场侵蚀性降雨按照降雨等级划分标准GB/T 28592-2012《降水量等级》进行划分(表 2)。

    日期(月-日) 降雨历时/min 降雨量/mm 降雨类型 平均雨强/(mm·h-1) I30/(mm·h-1) 降雨侵蚀力/(MJ • mm • hm-2·h-1)
    04-02 371 21.2 大雨 3.43 12.23 41.22
    05-01 901 34.1 大雨 2.27 18.16 99.53
    05-06 496 16.5 大雨 2.00 24.14 96.16
    05-28 818 26.8 大雨 1.97 4.78 15.54
    06-23 600 61.7 暴雨 6.18 10.96 53.95
    07-15 766 14.1 中雨 1.10 4.53 7.96
    07-17 266 27.1 大雨 6.09 41.85 298.54
    07-21 77 15.1 大雨 11.77 23.66 90.72
    08-03 873 15.9 中雨 1.09 13.12 48.54
    08-05 50 10.7 中雨 12.84 19.95 52.75
    08-29 23 5.9 中雨 15.10 31.76 17.56
    08-31 427 36.28 暴雨 5.09 11.44 276.22

    Table 2.  Characteristics of 12 erosive rainfall in Baima small watershed on April to October of 2015

    运用Excel 2016和SPSS 20.0统计软件进行数据的整理以及统计分析,应用Pearson相关系数进行显著性检验。

  • 研究区降雨主要发生在4-10月,期间共有45场降雨,降雨量总量为440.30 mm,其中侵蚀性降雨有12场(表 2),侵蚀性降雨总量为285.67 mm,占4-10月份降雨总量的64.88%。由表 2可知:侵蚀性降雨主要集中于5-8月,该期间降雨量为362.8 mm占监测期总降雨量的82.39%;月最大降雨量为101.4 mm,出现在8月;单次最大降雨量为61.7 mm,出现在6月23日,最小降雨量为5.8 mm,出现在8月29日;次降雨的最大平均雨强为15.1 mm·h-1,最小为1.1 mm·h-1;最大30 min雨强最大值为41.8 mm·h-1,最小为3.9 mm·h-1;最大降雨侵蚀力298.5 MJ·mm·hm-2·h-1,最小为7.9 MJ·mm·hm-2·h-1

  • 将侵蚀性降雨按GB/T 28592-2012的降雨等级划分标准分成3个等级,分别是中雨、大雨、暴雨。在不同降雨等级下各坡面径流小区的产流量情况见图 1。在中雨、大雨、暴雨条件下,各坡面径流小区的产流情况是裸地>自然荒坡>人工草地>灌木林地>乔木林地,可见乔木林地在各降雨等级下的减流效应最大,在大雨量降雨发生时能够有效减少坡面径流的产生。在中雨条件下,4种典型植物措施坡面径流小区的产流量相差不大,差异不显著(P>0.05);在大雨条件下各坡面径流小区的产流量均有显著增加,相比于中雨条件增加幅度分别是:裸地114.88%,自然荒坡190.01%,人工种草232.62%,灌木313.45%,乔木451.77%。与中雨和大雨条件相比,在暴雨条件下,各坡面径流小区的产流量增加显著,相比于中雨条件增加幅度分别是:裸地295.44%,自然荒坡339.07%,人工种草400.86%,灌木565.97%,乔木765.25%。相比于大雨条件增加幅度分别是:裸地84.74%,自然荒坡51.39%,人工种草50.58%,灌木61.08%,乔木56.81%。与裸地相比4种典型植物措施坡面径流小区的产流量显著减少;在大雨和暴雨条件下各坡面产流量占总产流量的85.91%~93.58%。可见,该区4种植物措施能有效发挥保水作用,尤其是在大雨和暴雨发生时,产流量最少。

    Figure 1.  Runoff yield of typical plant measures under different rainfall levels

    将侵蚀性降雨以最大30 min降雨强度的大小进行雨强分类,分为低雨强(I30≤10 mm·h-1),中雨强(10 mm·h-1I30≤30 mm·h-1)和高雨强(I30>30 mm·h-1)。各坡面径流小区在各雨强等级下的产流量情况见图 2。在低雨强、中雨强、高雨强下,各坡面径流小区的产流情况是裸地>自然荒坡>人工草地>灌木林地>乔木林地,产流量变化不大且相对比较均匀,但与裸地相比在不同降雨强度下4种植物措施的产流量显著偏少。在低雨强条件下,各坡面径流小区的产流量差异不显著,可能是因为雨强较小使得大部分降雨入渗土壤或被植被截留;在中雨强和高雨强下,各坡面径流小区的产流量占总产流量的71.94%~73.60%,与裸地小区比较,灌木林地和乔木林地在中雨强和高雨强下的减流效应最为显著。

    Figure 2.  Runoff yield of typical plant measures under different rainfall intensity

  • 在地形、土壤、坡度、降雨等条件相同的情况下,植物覆盖对坡面产沙量的影响最为突出。在侵蚀性降雨分为3个等级的条件下,各坡面径流小区的产沙量如图 3所示。

    Figure 3.  ediment yield of typical plant measures under different rainfall levels

    图 3可知:在各降雨等级条件下,坡面径流小区的产沙量是裸地>自然荒坡>人工草地>灌木林地>乔木林地,乔木林地的减沙效应最优。在中雨条件下,各坡面径流小区的产沙量差异不大,基本都在北方土石山区允许的土壤流失范围内(小于200 t·km-2);相比于中雨条件下,大雨条件下各坡面径流小区产流量有所增加,增幅分别是裸地207.16%,自然荒坡251.68%,人工草地143.30%,灌木林地4.87%,乔木林地115.78%,灌木林地增幅最小,可见降雨量变化对灌木林地产沙量影响最小。在暴雨条件下,降雨量最大,雨滴击溅地表,破坏土壤结构,使得入渗能力降低,坡面径流增加,土壤流失严重。因此各坡面径流小区在暴雨条件下的产沙量最大,占坡面总产沙量的48.10%~64.95%。总体来看,在大雨和暴雨条件下灌木林地和乔木林地小区的产沙量最少(小于200 t·km-2),防治土壤侵蚀的效果最优,4种典型植物措施小区的减沙效应明显。因此,在太行山地区应加强人工草地、灌木林地、乔木林地等植物措施的合理布设,防治各类降雨造成的水土流失。

    将侵蚀性降雨以最大30 min降雨强度大小进行雨强分类,分为低雨强、中雨强、高雨强3种类型。各雨强等级下各坡面径流小区产沙量如图 4所示。在低雨强条件下,雨滴动能较小,对地面的击溅作用较弱,仅有面蚀产生,因此产沙量较小,各坡面径流小区产沙量差异不显著(P>0.05);在中雨强和高雨强条件下,雨滴的动能较大,对地面的击溅作用增强,破坏土壤结构,入渗减弱,径流量增加,侵蚀能力增强,因此各坡面径流小区产沙量明显增加。相比于低雨强条件,在中雨强下各坡面产沙量增加,增幅分别为裸地262.73%,自然荒坡315.97%,人工草地116.29%,灌木林地95.33%,乔木林地84.52%。而在高雨强下各坡面产沙量增幅则分别是裸地473.62%,自然荒坡690.59%,人工草地310.61%,灌木林地170.00%,乔木林地135.71%。其中,裸地、自然荒坡、人工草地产沙量增幅最大,而灌木、乔木林地产沙量增幅较小,均在北方土石山区允许土壤流失量范围内(小于200 t·km-2)。总之,与裸地小区相比,在各雨强等级下4种典型植物措施小区产沙量明显较少,其中乔木林地、灌木林地的产沙量最低,人工草地和自然荒坡次之。

    Figure 4.  Sediment yield of typical plant measures under different rainfall intensity levels

  • 2015年(4-10月)标准小区和4个植物措施坡面径流小区0~30 cm土层平均含水率动态变化如图 5所示。由于土壤含水率是隔15 d监测1次,因此降雨量也计算15 d内的总降水量。由图 5知,在4-10月的降雨过程中,各措施坡面径流小区的土壤含水率变化趋势基本一致,其变化趋势与半个月内降雨量分布有很好的一致性。降雨主要集中在7月和8月,且这2个月降雨次数较多,降雨量大,相对均匀,因此导致这期间各坡面径流小区土壤含水率最高,为17.1%~26.0%。此外,汛期的侵蚀性降雨也主要出现在这2个月,再加之较高的土壤含水率,极易导致各坡面径流小区发生水土流失。4月2日初次观测的土壤含水率较高,为16.6%~21.9%。分析发现在4月2日有一场产流性降雨,降雨量为21.2 mm,可见降雨对表层土壤含水率影响较大。4月中期降雨量几乎为0,导致土壤含水率明显下降,同时这一时期植被处于萌发生长状态需水量大,也是导致土壤含水率下降的原因。随着5月降水量逐渐增多,以及植物措施保水作用的发挥使得土壤含水率呈增加趋势,为14.9%~23.1%;9月和10月土壤含水率下降明显,主要是因为这一时期降水量明显减少,植物开始枯萎保水作用减弱。该时期各坡面径流小区土壤含水量差异明显。总之,7月和8月降雨次数多,降雨量大且均匀,因此土壤含水率最高,为17.1%~26.0%,即为“丰水期”;4-6月,降雨逐渐增多,植物萌发保水作用增强,土壤含水率升高,这一时期为“波动期”;9月和10月,降雨明显减少,植被枯萎,土壤含水率下降明显,因此这一时期为“枯水期”。各坡面径流小区土壤含水率变化趋势基本一致,其变化趋势与降雨分布有很好的一致性,土壤含水率变化受降雨影响明显。

    Figure 5.  Dynamic changes of soil moisture content in different slope (A -E)

  • 在大雨和暴雨条件下,各坡面径流小区产流产沙量增幅较大,是造成该区水土流失的主要降雨类型。马鹏[18]也认为与大雨相比,暴雨更容易造成土壤侵蚀,土壤侵蚀的主要贡献者是大雨。本研究认为4种典型植物措施中灌木林地和乔木林地在各种降雨类型下产流产沙量最少,能够有效防治该地区的水土流失,在低雨强条件下,降雨造成的坡面径流和土壤侵蚀并不严重,但在中雨强和高雨强条件下,各坡面径流小区的产流量占总产流量的71.94%~73.60%,产沙量占总产沙量的80.78%~90.35%。可见中雨强和高雨强造成的产流产沙量是该区水土流失的主要来源,这与王志伟等[8]研究结果一致。降雨不仅导致坡面水土流失,同时也对坡面土壤含水率有一定影响。研究发现:4-6月降雨较少且不均匀,同时植被处于萌发生长阶段需水量较大,导致各坡面表层土壤含水率波动较大,含水率较低,为10.0%~22.3%。此时期为“波动期”;7-8月降雨相对较多且降雨均匀,植被的保水作用也在这一时期得到充分发挥,表层土壤含水率较高且稳定,土壤含水率基本维持在17.1%~26.0%,此时期为“丰水期”;9-10月降雨急剧减少,植被枯萎,土壤含水率基本处于最低,维持在10.8%~16.0%,此时期为“枯水期”。同时,发现各坡面径流小区的土壤含水率的变化趋势与降雨分布有很好的一致性,土壤含水率变化受降雨影响明显。

  • 本研究以山西省太行山土石山区白马小流域为研究区域,通过对标准小区和4个植物措施坡面径流小区的降雨和产流产沙进行观测,分析了不同降雨类型条件下各坡面径流小区产流产沙和表层土壤含水率变化规律。结论如下:①大雨和暴雨是造成各坡面水土流失的主要降雨类型;在中雨强和高雨强条件下,各坡面径流小区的产流量占总产流量的71.94%~73.60%,产沙量占总产沙量的80.78%~90.35%。② 在不同降雨类型条件下,各坡面产流产沙量为裸地>自然荒坡>人工草地>灌木林地>乔木林地,灌木林地和乔木林地在各种降雨类型下产流产沙量最少,能够有效防治该区的水土流失。③4-6月为各坡面表层土壤含水率“波动期”;7-8月表层土壤含水率最高且稳定,土壤含水率在17.1%~26.0%,此时期为“丰水期”;9-10月为“枯水期”。各坡面径流小区土壤含水率变化趋势基本一致,其变化趋势与降雨分布有很好的一致性,土壤含水率变化受降雨影响明显。

    综上所述,在太行山土石山区开展水土保持工作时,在裸地要采取必要的植物措施,尤其是乔木林和灌木林的布设将更加有利于水土流失防治。在雨季应注意防范大雨量、大雨强降雨事件引发的水土流失。每年5-8月是水土保持工作的关键时期,要加强水土流失防范工作。

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return