Volume 35 Issue 5
Sep.  2018
Turn off MathJax
Article Contents

CHENG Ruimei, SHEN Yafei, FENG Xiaohui, XIAO Wenfa, WANG Na, YANG Shao, GUO Yan. Research review on forests natural regeneration[J]. Journal of Zhejiang A&F University, 2018, 35(5): 955-967. doi: 10.11833/j.issn.2095-0756.2018.05.022
Citation: CHENG Ruimei, SHEN Yafei, FENG Xiaohui, XIAO Wenfa, WANG Na, YANG Shao, GUO Yan. Research review on forests natural regeneration[J]. Journal of Zhejiang A&F University, 2018, 35(5): 955-967. doi: 10.11833/j.issn.2095-0756.2018.05.022

Research review on forests natural regeneration

doi: 10.11833/j.issn.2095-0756.2018.05.022
  • Received Date: 2017-10-12
  • Rev Recd Date: 2018-01-19
  • Publish Date: 2018-10-20
  • Natural regeneration of forests is a complex ecological process which ensures the reproduction of the population and maintains the structure stability of forests communities. It is a hot issue of forest ecology playing an ecosystem management mode, people gradually began to emphasize the stable forest ecosystem and natural important role in forest dynamic. But with the change of forest management to multi-objectives and process, researchers began to pay attention to the natural regeneration process. In this review, we discussed the manners, and studied the effect of disturbances including fire, wood harvesting and forest gap. The most current studies of forest regeneration were based on descriptive analysis of natural regeneration from field data and phenomena, and few findings revealed the mechanisms of forest natural regeneration in terms of physiology and ecology. The research subjects mainly focused on forest types, restricted to forest gap renewal and species groups in forest communities. Insufficient attention has been paid to the regeneration of forest in frequent disturbance, and the countermeasures to promote the regeneration of natural regeneration species were insufficient. The scale of forest natural regeneration should be expanded and deepened. In studies of forest natural regeneration, researchers should strengthen the following aspects:(1) the role of various factors should be studied synthetically; (2) the scale of research should be extended; (3) the physiological mechanism and ecological function should be studied; (4) emphasis should be placed on increasing the regeneration of difficult species, the regeneration of endangered species and ecologically fragile areas; (5) physiological responses of seed seedlings to elevated CO2 and changes in hydrothermal conditions should be carried out; (6) study on the effects of various types, intensities and frequency interference on seed seedlings should be enhanced; (7) study on the relationship between the regeneration of forest community and biodiversity to further reveal the update of forest community should be enhanced. In conclusion, this paper summarized the current situation and problems of natural forest regeneration, and put forward some suggestions for future research, which can provide the theoretical basis for forest management and ecological restoration, and provide reference for the protection of climate change, forestry production of rare and endangered plants. Meanwhile, the work has important significance on sustainable development of forests, the balance of the ecological system and the conservation of biological diversity.
  • [1] WANG Zhengyi, DAI Qilin, BAI Cheng, CHEN Han, KU Weipeng, ZHAO Mingshui, YU Shuquan.  Types and diversity of natural regeneration community after clear cutting of Phyllostachys edulis forests in Mount Tianmu, China . Journal of Zhejiang A&F University, 2020, 37(4): 710-719. doi: 10.11833/j.issn.2095-0756.20190472
    [2] WANG Dongli, HAO Kexin, LIANG Xiaosa, FANG Xiang, TANG Jiaxi, LIAN Zhao, ZHAO Yan, SHEN Haiou.  Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances . Journal of Zhejiang A&F University, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
    [3] TONG Liang, LI Pingheng, ZHOU Guomo, ZHOU Yufeng, LI Chong.  A review of research about rhizome-root system in bamboo forest . Journal of Zhejiang A&F University, 2019, 36(1): 183-192. doi: 10.11833/j.issn.2095-0756.2019.01.023
    [4] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [5] MAO Yuming, QIAO Weiyang, WU Kezhuang, YU Mukui, CHENG Xiangrong.  Growth, photosynthesis, and nutrition of Gynura divaricata with forest gap treatments . Journal of Zhejiang A&F University, 2016, 33(1): 88-93. doi: 10.11833/j.issn.2095-0756.2016.01.012
    [6] YU Bao, ZHANG Qiuliang, WANG Liming, SA Rula.  Distribution pattern for regeneration of a middle to young cut-over Larix gmelinii forest . Journal of Zhejiang A&F University, 2015, 32(3): 346-352. doi: 10.11833/j.issn.2095-0756.2015.03.003
    [7] YE Lisha, CHEN Shuanglin, GUO Ziwu.  Research on nitrogen circulation and management of bamboo: a review . Journal of Zhejiang A&F University, 2015, 32(4): 635-642. doi: 10.11833/j.issn.2095-0756.2015.04.021
    [8] LIU Yufang, CHEN Shuanglin, LI Yingchun, GUO Ziwu, YANG Qingping.  Environmental stress on physiological plasticity of bamboo: a review . Journal of Zhejiang A&F University, 2014, 31(3): 473-480. doi: 10.11833/j.issn.2095-0756.2014.03.022
    [9] LI Feifei, RAO Liangyi, Lü Kunlong, LI Huijie, SONG Dandan.  Parameter corrections for the Priestley-Taylor Model and applications in evapotranspiration estimation . Journal of Zhejiang A&F University, 2013, 30(5): 748-754. doi: 10.11833/j.issn.2095-0756.2013.05.018
    [10] BU Tao, ZHANG Shuikui, SONG Xinzhang, JIANG Hong.  Effects of several environmental factors on litter decomposition . Journal of Zhejiang A&F University, 2013, 30(5): 740-747. doi: 10.11833/j.issn.2095-0756.2013.05.017
    [11] WEI Shujing, SUN Long, WEI Shuwei, HU Haiqing.  Coarse woody debris in forest ecosystems: a review . Journal of Zhejiang A&F University, 2013, 30(4): 585-598. doi: 10.11833/j.issn.2095-0756.2013.04.019
    [12] ZHANG Xiao-peng, YIN You, YU Li-zhong, YAO Li-hai, YING Hui, ZHANG Na.  Influence of water and soil nutrients on biomass and productivity of fine tree roots:a review . Journal of Zhejiang A&F University, 2010, 27(4): 606-613. doi: 10.11833/j.issn.2095-0756.2010.04.022
    [13] 杨廉雁, 张树斌, 郑征.  Research progress on the hollow-bearing trees in forest ecosystems . Journal of Zhejiang A&F University, 2010, 27(6): 928-934. doi: 10.11833/j.issn.2095-0756.2010.06.021
    [14] ZHANG Hui-ling, SONG Xin-zhang, AI Jian-guo, JIANG Hong, YU Shu-quan.  A review of UV-B radiation and its influence on litter decomposition . Journal of Zhejiang A&F University, 2010, 27(1): 134-142. doi: 10.11833/j.issn.2095-0756.2010.01.022
    [15] CHEN Ping, WAN Fu-xu, GU Tang-hua, LI Meng, QIN Fei, GUAN Qing-wei.  Short-term effects of anthropogenic disturbances on plant species diversity in undergrowth vegetation for limestone soils of Xuzhou City,Jiangsu Province . Journal of Zhejiang A&F University, 2010, 27(5): 691-698. doi: 10.11833/j.issn.2095-0756.2010.05.009
    [16] GONG Zhi-wen, KANG Xin-gang, GU Li, ZHAO Jun-hui, ZHENG Yan-feng, YANG Hua.  Research methods on natural forest stand structure:a review . Journal of Zhejiang A&F University, 2009, 26(3): 434-443.
    [17] HE Ying,  WEI Xin-liang,  CAI Xia,  LI Ke-zhui,  WANG Zhen.  Quantitative analysis of community structure in ecological landscape forests . Journal of Zhejiang A&F University, 2007, 24(6): 711-718.
    [18] WANG Jing-yan, GONG Wei, HU Ting-xing, GONG Yuan-bo, RAN Hua.  Water conservation in a natural evergreen broadleaf forest and three plantations in southern Sichuan Province . Journal of Zhejiang A&F University, 2007, 24(5): 569-574.
    [19] WANG Bin, WANG Hui, YANG Jun-long, SUN Dong-yuan.  Regeneration characteristics for major tree species of a secondary Pinus tabulaeformis forest in the Ziwu Mountains . Journal of Zhejiang A&F University, 2007, 24(5): 559-563.
    [20] PENG Jian-song, CHAI Yong, MENG Guang-tao, FANG Xiang-jing, LI Gui-xiang, HE Li-ping.  Gap characteristics in the natural forests of Pinus yunnanensis alone the Jinshajiang Basin in Yunnan Province . Journal of Zhejiang A&F University, 2005, 22(1): 50-55.
  • [3]
    HAN Youzhi, WANG Zhengquan. Spatial heterogeneity and forest regeneration[J]. Chin J Appl Ecol, 2002, 13(5):615-619.
    [4]
    BURGER J A. Management effects on growth, production and sustainability of managed forest ecosystems:past trends and future directions[J]. For Ecol Manage, 2009, 258(10):2335-2346.
    [5]
    PEREVOLOTSKY A, SHEFFER E. Forest management in Israel:the ecological alternative[J]. Israel J Plant Sci, 2009, 57(1/2):35-48.
    [6]
    PUETTMANN K J, AMMER C. Trends in North American and European regeneration research under the ecosystem management paradigm[J]. Eur J For Res, 2007, 126(1):1-9.
    [7]
    ZHANG Xin, XU Gaofu, SHEN Dongwei, et al. Maintenance and natural regeneration of Castanopsis sclerophylla populations on islands of Qiandao Lake Region[J]. Acta Ecol Sin, 2007, 27(2):424-431.
    [8]
    GAO Runhong, DONG Zhi, ZHANG Hao, et al. Study on regeneration process and biodiversity characteristic of Populus euphratica community in the Ejina Natural Reserve, Inner Mongolia of China[J]. Acta Ecol Sin, 2005, 25(5):1019-1025.
    [9]
    GANG Qun, YAN Qiaoling, LIU Huanbin, et al. Comparison of growth characteristics between 1-year-old seedlings of Quercus mongolica through seed germination and sprout regeneration[J]. Chin J Ecol, 2014, 33(5):1183-1189.
    [10]
    DU Xiaojun, GUO Qinfeng, GAO Xianming, et al. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest[J]. For Ecol Manage, 2007, 238(1/3):212-219.
    [11]
    ZHU Wanze, WANG Jinxi, LUO Chengrong, et al. Progresses of studies on forest sprout regeneration[J]. Sci Silv Sin, 43(9):74-82.
    [12]
    BELLINGHAM P J, SPARROW A D. Resprouting as a life history strategy in woody plant communities[J]. Oikos, 2000, 89(2):409-416.
    [13]
    TREDICI P D. Sprouting in temperate trees:a morphological and ecological review[J]. Bot Rev, 2001, 67(2):121-140.
    [14]
    CLARKE P J, DORJI K. Are trade-offs in plant resprouting manifested in community seed banks?[J]. Ecology, 2008, 89(7):1850-1858.
    [15]
    KEITH D A, TOZER M G, REGAN T J, et al. The persistence niche:what makes it and what breaks it for two fire-prone plant species[J]. Austr J Bot, 2007, 55(3):273-279.
    [16]
    WANG Xihua, KENT M, FANG Xiaofeng. Evergreen broad-leaved forest in Eastern China:its ecology and conservation and the importance of resprouting in forest restoration[J]. For Ecol Manage, 2007, 245(1):76-87.
    [17]
    KAMMESHEIDT L. The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash-and-burn agriculture in eastern Paraguay[J]. Plant Ecol, 1998, 139(2):155-165.
    [18]
    MIDGLEY J J. Why the world's vegetation is not totally dominated by resprouting plants; because resprouters are shorter than reseeders[J]. Ecography, 2010, 19(1):92-94.
    [19]
    SIMES C G, MARQUES M C M. The role of sprouts in the restoration of atlantic rainforest in southern Brazil[J]. Restor Ecol, 2010, 15(1):53-59.
    [20]
    DEY D C, SPETICH M A, WEIGEL D R, et al. A suggested approach for design of oak (Quercus L.) regeneration research considering regional differences[J]. New For, 2009, 37(2):123-135.
    [21]
    HAN Youzhi, WANG Zhengqun, GU Jiacun. The effects of spatial heterogeneity of understorey light availability on regeneration of manchurian ash[J]. Chin J Plant Ecol, 2004, 28(4):468-475.
    [22]
    CHU Guozhong, PENG Changgen, ZHANG Changgen, et al. The avifauna in the area around the Nianzhu Forest Farm, Fenyi County, Jiangxi Province[J]. For Res, 1995, 8(2):132-138.
    [23]
    LONG Zuoyi, LIU Hanping, WU Quande. Effects of photoperiod on the seedlings of Picea koraiensis[J]. J Mudanjiang Teach Coll Nat Sci Ed, 1999(1):12-13.
    [24]
    REN Jianyi, LIN Yue, YUE Ming. Seed germination characteristics of Betula albo-sinensis at Mountain Taibai, China[J]. J Plant Ecol, 2008, 32(4):883-890.
    [25]
    RUANO I, PANDO V, BRAVO F. How do light and water influence Pinus pinaster Ait. germination and early seedling development[J]. For Ecol Manage, 2009, 258(12):2647-653.
    [26]
    BADER M Y, GELOOF I V, RIETKERK M. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador[J]. Plant Ecol, 2007, 191(1):33-45.
    [27]
    ZHANG Shuna. Effect of Light and Fertilization on Artificial Regeneration of Precious Seedings under the Canopy[D]. Harbin: Northeast Forestry University, 2015.
    [28]
    DING Shengyan, SONG Yongchang. Declining causes of Pinus massoniana in the processes of succession of evergreen broad-leaved forest[J]. Acta Bot Sin, 1998, 40(8):755-760.
    [29]
    MODRY M, HUBENY D, REJSEK K. Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability[J]. For Ecol Manage, 2004, 188(1):185-195.
    [30]
    MESSIER C, DOUCET R, RUEL J C, et al. Functional ecology of advance regeneration in relation to light in boreal forests[J]. Can J For Res, 1999, 29(6):812-823.
    [31]
    LIU Hujun, WANG Jihe, MA Quanlin, et al. Preliminary study on the mechanism of natural regeneration of vegetation in desert landscapes in arid areas[J]. Arid Zone Res, 22(3):301-305.
    [32]
    CHANG Zhaofeng, HAN Fugui, ZHONG Shengnian, et al. Preliminary study on the natural regeneration and degenerated succession of the plant community of desert grassland in Minqin[J]. Pratac Sci, 2008, 25(8):13-18.
    [33]
    MAHALL B E, TYLER C M, COLE E S, et al. A comparative study of oak (Quercus, Fagaceae) seedling physiology during summer drought in southern California[J]. Am J Bot, 2009, 96(4):751-761.
    [34]
    ZHANG Yubo, LI Jingwen, ZHANG Hao, et al. Analysis on the factors cause the failure of Populus euphratica sextual regeneration in nature[J]. Sci Technol Eng, 2005, 5(8):467-472.
    [35]
    ENGELBRECHT B M J, KURSAR T A, TYREE M T. Drought effects on seedling survival in a tropical moist forest[J]. Trees, 2005, 19(3):312-321.
    [36]
    ENGELBRECHT B M J, WRIGHT S J, de STEVEN D. Survival and ecophysiology of tree seedlings during El Niño drought in a tropical moist forest in Panama[J]. J Trop Ecol, 2002, 18(4):569-579.
    [37]
    CHIDUMAYO E N. Implications of climate warming on seedling emergence and mortality of African savanna woody plants[J]. Plant Ecol, 2008, 198(1):61-71.
    [38]
    WANG Yufeng. Effect of temperature on germination mechanism of plant seeds[J]. Prot For Sci Technol, 2015(6):76-78.
    [39]
    BERMÚDEZ A M, FERNÁNDEZ-PALACIOS J M, GONZÁLEZ-MANCEBO J M, et al. Floristic and structural recovery of a laurel forest community after clear-cutting:a 60 years chronosequence on La Palma (Canary Islands)[J]. Ann For Sci, 2007, 64(1):109-119.
    [40]
    DANG Qinglai, CHENG Song. Effects of soil temperature on ecophysiological traits in seedlings of four boreal tree species[J]. For Ecol Manage, 2004, 194(1/3):379-387.
    [41]
    ELLSWORTH J W, HARRINGTON R A, FOWNES J H. Seedling emergence, growth, and allocation of Oriental bittersweet:effects of seed input, seed bank, and forest floor litter[J]. For Ecol Manage, 2004, 190(2):255-264.
    [42]
    LI Genzhu, WANG Hexin, ZHU Shuquan, et al. Barrier effect of litter on natural regeneration in northeast secondary forest[J]. J Liaoning Technol Univ Nat Sci, 2008, 27(2):295-299.
    [43]
    AHMED R, HOQUE A T M R, HOSSAIN M K. Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops[J]. J For Res, 2008, 19(1):19-24.
    [44]
    LOPEZBARRERA F, GONZALEZESPINOSA M. Influence of litter on emergence and early growth of Quercus rugosa:a laboratory study[J]. New For, 2001, 21(1):59-70.
    [45]
    LIN Fei, HAO Zhanqing, YE Ji. Effects of bryophytes on plant natural regeneration[J]. Chin J Ecol, 2006, 25(4):456-460.
    [46]
    SUGITA H, NAGAIKE T. Microsites for seedling establishment of subalpine conifers in a forest with moss-type undergrowth on Mt. Fuji, central Honshu, Japan[J]. Ecol Res, 2005, 20(6):678-685.
    [47]
    LIN Fei, HAO Zhanqing, LI Buhang, et al. The relationship between the moss community characteristics and the regeneration in the dark coniferous forest of Changbai Mountain[J]. Acta Ecol Sin, 2007, 27(4):1308-1314.
    [48]
    DU Guisen, WEI Lianhao, LIU Jing, et al. Influence to crop seed sprouting on bryophytes[J]. Acta Bot Boreal-Occident Sin, 2004, 24(8):1497-1501.
    [49]
    ROONEY T P, WALLER D M. Direct and indirect effects of white-tailed deer in forest ecosystems[J]. For Ecol Manage, 2003, 181(1):165-176.
    [50]
    GUO Cairu, LU Jiqi, YANG Dongzhi, et al. Impacts of burial and insect infection on germination and seedling growth of acorns of Quercus variabilis[J]. For Ecol Manage, 2009, 258(7):1497-1502.
    [51]
    HOLLADAY C A, KWIT C, COLLINS B. Woody regeneration in and around aging southern bottomland hardwood forest gaps:effects of herbivory and gap size[J]. For Ecol Manage, 2006, 223(1):218-225.
    [52]
    DARABANT A, RAI P B, TENZIN K, et al. Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory[J]. For Ecol Manage, 2007, 252(1):73-83.
    [53]
    XIAO Zhishu, WANG Yushan, HARRIS M, et al. Spatial and temporal variation of seed predation and removal of sympatric large-seeded species in relation to innate seed traits in a subtropical forest, southwest China[J]. For Ecol Manage, 2006, 222(1):46-54.
    [54]
    GANZHORN J U, FIETZ J, RAKOTOVAO E, et al. Lemurs and the regeneration of dry deciduous forest in Madagascar[J]. Conserv Biol, 2010, 13(4):794-804.
    [55]
    PONS J, PAUSAS J G. Not only size matters:acorn selection by the European jay (Garrulus glandarius)[J]. Acta Oecol, 2007, 31(3):353-360.
    [56]
    WU Darong, WANG Bosun. Seed and seedling ecology of the endangered Phoebe bournei (Lauraceae)[J]. Acta Ecol Sin, 2001, 21(11):1751-1760.
    [57]
    XU Huacheng, BAN Yong. The distribution of seeds in the soil and the sustainability of the seed of Larix gmelini in northern Daxinganling Mountains[J]. Acta Phytoecol Sin, 1996, 20(1):28-34.
    [58]
    CASABON C, POTHIER D. Browsing of tree regeneration by white-tailed deer in large clearcuts on Anticosti Island, Quebec[J]. For Ecol Manage, 2007, 253(1):112-119.
    [59]
    SHIELS A B, WALKER L R. Bird perches increase forest seeds on Puerto Rican landslides[J]. Restor Ecol, 2003, 11(4):457-465.
    [60]
    BRIGGS J S, WALL S B V, JENKINS S H. Forest rodents provide directed dispersal of Jeffrey pine seeds[J]. Ecology, 2009, 90(3):675-687.
    [61]
    WANG Wei, MA Keping. Predation and dispersal of Quercus liaotungensis Koidz. acorns by animals in Dongling Mountain, Northern China (Ⅰ) effect of rodents removal on loss of acorns[J]. Acta Ecol Sin, 2001, 21(2):204-210.
    [62]
    MA Jie, LI Qingfen, SUN Ruyong. et al. Rodents as the key predators of ground seeds of Quercus liaotungensisin Xiaolongmen Forestry Centre, Beijing[J]. Zool Res, 2004, 25(4):287-291.
    [63]
    BRANCO M, BRANCO C, MEROUANI H, et al. Germination success, survival and seedling vigour of Quercus suber acorns in relation to insect damage[J]. For Ecol Manage, 2002, 166(1/3):159-164.
    [64]
    OWENT L, SOFIA G. Insect seed predators and environmental change[J]. J Appl Ecol, 2008, 45(6):1593-1599.
    [65]
    YANG Yuejun, SUN Xiangyang, WANG Baoping. Forest soil seed bank and natural regeneration[J]. Chin J Appl Ecol, 2001, 12(2):304-308.
    [66]
    WASSIE A, TEKETAY D. Soil seed banks in church forests of northern Ethiopia:implications for the conservation of woody plants[J]. Flora, 2006, 201(1):32-43.
    [67]
    MARTINS A M, ENGEL V L. Soil seed banks in tropical forest fragments with different disturbance histories in southeastern Brazil[J]. Ecol Eng, 2007, 31(3):165-174.
    [68]
    GODEFROID S, PHARTYAL S, KOEDAM N. Depth distribution and composition of seed banks under different tree layers in a managed temperate forest ecosystem[J]. Acta Oecol, 2006, 29(3):283-292.
    [69]
    JAUNATRE R, BUISSON E, DUTOIT T. Can ecological engineering restore Mediterranean rangeland after intensive cultivation a large-scale experiment in southern France[J]. Ecol Eng, 2014, 64(1):202-212.
    [70]
    ZOBEL M, KALAMEES R, P SSA K, et al. Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes[J]. For Ecol Manage, 2007, 250(1):71-76.
    [71]
    KEELEY J E, NE'EMAN G, FOTHERINGHAM C J. Immaturity risk in a fire-dependent pine[J]. J Mediter Ecol, 1999, 1:41-48.
    [72]
    SHEN Youxin, ZHAO Chunyan. Soil seed bank research in China:present status, progress and challenges[J]. Chin J Appl Ecol, 2009, 20(2):467-473.
    [73]
    HE Jinsheng, LIU Feng, CHEN Weilie, et al. History of disturbance and regeneration strategies of Fagus engleriana and Quercus aliena var. acuteserrata fores in Shennongjia, Hubei Province[J]. Acta Bot Sin, 1999, 41(8):887-892.
    [74]
    ZANG Runguo, XU Huacheng, GAO Wentao. Regeneration response of main tree species to gap size and gap development phase in the Korean pine-broadleaved forest in Jiaohe, northeast China[J]. Sci Silv Sin, 1999, 35(3):2-9.
    [75]
    HE Xiaohong, XIE Yufen. Rewiew of the research progress on forest regeneration[J]. J Shaanxi For Sci Technol, 2014(6):39-42.
    [76]
    WANG Jing, AN Qiaoling. Effects of disturbances on animal-mediated seed dispersal effectiveness of forest plants:a review[J]. Chin J Appl Ecol, 2017, 28(5):1716-1726.
    [77]
    ZHANG Yue, YI Xuemei, WANG Yuanxia, et al. Impact of tree harvesting on the population structure and dynamics of Pinus koraiensis (Pinaceae)[J]. Acta Ecol Sin, 2015, 35(1):38-45.
    [78]
    ARCHAMBAULT L, DELISLE C, LAROCQUE G R. Forest regeneration 50 years following partial cutting in mixedwood ecosystems of southern Quebec, Canada[J]. For Ecol Manage, 2009, 257(2):703-711.
    [79]
    HAN Jingjun, XIAO Wenfa, LUO Juchun. Effects of different cutting methods on regeneration and habitat for fir forests[J]. Sci Silv Sin, 2000, 36(spec 1):90-96.
    [80]
    DONG Xibin, WANG Lihai. Impacts of cutting intensity on volume incremenet and regeneration of different forests[J]. Sci Silv Sin, 2003, 39(6):122-126.
    [81]
    LIANG Jianping, WANG Aimin, LIANG Shengfa. Disturbance and forest regeneration[J]. For Res, 2002, 15(4):490-498.
    [82]
    BUHK C, MEYN A, JENTSCH A. The challenge of plant regeneration after fire in the Mediterranean Basin:scientific gaps in our knowledge on plant strategies and evolution of traits[J]. Plant Ecol, 2007, 192(1):1-19.
    [83]
    FERNÁNDEZ C, VEGA J A. Shrub recovery after fuel reduction treatments and a subsequent fire in a Spanish heathland[J]. Plant Ecol, 2014, 215(11):1233-1243.
    [84]
    MUSCOLO A, SETTINERI G, BAGNATO S, et al. Use of canopy gap openings to restore coniferous stands in Mediterranean environment[J]. iFor Biogeosci For, 2017, 10(1):322-327. doi:10. 3832/ifor1983-009.
    [85]
    RUNKLE J R. Patterns of disturbance in some old-growth mesic forests of eastern north America[J]. Ecology, 1982, 63(5):1533-1546.
    [86]
    DANKOVÁ L, SANIGA M. Canopy gaps and tree regeneration patterns in multi-species unmanaged natural forest Sitno (preliminary results)[J]. Beskydy, 2013, 6(1):17-26.
    [87]
    SHEN Hao, CAI Jianing, LI Mengjiao, et al. On Chinese forest canopy biodiversity monitoring[J]. Biodiv Sci, 2017, 25(3):229-236.
    [88]
    BUGMANN H. A review of forest gap models[J]. Clim Change, 2001, 51(3/4):259-305.
    [89]
    INMAN F M, WENTWORTH T R, GROOM M, et al. Using artificial canopy gaps to restore Puerto Rican Parrot (Amazona vittata) habitat in tropical timber plantations[J]. For Ecol Manage, 2007, 243(2/3):169-177.
    [90]
    RITTER E, DALSGAARD L, EINHORN K S. Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark[J]. For Ecol Manage, 2005, 206(1/3):15-33.
    [91]
    LIU Qing, WU Yan. Effects of gap size on regeneration of subalpine coniferous forests in northwest Yunnan[J]. Chin J Appl Environ Biol, 2002, 8(5):453-459.
    [92]
    PENG Shanjiang, HUANG Zhongliang, ZHOU Guoyi, et al. Gap formation characteristics and its effects on sapling composition and diversity in Dinghushan biosphere reserve[J]. J Trop Subtrop Bot, 2003, 11(3):229-235.
    [93]
    WANG Wei, LI Qingkang, MA Keping. Establishment and spatial distribution of Quercus liaotungensis Koidz. seedlingd in Dongling Mountain[J]. Acta Phytoecol Sin, 2000, 24(5):595-600.
    [94]
    DANG Haishan, ZHANG Yanjun, ZHANG Kerong. Age structure and regeneration of subalpine fir (Abies fargesii) forests across an altitudinal range in the Qinling Mountains, China[J]. For Ecol Manage, 2010, 259(3):547-554.
    [95]
    SILVIA H, GUILLERMO P. Effects of history of use on secondary forest regeneration in the Upper Parana Atlantic Forest (Misiones, Argentina)[J]. For Ecol Manage, 2009, 258(7):1629-1642.
    [97]
    ZHU Ninghua, YAO Jinyu, ZHOU Guoying, et al. Study on natural vegetation regeneration from over maturity plantation of China fir[J]. J Cent South Univ For Technol, 2011, 31(3):106-110.
    [98]
    PAN Baiming, JIANG Rihong, XIE Qiang, et al. Analysis on species composition and succession of natural vegetation in Gupo Mountains[J]. For Resour Manage, 2010(3):64-68.
    [99]
    ZHAO Baozhu. Study on the update trend of succession in Xylosma racemosum foest in Liaoning Province[J]. J Liaoning For Sci Technol, 1996(2):19-23.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(4836) PDF downloads(1144) Cited by()

Related
Proportional views

Research review on forests natural regeneration

doi: 10.11833/j.issn.2095-0756.2018.05.022

Abstract: Natural regeneration of forests is a complex ecological process which ensures the reproduction of the population and maintains the structure stability of forests communities. It is a hot issue of forest ecology playing an ecosystem management mode, people gradually began to emphasize the stable forest ecosystem and natural important role in forest dynamic. But with the change of forest management to multi-objectives and process, researchers began to pay attention to the natural regeneration process. In this review, we discussed the manners, and studied the effect of disturbances including fire, wood harvesting and forest gap. The most current studies of forest regeneration were based on descriptive analysis of natural regeneration from field data and phenomena, and few findings revealed the mechanisms of forest natural regeneration in terms of physiology and ecology. The research subjects mainly focused on forest types, restricted to forest gap renewal and species groups in forest communities. Insufficient attention has been paid to the regeneration of forest in frequent disturbance, and the countermeasures to promote the regeneration of natural regeneration species were insufficient. The scale of forest natural regeneration should be expanded and deepened. In studies of forest natural regeneration, researchers should strengthen the following aspects:(1) the role of various factors should be studied synthetically; (2) the scale of research should be extended; (3) the physiological mechanism and ecological function should be studied; (4) emphasis should be placed on increasing the regeneration of difficult species, the regeneration of endangered species and ecologically fragile areas; (5) physiological responses of seed seedlings to elevated CO2 and changes in hydrothermal conditions should be carried out; (6) study on the effects of various types, intensities and frequency interference on seed seedlings should be enhanced; (7) study on the relationship between the regeneration of forest community and biodiversity to further reveal the update of forest community should be enhanced. In conclusion, this paper summarized the current situation and problems of natural forest regeneration, and put forward some suggestions for future research, which can provide the theoretical basis for forest management and ecological restoration, and provide reference for the protection of climate change, forestry production of rare and endangered plants. Meanwhile, the work has important significance on sustainable development of forests, the balance of the ecological system and the conservation of biological diversity.

CHENG Ruimei, SHEN Yafei, FENG Xiaohui, XIAO Wenfa, WANG Na, YANG Shao, GUO Yan. Research review on forests natural regeneration[J]. Journal of Zhejiang A&F University, 2018, 35(5): 955-967. doi: 10.11833/j.issn.2095-0756.2018.05.022
Citation: CHENG Ruimei, SHEN Yafei, FENG Xiaohui, XIAO Wenfa, WANG Na, YANG Shao, GUO Yan. Research review on forests natural regeneration[J]. Journal of Zhejiang A&F University, 2018, 35(5): 955-967. doi: 10.11833/j.issn.2095-0756.2018.05.022
  • 植物更新是指群落中的种群个体被同物种的个体取代的过程[1],包括由于自然或人类活动造成植物种群破坏后的再生过程[2]。与人工更新相对应,森林自然更新则是森林资源再生产的一个自然的不受人类控制的生物学过程[3]。森林的更新保证了种群的持续生存与繁衍、维持了群落组成与结构稳定,对未来森林群落的结构及其生物学多样性具有重要影响,是一个极为重要的生态学过程,也是植被动态研究的热点。近年来,对森林价值的重新认识使得人们越来越重视森林的可持续利用和其生态系统服务功能[4]。同时,伴随着对森林管理向多目标化经营模式的转变[5],人们逐渐开始强调自然过程所达到稳定、自维持的森林生态系统,因此,自然状态下的更新过程成为学者关注的焦点[6]。由于气候变化引起的森林自然更新障碍逐渐受到了重视,对濒危珍稀物种的保护也需要掌握其自然更新的规律,因此掌握树木更新阶段的基本特性,探讨森林自然更新可为森林经营和生态恢复提供理论依据,为林业生产应对气候变化以及珍稀濒危植物的保护提供参考,对森林的可持续利用,维护生态系统平衡,保护生物多样性具有重要意义。本研究从更新的方式、更新的过程等方面入手,探讨了影响森林自然更新的因子,并对此领域存在的问题进行了总结和为以后的自然更新研究做了展望。

  • 森林自然更新通过有性繁殖和无性繁殖2种方式来实现。有性繁殖主要指产生种子更新也称实生更新,如大部分的松属Pinus植物。无性繁殖即根、茎、叶等营养器官产生新的个体,如苦槠Castanopsis sclerophylla和米心水青冈Fagus engleriana的萌蘖[7]。萌生更新与种子更新是2种不同的生活史策略,不同物种甚至同一物种在不同的生境和干扰机制影响下,有的以种子更新为主[8],有的2种更新方式并重[9]

  • 大部分植物通过种子实现更新。种子更新可以得到2个亲本的性状,变异性加大,有利于适应不同的环境,而且种子可以随风、水流、动物活动增加传播距离,扩大分布范围。种子更新要经过种子生产、扩散、萌发、幼苗定居和幼树建成等5个阶段。在这个过程萌发需要合适的环境,幼苗存在被动物取食的风险,对环境变化的耐受力弱,所以种子萌发和幼苗定居是种子更新对外界条件最敏感和最重要的2个阶段[10]。种子能够顺利萌发并且建成的概率极低,往往成为制约森林自然更新的瓶颈。对于种子更新研究主要着眼于树木的开花、传粉、受精、结实等生殖对策,种子的性状,种子传播的途径,种子萌发,幼苗定居以及幼树建成需要的环境因子,幼苗的损失,外界的干扰等等。

  • 森林的萌生更新主要指树木干基萌生和地下茎萌生,是利用残留体上的休眠芽或不定芽形成新的植株的过程[11]。木本植物萌生根据干扰受损的程度和枝条萌生的部位可以分为腋萌生、枝萌生、干萌生、干基萌生以及地下茎萌生等类型[12],也有人根据萌生方式分为根颈萌生、木质瘤萌生、根出条萌生和机会萌生4类[13]。森林萌生更新的基础是植物的萌生能力,它既受内部营养水平和激素等控制,又受生境、干扰等外在因素的影响,是两者共同作用的结果。萌生更新和种子更新之间的平衡随着干扰发生频率的变化而变化,当干扰频繁发生时,更多的资源分配到萌生更新中[14],因此在干扰频繁的生境中,群落往往具有很高比例的萌生能力强的物种。萌生能力强的森林群落在遭受干扰后,由于萌生物种的“持续生态位”效应[15],使得植被快速恢复,减少了种群更新对种子的依赖性,从而减轻了干扰对群落的影响。如在天童山常绿阔叶林中,采伐后的萌生更新比种子更新快60~90 a达到演替的顶级[16]。萌生更新在植被恢复演替前期乃至中期物种组成和结构中具有重要意义,而在演替后期的作用逐渐减弱[17],这可能由于萌生植物多干的特点,当与单茎的种子更新个体竞争时,由于资源分配到多个萌生个体导致高度生长较低,在竞争中不占优势,在干扰后的演替中逐渐被种子更新植株取代[18]

    以前人们一直忽略了萌生更新,直到近10 a才逐渐认识到其在森林自然更新中的重要地位,对其研究也迅速发展。目前,国外对萌生更新的研究多集中在易受林火干扰的地中海型灌丛、澳大利亚和非洲南部的森林等地区。对萌生更新的研究主要是萌生更新的机制、干扰强度和频度、生态学作用以及萌生与种子更新相互交替的更新策略等。对于2种方式并存的物种各种更新方式在维持种群稳定中的各自的特点和相互作用已经逐渐成为了研究的新方向[19]。国内对萌生更新的研究处于起步阶段,只对有限的几种植物进行过萌生更新的研究,研究范围、深度尚不足。

  • 影响森林自然更新的生态因子很多,如温度、水分、光照、土壤、地被物、动物、微生物、种子库等,各个因子综合作用于植物的更新,每个因子在不同的阶段超过或者低于临界值都可能会成为更新的瓶颈。森林自然更新不仅与生态因子有关,还与森林结构、组成及植物生物生态学特性有关,如森林树种组成、树种种子雨等。目前,对各个因子的研究还很局限,人们在研究更新障碍时只是试图找到某一个阶段的1个或多个相互独立的因子,没有综合考虑不同因子之间的相互作用,因此各个因子之间的综合作用有待于进一步探索。应该从大时空尺度研究不同因子对森林更新的影响[20]

  • 太阳辐射透过林冠层后发生显著变化,使林分中不同空间位置接受的有效光照产生明显差别[21],同时光照又影响生境中的温度和湿度,导致任何影响光因子的因素都会影响树木的自然更新。光对种子萌发和幼苗存活的影响主要由光照强度、光周期、光谱成分的对比关系构成。这些特征会影响到种子的萌发和幼苗的空间分布,制约林分的更新格局。楚国忠等[22]研究了271种植物种子萌发情况,发现大多数植物的种子萌发率在光照和部分遮光条件下很高,在黑暗中很低,其中104种植物种子在黑暗中萌发率不超过10%,延长光周期还能显著地促进苗木的生长[23]。红桦Betula albo-sinensis只有在一定的光照条件下才有最大的发芽率[24],夏季的光照条件显著影响地中海松Pinus pinaster的种子萌发和幼苗的存活[25]。光照过强也可能抑制森林的更新,如光照过强使热带高山地区森林线以上的树木难以更新[26]。在高度郁闭的林下光照不足和光质的改变使很多树种的幼苗生长不良[27]。有人从光和生理方面研究发现马尾松Pinus massoniana幼苗在光照强度过低的群落内处于光补偿点之下,难以正常更新[28],而耐荫树种山毛榉Fagus sylvatica可以利用较弱的光照在阴暗的林下顺利更新[29]。对于耐荫的前更新树苗来说,由于光照不足其在林下生长缓慢,只有干扰发生时去除上层的遮光(物)才能顺利进入林冠层实现更新。所以当喜阳的先锋树种成为建群种以后其幼苗在光照条件较差的林下更新困难,使得幼年耐荫的树种在其林下顺利更新并且逐渐代替先锋树种成为建群种。目前研究光对种子的萌发和幼苗生长的影响多着眼于光照强度,一般通过人工控制光来研究种子萌发、幼苗生长和生理学特性;在野外的研究主要在林隙和林内调查对比种子萌发和幼苗生长的状况。不同耐荫性树种的幼苗和幼树在不同光照条件下的形态特征差异也引起了研究者的兴趣[30]

  • 水分胁迫不仅降低土壤中营养元素的可用性而且影响幼苗的光合作用,从而影响种子的萌发,幼苗的建成,以及幼苗的生物量、高度、生长与生存。在降水量年变化较大、易发生干旱和洪涝灾害的地区,水分对更新的影响备受关注。在中国北方尤其是西北干旱地区,水分是最主要的限制因子[31-32],中国“三北”(西北、华北、东北)地区只有降水量大于500 mm的地方乔木才能自然更新,地中海气候的夏季干旱是阔叶植物特别是乔木树种幼苗成活的重要障碍[33]。受水分的限制,胡杨Populus euphratica只有在沙漠中的季节性洪水泛滥的地方才能顺利更新[34],水分缺少也是樟子松Pinus sylvestris更新的障碍。全球气候变化和降水的年变化导致的干旱是热带湿润森林中幼苗死亡的主要因素[35-36]。对水分的研究集中在土壤水分对种子萌发的影响和水分胁迫对幼苗生理生态的影响,以及幼苗和幼树对干旱的适应特性。今后由于气候变化导致的降水格局的变化将使水分成为森林自然更新研究的热点。

  • 温度是决定森林的生长与更新的重要环境因子。只有在适当的温度条件下森林才能顺利完成更新。温度过高或过低都有可能引起种子休眠或抑制种子的萌发和幼苗的生长,影响幼苗成活,增加死亡率[37]。低温或者变温条件打破种子休眠促进种子萌发[38]。春末和初秋的寒潮会伤害幼苗和幼树的顶芽以及影响植物的开花授粉。在北方针叶林中,春末的霜冻会使白云杉Picea glauca幼苗和顶芽的新生部分严重损伤,影响幼苗的生长和存活[39]。在干旱地区,夏季高温对幼苗的成活构成威胁,亚热带地区的冬季低温也影响植物的更新。土壤温度也可以通过影响养分的有效性和吸收而影响幼苗的生理过程[40]。随着全球变暖的加剧,在物种自然分布边缘区从生理、形态和物候等方面研究气候变化对植物生长和更新的影响,成为森林自然更新研究的热点。

  • 死地被物指枯枝落叶层(凋落物)。土壤表面凋落物层可以改变土壤的结构,水分和养分状况,创造出良好的微环境,有利于幼苗的生长。同时,凋落物可以通过物理和生化效应阻碍种子胚芽和胚根的生长,降低种子的发芽率和幼苗的定居成功率[41]。较厚的死地被物阻断了种子与土壤之间的接触,减少其萌发可能性和幼苗定居机会[42],凋落物分解也可能产生化学影响,抑制种子的萌发[43]。因此凋落物层对植物的更新有双重作用[44]

    活地被物包括苔藓、地衣、蕨类等紧贴土壤表面生长的植物。活地被物的覆盖会影响土壤表面的微环境,包括温度、湿度、光照等,从而改变植物的更新生境。地被物的厚度和盖度影响自然更新过程。活地被物可以为植物提供相对安全的微环境,如苔藓层降低种子的被捕食率,促进种子的传播[45]。但有时也对森林自然更新存在破坏和抑制作用[46]。在长白山暗针叶林中,当苔藓盖度大于40%或厚度大于4 cm时,苔藓层对树木幼苗数量的负面影响较明显[47]。同时活地被物可能释放化学物质对种子的萌发产生影响[48]

  • 动物和微生物影响树木种子的数量、质量从而影响种子萌发和幼苗数量,影响森林的更新。对于具有种子库的物种,被取食可能是种子和幼苗死亡的主要因子,啮齿类、鸟类和昆虫都能取食种子。如白尾鹿Odocoileus virginianus和其他草食动物对幼苗的重复取食可以增加栎类幼苗的损失,降低了幼树的生长速率[49]。而太行山区30%的当年成熟栓皮栎Quercus variabilis果实被昆虫叮咬过[50]。动物的取食喜好可以抑制其喜食树种,从而促进其厌食树种的更新[51]。同时,适当的动物啃食可以促进森林的更新[52]。有些动物又是森林自然更新的重要参与者,通过搬运、分散和贮藏等过程使种子到达适宜的生境,提高物种的存活,促进种群的扩散和影响植物的多样性以及植物自然更新等[53]。在热带森林中90%的树种通过动物传播种子[54],欧洲松鸦Garrulus glandarius是栎类植物种子的主要传播者,并与多种栎树建立了共生关系[55]

    微生物导致的病害也是影响天然更新的重要因素。在潮湿的环境中,种子易受真菌微生物的感染而霉烂,失去萌芽力,因此病源菌对土壤中种子生活力的损害[56-57]是研究重点。幼苗也是受到病源微生物的感染而导致死亡。国内外有关动物微生物与植物种子及幼苗之间相互关系的研究比较多。如偶蹄类[58]、鸟类[59]、小型啮齿动物[60]和猴类等对果实扩散及幼苗危害的研究[61-62]以及昆虫[63-64]对森林自然更新的研究等。

  • 土壤种子库与植被的地上部分一样,是植物群落的组成部分,是一个潜在的群落体系[65],反映了植被的历史情况,为群落的演替、更新以及被破坏植被的恢复提供了物质基础[66]。种子的扩散、消耗、储存和萌发决定了土壤种子库的动态,因而土壤种子库是调节植被更新、群落结构和演替的重要力量[10]。也有研究发现土壤种子库在热带森林的更新与恢复中的作用不大[67]。通常人们研究种子密度、种类组成、动态等对森林的更新有直接影响的土壤种子库特征[68]。土壤种子库动态也一直备受关注,土壤种子库来源于种子雨,消耗的途径主要是捕食、腐烂和发芽。目前研究种子库动态主要着眼于种子雨,如种子雨的格局、数量和组成等[69]。同时人为干扰也是影响土壤种子库动态的重要因素[70]

    有的树种的种子库并不在土壤中,例如北美的班克松Pinus banksiana成熟的种子在母树的球果上保持几年不落,形成非土壤种子库,只有当火烧触发球果破裂才能掉落在地面上萌发[71],同样有种子库的作用。当前的种子库研究还处于人工收集种子和计数的阶段,这与自然条件下的种子库动态有很大差别,有人已经尝试在自然条件下应用标记种子的方法监测土壤种子库的动态。国外对森林土壤种子库的研究起步较早,国内对不同植被带,森林类型以及不同干扰条件下的森林土壤种子库与更新的研究已经很广泛,种子库的研究已经涉及到中国29个植被类型中的14个[72]。大多研究采用短期的、间断的调查样方的研究方法,缺乏对种子库大空间与时间尺度以及种子库中种子寿命的研究。

  • 不同的树种具有不同的生理生态特征,导致其更新的方式不同。贺金生等[73]研究发现一般的顶级树种的更新方式是林窗,当有林窗形成时,大量种子成为幼苗,幼苗在林窗内逐步生长进入乔木层。一些耐荫树种则是在林下成苗,在林窗形成后,幼苗生长进入乔木层。在较大的林隙中由于植物密度较大,更新的幼苗可能因较弱的竞争力而死亡;相反对于繁殖力和竞争力较强的树种,在较大的林隙中仍可以良好地更新,这与光照条件有关[74-75]

  • 干扰是指破坏森林群落结构,使物理环境因子或资源有效性发生改变的相对独立的事件。干扰的强度和频度是影响更新的重要属性。一般认为适度的干扰可以促进森林自然更新,但是干扰超过生态系统的恢复与更新能力会抑制更新甚至使其退化。如强烈的火干扰,可消灭前更新的幼苗幼树。频繁的动物取食和放牧干扰,可使许多树种不能完成天然更新。

  • 采伐方式不同,对森林干扰程度不一样,不同的树种表现出不同的更新效果。采伐作业方式影响种子来源、数量、质量及其发芽和生活能力,影响林地的环境。小块状疏伐显著促进幼苗的生长和更新[76]。择伐仅伐去部分上层林木,保存着母树种源,改善了林内光照条件,形成人工林窗,既促进种子发芽和幼苗幼树生长,又使幼苗得到林冠的庇护,这对由耐荫树种组成的群落更新最为有利[77]。择伐50 a后混交林的更新与天然的森林自然更新对比没有显著差异[78]。渐伐分几次疏开林冠,既改善了种子的萌发条件又不使其生长条件发生急剧变化,有利于早期耐荫树种的更新。皆伐造成环境条件变化剧烈,种源不足,不利于演替顶极种的快速更新,例如加那利群岛的天然林在皆伐60 a后尚不能恢复到原来的结构[39]。冷杉林渐伐和择伐可以获得良好的天然更新,而皆伐后一般天然更新困难[79]。也有研究表明皆伐造成土壤暂时的营养富集,促进幼苗幼树生长,皆伐几年后速生阳性树种迅速更新,随着时间的推移,耐荫树种的比例不断增加,进入主林层[39]。最适采伐强度与林分年平均蓄积生长量和更新株数间呈抛物线关系,董希斌等[80]发现阔叶混交林采伐强度25%时最合适。在中国,天然林被各地居民无计划的乱砍滥伐,严重制约森林自然更新,造成严重的森林生态系统退化。

    人为干扰因素包括土地利用、森林采伐、林地清理、农药使用、空气污染等。与自然干扰相比较, 人为干扰发生更频繁, 它可掩盖、减小或增强自然干扰的作用。林分受到人为火的干扰后, 会减少雷电火干扰的可能性。人为的防火措施一方面可延长自然火的发生周期, 而另一方面又因长期对森林的封禁, 致使林内易燃物大量积累, 可诱发强度火干扰的发生[81]

  • BUHK等[82]认为火烧对森林自然更新的影响包括2个方面:火烧去除了更新的制约因子,为更新创造了合适的环境条件,并且释放了死亡个体后代的遗传生态位迁移的潜力;火烧不利于环境条件长期的营养可用性和短期的幼苗建成。火干扰一般不会涉及地下的根组织和土壤种子库,火烧迹地上保存的植物繁殖体及迹地周围树种的种子散布对森林自然更新具有重要影响。火烧迹地的植物更新情况控制着群落的演替方向。火后的更新方式有专性种子更新,萌生更新和兼性萌生更新等3种,火烧后萌生和结实是多火环境中的树木对火适应的更新策略[82]

    目前,人们所关注的火特性和环境条件主要有火的强度、频度、种类、季节,火烧迹地的大小、性状和位置等[78]以及火烧后森林自然更新的策略[83]。国外已经开始尝试用计划火烧结合抚育措施促进森林自然更新并显著促进更新过程[69]。对火的研究主要集中在有明显干湿季节变化气候类型且火灾频发的森林,中国主要是东北和西南两大林区,国外的热点地区则在地中海周围、美国西海岸、澳大利亚和南部非洲等地。

  • 林冠空隙(canopy gap),简称林隙(gap),也称林窗,是森林内普遍存在的小尺度干扰方式之一,是森林自然更新的一种重要途径[84]。RANKLE[85]把林隙定义为单株树的某一部分或多株树死亡所形成的林冠空隙以及由林冠空隙周围树木的树干所围成的土地面积或空间,它包括了林冠空隙及其边缘到周围树木树干基部所围成的面积或空间部分。林隙的大小、性状、开阔度、年龄等属性决定林内更新的状况。林隙的形成直接改变了光照条件,间接影响热、水、营养等条件,促进种子萌发与建成;改变了林木间地上部分对光的竞争与地下部分对水分和养分的竞争,促进了幼苗的建成。多数天然更新的树种在林冠下耐荫树种幼苗生长受抑制,林隙的形成解除了林冠遮光,使幼苗从受抑制状态释放出来迅速生长进入林冠,如挪威云杉Picea abies。耐荫性不同决定了树种的幼体能否在不同面积的林隙中存活和生长[86]。不同树种在对林隙资源的利用和竞争中造成了各自生态位的分化,影响耐荫树种和非耐荫树种的比例,使林下植物种类及其数量在林隙发育的不同时期发生变化,在森林中形成不同树种的更新斑块镶嵌体。因此,林隙是森林生态系统长期演替变化过程中必不可少的要素,其形成和动态变化构成了森林景观的流动镶嵌(shifting mosaic)结构,对森林的正常更新具有重要作用,是维持森林生物多样性的重要组成部分[87]

    从20世纪80年代开始至今,林隙已成为森林自然更新研究的热点,研究范围涉及各种森林类型,形成了一些的林隙更新理论以及林隙更新的模型[88]。欧美地区已经开始强调应用林隙更新在维持结构稳定、组成多样和经济节约的森林经营中的作用,并尝试用人工林窗促进森林自然更新[89]。中国林隙研究起步于20世纪90年代初期,发展迅速,已经对地带性或区域性典型森林植被有了广泛的研究,林隙的基本特征研究正逐步深入,目前主要是通过研究林隙内微气候特征、光照、年龄以及林隙的更新动态等来研究林隙对森林自然更新过程的影响[90]。刘庆等[91]研究发现:林窗边缘气温比林窗中心显著降低。彭闪江等[92]对鼎湖山幼树密度与林窗年龄相关性的研究发现:随着林窗年龄的增加,林窗内幼树密度也随之增大,但到一定年龄则趋于稳定甚至下降。同时,幼苗高度在树冠下与林窗边缘没有差异,在林窗边缘和林窗中也没有差异,但是在树冠下和林窗中则不同[93]

  • 更新动态包括森林自然更新状况和更新历史。对更新状况的调查多从种子的数量和品质以及幼苗和幼树的种类组成、年龄、数量、生活力特性、分布格局等入手,判断未来群落的年龄结构和物种组成。更新动态的研究离不开年龄结构,应用年轮的方法推算群落中个体的年龄,判断其进入群落的时间[94],或者应用不同径级的组成判断年龄结构[95],是2个重要的途径。虽然利用径级方法简单易操作,但是估算年龄只能精确到10 a,且年龄越大精确度越差;而年轮的方法可以确定树木进入和干扰发生的年份,扩展了更新研究的时间尺度。年轮的方法逐渐成为更新动态研究的主要手段。

    演替是指植物群落随时间变化的生态过程,是在一定地段上群落由一个类型变为另一类型的质变且有顺序的演变过程[96-97]。森林演替理论研究的目的,即在于预见和控制,人们可以通过干预、引导和加速植被的演替,以实现理想的目标功能,避免森林逆向演替[98]。随着演替的进展,群落高度级、立木级、密度、物种多样性、优势度、群落相似性系数等值均发生明显的变化,这些指标均能很好地表征群落演替过程中的动态变化。赵宝珠[99]指出:幼苗幼树数量、品质和种类成分对森林演替趋势具有决定性的作用。在自然环境中,自然更新与群落演替不是孤立的,而是相互作用的,它们之间的关系可以看成是个连锁反应。自然更新为群落的演替创造了有利的条件,群落中不同种的更新程度高低往往是群落演替调节的,从而在森林中产生了种类组成及生长速度等方面不同的同资源种团结构。这样某些优势种代替了另一些优势种,在演替的不同阶段存在的优势种的更新又进一步改变群落结构,最终这个群落达到顶级群落的稳定状态。之后,群落的更新没有停止,使得群落不会因为某些种的死亡而趋向消亡。自然更新是群落维持稳定的基本条件,又是群落改变的潜在动力,更新的过程改变了群落中生物生存的微环境,从而相应改变了某些种。自然更新和群落的演替在自然环境中是相互促进,相互影响的。自然更新在某种程度上是群落演替的动力,群落演替往往又可以反作用于自然更新。

  • 森林的自然更新是一个复杂的生态学过程,在植被的恢复和群落的演替中有重要意义。对于森林经营活动,不论是种子更新还是萌生更新都可以使植物繁衍生息,维持群落的稳定,保持生态系统的平衡。水分、光照、温度这几个最基本的生态因子共同作用于更新过程。地被物、动物和微生物活动是更新的生物因素。采伐、火烧等干扰以及林隙在森林的自然更新中都扮演重要角色。

    在种子更新过程中种子和幼苗的大量损失是制约更新成败的关键。已有的研究主要从种子更新方式过程中的种子和幼苗阶段来寻找限制自然更新的限制因子。生态因子具有综合作用和阶段作用,环境具有异质和多变性,种群在自然更新过程中任一阶段只要不适应某一因子,就会产生更新瓶颈。对森林自然更新的研究大多从野外调查资料和现象对自然更新过程进行描述性分析,很少从生理生态方面揭示森林自然更新的机制。研究的对象为主要的森林类型,局限于林窗的更新及森林群落中的建群种,主要以种群为研究对象。对干扰频发森林中的萌生更新重视不够,对促进自然更新困难树种更新的对策研究不足,森林自然更新的范围和深度尚待扩展和加深。

    对森林自然更新研究应加强以下几个方面:①综合研究各种因子的作用。森林自然更新是受树木自身的生物特性和外界环境共同影响的过程,应深入研究各个生态因子和多个生态因子在自然更新过程中不同阶段的综合作用,注重从幼苗和幼树的生理生态特性入手,在深层次上掌握种子萌发和幼苗生长所需要环境条件的耐受范围,解释限制因子产生的原因,以便破除更新的瓶颈。②扩展自然更新的研究尺度。木本植物的自然更新是一个长时间且复杂的过程,具有时间和空间异质性,因而应该大范围长期观测与分析物种的更新动态,加强物种自然分布范围内不同地域内的自然更新研究,注重森林群落演替中的更新动态研究,把研究更新的尺度从种群扩展到群落、生态系统以及景观。同时,利用年轮对树木生长的记录研究群落的历史更新动态,掌握不同时间和空间尺度上物种更新的规律。③萌生更新应该进一步得到重视,重点研究萌生更新的生理机理和生态作用,深入探讨同时具有种子更新和萌生更新2种方式树种的不同更新方式之间转换的关系,特别是干扰对更新方式转化的作用。④加大更新困难树种以及珍稀濒危物种和生态脆弱区的更新研究力度,掌握濒危树种更新的限制因子,制定人工协助自然更新的对策。⑤现有的自然更新规律可能在未来气候变化条件下不再适用,因此,要开展种子幼苗对于二氧化碳浓度升高,水热条件变化的生理响应。尤其是对气候变化敏感的区域,如生态交错区以及物种自然分布的边缘区域。⑥干扰是自然更新的主要影响因子,尝试引入火烧,开辟林窗等适度人工干扰促进自然更新。⑦加强森林群落更新与生物多样性的关系研究,进一步揭示森林群落的更新规律。

Reference (99)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return