Volume 36 Issue 5
Sep.  2019
Turn off MathJax
Article Contents

WANG Bei, HE Yu, WU Rong, SHEN Yafang, WANG Yang, ZHAO Guangwu. Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1028-1036. doi: 10.11833/j.issn.2095-0756.2019.05.024
Citation: WANG Bei, HE Yu, WU Rong, SHEN Yafang, WANG Yang, ZHAO Guangwu. Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1028-1036. doi: 10.11833/j.issn.2095-0756.2019.05.024

Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea

doi: 10.11833/j.issn.2095-0756.2019.05.024
  • Received Date: 2018-11-14
  • Rev Recd Date: 2019-01-18
  • Publish Date: 2019-10-20
  • As a kind of accompanying notorious weed occurring in rice-planting areas, weedy rice (Oryza sativa f. spontanea) is taxonomically classified as the same species as cultivated rice (Oryza sativa), with the characteristics of strong growth potential, easy threshing, strong dormancy and stress tolerance; and it is mainly originated from the domestication of cultivated rice. The occurrence of weedy rice seriously affects the yield of cultivated rice, reduces the quality of rice, affects the purity of rice seeds, and is difficult to control. Weedy rice is distributed unevenly in Guangdong, Liaoning, Ningxia, Jiangsu, Jiangxi, Heilongjiang, Anhui, Shandong and Zhejiang Provinces. The main causes are cross-regional operation of agricultural machinery, changes in cultivation techniques and lack of selective herbicides. At present, artificial extraction, adjustment of cultivation methods (interplanting, direct seeding into transplanting, machine transplanting), the implementation of drought and flood rotation, the application of herbicides such as propyl oxalamide are used to prevent and control weedy rice, but there are no very effective prevention and control measures. However, due to its rich variation types and similar genetic background with cultivated rice, weedy rice can be used as an important germplasm resource for improvement of cultivated rice.
  • [1] ZENG Kang, WANG Shuwen, ZHOU Bingying, WANG Huasen, XU Yunmin.  Research progress on tendril formation in Cucurbitaceae horticultural crops . Journal of Zhejiang A&F University, 2020, 37(6): 1216-1223. doi: 10.11833/j.issn.2095-0756.20190756
    [2] SHEN Lifen, XIANG Weibo, FAN Caiting, JIN Peng, ZHOU Mingbing, XU Chuanmei.  Biological characteristics of the Myrica rubra flower . Journal of Zhejiang A&F University, 2015, 32(2): 278-284. doi: 10.11833/j.issn.2095-0756.2015.02.016
    [3] YE Xin, XIE Yun, RU Huasha, HONG Shuanghua.  Biological seed characteristics of Camellia chekiangoleosa . Journal of Zhejiang A&F University, 2015, 32(4): 572-577. doi: 10.11833/j.issn.2095-0756.2015.04.012
    [4] WU Jun, LI Yingang, LUO Xiubao, LIU Xinhong, SHI Congguang, HE Yunhe.  Seed biological characteristics of Styrax tonkinensis . Journal of Zhejiang A&F University, 2014, 31(1): 9-13. doi: 10.11833/j.issn.2095-0756.2014.01.002
    [5] ZHANG Qi-xiang, FU Su-jing, FANG Yan-ming, CHEN Na.  Protocorm-like body (PLB) development on Dendrobium officinale . Journal of Zhejiang A&F University, 2009, 26(3): 444-448.
    [6] SHEN You-lian, LAO Chong, FENG Lin-guo.  Biological characteristics and control of Opogona sacchari in Cixi City, Zhejiang Province . Journal of Zhejiang A&F University, 2008, 25(3): 367-370.
    [7] HUGuo-liang, CHENG Yi-peng, LOUJun-fang, WANG Guo-du, XIAGuo-hua, CHEN Jian-gang, ZHANG Zu-ping.  Biological characteristics of blossom midge(Contarinia sp.) in Carya cathayensis and its control techniques . Journal of Zhejiang A&F University, 2007, 24(4): 463-467.
    [8] RUAN Xiu-chun, SI Jin-ping, WU Jian, HUANG Wen-hua, GUO Bao-lin, XU Yuan-ke.  Preliminary study on biological characteristics and ecological adaptability of Tripterygium . Journal of Zhejiang A&F University, 2006, 23(5): 595-598.
    [9] MA Gui-lian, HU Guo-liang, YU Cai-zhu, WU Ji-lai, XU Bing-chao.  Phyllostachys prominens plum shoot wilt pathogenic fungoid and its biological characteristics . Journal of Zhejiang A&F University, 2003, 20(1): 44-48.
    [10] Lou Jun-fang, Hu Guo-liang, YU Cai-zhu, ZHAO Wen-wei.  Bionomics and chemical control of Kuwanaspis phyllostachydis . Journal of Zhejiang A&F University, 2002, 19(2): 205-207.
    [11] HU Guo-liang, YU Cai-zhu, LOU jun-fang, CHEN Xiao-zhong, XU Hui.  Bionomics and control of Takecallis taiwanus . Journal of Zhejiang A&F University, 2001, 18(3): 294-296.
    [12] FANG Zhi-gang, WANG Yi-ping, ZHOU Kai, ZHOU Zhong-lang.  Biological characteristics of Setora postornata and its chemical control . Journal of Zhejiang A&F University, 2001, 18(2): 173-176.
    [13] TANG Wei-qiang.  Biological characteristics of Xyleborus mutilatus and its control . Journal of Zhejiang A&F University, 2000, 17(4): 417-420.
    [14] ZOU Ji-fu.  Biological characteristics of Propachys nigrivena . Journal of Zhejiang A&F University, 2000, 17(4): 414-416.
    [15] LOU Jun-fang, XU Bing-chao, CHEN Xiao-zhong, WU Ji-lai, ZHONG Zhi-hua.  Biological characteristic and chemical control of Pseudalbara parvula . Journal of Zhejiang A&F University, 2000, 17(2): 229-231.
    [16] YU De-cai, ZOULi-jun, WUMei-fang, WANG Guo-hua, WENG Su-hong, SHEN Jian-qi.  Biological characteristics of Aiolomorphus rhopaloides and Diomorus aiolomorphi . Journal of Zhejiang A&F University, 2000, 17(1): 112-114.
    [17] WANG Kui-hong, HE Qi-jiang, WU Rong.  Studies on morphology and biological characteristics of pollen from Phyllostachys praecox . Journal of Zhejiang A&F University, 2000, 17(2): 137-141.
    [18] BAO Qi-min, BAO Wen-bing, JIN Jue-yuan, CAI Hu-min, ZHOU You-qing, LIN Qing-lan.  Biological characteristics of Micadina zhejiangensis . Journal of Zhejiang A&F University, 2000, 17(2): 166-169.
    [19] JIN Ai-wu, SHAO Xiao-gen, QIU Yong-hua, ZHANG Fa-gen.  Biological characteristics of Phyllostachys heteroclada . Journal of Zhejiang A&F University, 1999, 16(3): 238-241.
    [20] Gu Shufang.  Correlations Between the Anatomical Structure of Vegetative Organs and the Biological Characteristics in Sassafras tsumu . Journal of Zhejiang A&F University, 1993, 10(1): 1-6.
  • [1]
    FANG Fuping, CHENG Shihua. The development of rice science, technology and industry in China[J]. J Agric, 2018, 8(1):92-98.
    [2]
    XIN Liangjie, LI Penghui. Characteristics change of grain ration consumption and the amount of safe arable land in Chinese residents[J]. Trans Chin Soc Agric Eng, 2017, 33(13):1-7.
    [3]
    WANG Weixia, ZHU Tingheng, SHAO Guosheng, et al. Advances in classification, origin and utilization of weedy rice[J]. Weed Sci, 2005, 23(2):1-5.
    [4]
    WANG Zhe, RONG Jun, LU Baorong. Occurrence and damage of weedy rice and its threats to rice production in China[J]. Weed Sci, 2015, 33(1):1-9.
    [5]
    MA Jing, WANG Xingsheng, DUAN Cailin, et al. Analysis on appearance and milling quality of weedy rice in Ningxia[J]. Seed, 2018, 37(2):55-58.
    [6]
    PRATHEPHA P. Seed morphological traits and genotypic diversity of weedy rice (Oryza sativa f. spontanea) populations found in the Thai Hom Mali rice fields of north-eastern Thailand[J]. Weed Biol Manage, 2010, 9(1):1-9.
    [7]
    BAI Chao, LÜ Jin, NING Guoyun, et al. Occurrence, prevention and control of weedy rice in paddy fields of Changxing County[J]. J Zhejiang Agric Sci, 2016, 57(12):1974-1975.
    [8]
    WU Shujuan, HUANG Liusong, TANG Duo. Occurrence characteristics and control measures of weedy rice in rice growing area along the Yangtze River[J]. J Shanghai Agric Technol, 2014(3):137, 139.
    [9]
    DELOUCHE J C, BURGOS N R, GEALY D R, et al. Weedy Rices: Origin, Biology, Ecology and Control[M]. Rome: Food and Agriculture Organization (FAO) of the United Nations, 2007.
    [10]
    WU Wenge, JI Yalan, XI Min, et al. Research progress on biological characteristics of weedy rice and its utilization[J]. J Anhui Agric Sci, 2018, 46(17):30-33.
    [11]
    SUH H S, SATO Y I, MORISHIMA H. Genetic characterization of weedy rice (Oryza sativa L.) based on morpho-physiology, isozymes and RAPD markers[J]. Theor Appl Genet, 1997, 94(3/4):316-321.
    [12]
    CHO Y C, CHOI I S, HAN S S, et al. Inheritance of resistance to blast (Pyricularia grisea Sacc.) in Korean weedy rice (Oryza sativa L.)[J]. Korean J Breed, 1996, 28(3):309-316.
    [13]
    QIU Jie, ZHOU Yongjun, MAO Lingfeng, et al. Genomic variation associated with local adaptation of weedy rice during de-domestication[J]. Nat Commun, 2017, 8:15323. doi:10.1038/ncomms15323.
    [14]
    LI Linfeng, LI Yaling, JIA Yulin, et al. Signatures of adaptationin the weedy rice genome[J]. Nat Genet, 2017, 49(5):811-814.
    [15]
    CHEN Lijuan, LEE Dongsun, SONG Ziping, et al. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives[J]. Ann Bot, 2004, 93(1):67-73.
    [16]
    PARK J S, CHO Y C, HAN S W, et al. Characteristics of weedy rice on paddy field in Kyonggi area[J]. Korean J Breed, 1999, 19(4):299-306.
    [17]
    VAUGHAN L K, OTTIS B V, PRAZAKHAVEY A M, et al. Is all red rice found in commercial rice really Oryza sativa[J]. Weed Sci, 2001, 49(4):468-476.
    [18]
    TANG L H, MORISHIMA H. Genetic characterization of weedy rices and the inference on their origins[J]. Breeding Sci, 1997, 47(2):153-160.
    [19]
    XIONG Haibo, BAI Huaijin, DONG Chenwenhua, et al. Origin and characterization of weedy rice in japonica rice regions of northern Henan along Yellow River, China[J]. Mol Plant Breed, 2017, 15(8):3351-3357.
    [20]
    MA Dianrong, CHEN Wenfu, XU Zhengjin, et al. Preliminary study on weedy rice in Liaoning[J]. Liaoning Agric Sci, 2005(6):22-24.
    [21]
    QIAN Weihong, CHEN Liyong, QIN Libao, et al. Occurrence characteristics and control measures of weedy rice in rice fields[J]. China Seed Ind, 2008(5):14-15.
    [22]
    WANG Hui. Characteristics and development status of rice direct seeding technology[J]. Agric Sci Technol Equip, 2017(1):72-73.
    [23]
    WU Chuan, DAI Weimin, SONG Xiaoling, et al. Diversity of plant traits of weedy rice in Liaoning and Jiangsu provinces[J]. Biodiversity Sci, 2010, 18(1):29-36.
    [24]
    GUAN Zhijian, FU Wenjun, BAN Xiaoli, et al. Occurrence characteristics and integrated control techniques of weedy rice in Ili Valley[J]. Nongcun Keji, 2018(3):28-30.
    [25]
    GUO Xunbin, GU Keli, YUAN Qin, et al. Occurrence and control of weedy rice overwintering[J]. J Anhui Agric Sci, 2005, 33(7):1180-1181.
    [26]
    PAN Xuebiao, CHEN Zongxiang, ZUO Shimin, et al. Causes and control strategies of weedy rice in Jiangsu[J]. Jiangsu Agric Sci, 2007(4):52-54.
    [27]
    ESTORNINOS JR L E, GEALY D R, GBUR E E, et al. Rice and red rice interference(Ⅱ) rice response to population densities of three red rice (Oryza sativa) ecotypes[J]. Weed Sci, 2005, 53(5):683-689.
    [28]
    SUN Jianchang, WANG Xingsheng, MA Jing, et al. Harm and control measures of weedy rice in Ningxia[J]. Ningxia J Agric For Sci Technol, 2014, 55(3):32-34.
    [29]
    LIU Dan, CHAI Yongshan, SUN Yuyou, et al. Advances in research and utilization of weedy rice(Oryza sativa)germplasm resources[J]. Hubei Agric Sci, 2017, 56(2):202-205.
    [30]
    KANE N C, BAACK E J. The origins of weedy rice[J]. Mol Ecol, 2010, 16(21):4423-4425.
    [31]
    LIANG Diyun, QIANG Sheng. Harm status and control countermeasures of weedy rice in China[J]. China Plant Prot, 2011, 31(3):21-24.
    [32]
    ZHU Jianyi, ZHOU Xiaogang, HE Hongyuan, et al. Preliminary investigation and control of weedy rice in Sichuan[J]. Weed Sci, 2012, 30(3):44-46.
    [33]
    LI Qiyong, ZHU Congye, LI Xingyue, et al. Occurrence and control strategies of weedy rice in rice fields[J]. Sichuan Agric Sci Technol, 2017(7):36-38.
    [34]
    YANG Wei, WU Qibao, CHEN Huizhe, et al. Biological characteristics, harm and control methods of weedy rice[J]. China Rice, 2008(3):50-53.
    [35]
    LI Ming, GAO Lianyi. Occurrence law and control technology of weedy rice in Taizhou City[J]. Weed Sci, 2013, 31(3):51-52.
    [36]
    LIU Guanming, LIN Qingshan, JIANG Yijun, et al. The research advances on weedy rice[J]. Chin Agric Sci Bull, 2014, 30(21):9-13.
    [37]
    LIU Xiu, LI Jian, LI Haisu, et al. Distribution and effective control of weedy rice in northeast region[J]. J Heilongjiang Bayi Agric Univ, 2015, 27(2):5-9.
    [38]
    LIU Yangang, LI Xiangkui, LIU Deyou, et al. Occurrence characteristics and comprehensive control measures of weedy rice in paddy fields of Linyi City[J]. North Rice, 2015, 46(3):38-41.
    [39]
    ZHANG Shengzhong, ZHAO Xuezhi, MA Yi. Occurrence characteristics and control technology of weedy rice in Wuzhong irrigation area[J]. J Agric Sci, 2011, 32(4):48-50.
    [40]
    NING Guoyun, WANG Bei, PENG Zhiqing, et al. Investigation on distribution, characteristics and occurrence law of weedy rice in Changxing county[J]. J Zhejiang Agric Sci, 2018, 59(12):2214-2217.
    [41]
    CHEN Xiaofeng, QIANG Sheng, YANG Jinling, et al. Propagation of weedy rice and differentiation of indica and japonica in Jiangsu[J]. Chin J Rice Sci, 2015, 29(1):82-90.
    [42]
    LI Xun, MIAO Lixin, LIU Zhongzhuo, et al. Current situation and research progress of rice direct seeding technology[J]. North Rice, 2013, 43(1):78-80.
    [43]
    OLOFSDOTTER M, VALVERDE B E, MADSEN K H. Herbicide resistant rice (Oryza sativa L.):global implications for weedy rice and weed management[J]. Ann Appl Biol, 2015, 137(3):279-295.
    [44]
    CHAUHAN B S. Weedy rice (Oryza sativa)(Ⅱ)Response of weedy rice to seed burial and flooding depth[J]. Weed Sci, 2012, 60(3):385-388.
    [45]
    CHAUHAN B S. Strategies to manage weedy rice in Asia[J]. Crop Prot, 2013, 48(2):51-56.
    [46]
    ESTORNINOS L E, GEALY D R, TALBERT R E, et al. Rice and red rice interference(Ⅰ)response of red rice (Oryza sativa) to sowing rates of tropical japonica and indica rice cultivars[J]. Weed Sci, 2005, 53(5):676-682.
    [47]
    CHOI C D, MOON B C, KIM S C, et al. Ecology and growth of weeds and weedy rice in direct-seeded rice fields[J]. Korean J Weed Sci, 1995, 15(1):39-45.
    [48]
    NADIR S, XIONG H B, ZHU Q, et al. Weedy rice in sustainable rice production:a review[J]. Agron Sustain Dev, 2017, 37(5):46.
    [49]
    LI Guojun, HE Zhuoxian, WANG Ge, et al. Occurrence and harm of weedy rice in Leizhou, Guangdong and its control measures[J]. Weed Sci, 2013, 31(1):20-25.
    [50]
    YANG Lin, SHEN Haoyu, QIANG Sheng. A technique for oxadiazon application in controlling weedy rice in direct-seeded rice fields[J]. J Plant Prot, 2016, 43(6):1033-1040.
    [51]
    LI Ruimin, CHEN Lei, DING Linbin, et al. Preliminary report on prevention and control of weedy rice by JD Technology[J]. China Agric Technol Ext, 2018, 34(1):44, 61.
    [52]
    MEROTTO A, GOULART I, NUNES A L, et al. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil[J]. Evol Appl, 2016, 9(7):837-846.
    [53]
    SUDIANTO E, SONG B K, NEIK T X, et al. Clearfield® rice:its development, success, and key challengeson a global perspective[J]. Crop Prot, 2013, 49:40-51.
    [54]
    BURGOS N R, NORMAN R J, SINGH V, et al. The impact ofherbicide-resistant rice technology on phenotypic diversity and populationstructure of United States weedy rice[J]. Plant Physiol, 2014, 166:1208-1220.
    [55]
    WANG J G, MIAO W, WANG J Y, et al. Effects of exogenous abscisic acid on antioxidant system in weedy and cultivated rice with different chilling sensitivity under chilling stress[J]. J Agron Crop Sci, 2013, 199(3):200-208.
    [56]
    KAO-KNIFFIN J, CARVER S M, DITOMMASO A, et al. Advancing weed management strategies using meta genomic techniques[J]. Weed Sci, 2013, 61(2):171-184.
    [57]
    BATISH D R, ARORA K, SINGH H P, et al. Potential utilization of dried powder of Tagete sminuta as a natural herbicide for managing rice weeds[J]. Crop Prot, 2007, 26(4):566-571.
    [58]
    OLAJUMOKE B, JURAIMI A S, UDDIN M K, et al. Competitive ability of cultivated rice against weedy rice biotypes:a review[J]. Chilean J Agric Res, 2016, 76(2):243-252.
    [59]
    FERRERO A. Weedy rice, biological features and control[J]. Fao Plant Prod Prot Paper, 2003, 120:89-107.
    [60]
    GU Xingyou, KIANIAN S F, FOLEY M E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa)[J]. Genetics, 2004, 166(3):1503-1516.
    [61]
    YANG Jinling, QIANG Sheng, ZHANG Banghua, et al. Cold tolerance of weedy rice population in China during germination period[J]. J Plant Genet Resour, 2017, 18(1):1-9.
    [62]
    DING Guohua, SUN Jian, YANG Guang. Global genome expression analysis of root genes under drought stress in weedy rice and UP-land rice[J]. Chin J Rice Sci, 2016, 30(5):458-468.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(4397) PDF downloads(92) Cited by()

Related
Proportional views

Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea

doi: 10.11833/j.issn.2095-0756.2019.05.024

Abstract: As a kind of accompanying notorious weed occurring in rice-planting areas, weedy rice (Oryza sativa f. spontanea) is taxonomically classified as the same species as cultivated rice (Oryza sativa), with the characteristics of strong growth potential, easy threshing, strong dormancy and stress tolerance; and it is mainly originated from the domestication of cultivated rice. The occurrence of weedy rice seriously affects the yield of cultivated rice, reduces the quality of rice, affects the purity of rice seeds, and is difficult to control. Weedy rice is distributed unevenly in Guangdong, Liaoning, Ningxia, Jiangsu, Jiangxi, Heilongjiang, Anhui, Shandong and Zhejiang Provinces. The main causes are cross-regional operation of agricultural machinery, changes in cultivation techniques and lack of selective herbicides. At present, artificial extraction, adjustment of cultivation methods (interplanting, direct seeding into transplanting, machine transplanting), the implementation of drought and flood rotation, the application of herbicides such as propyl oxalamide are used to prevent and control weedy rice, but there are no very effective prevention and control measures. However, due to its rich variation types and similar genetic background with cultivated rice, weedy rice can be used as an important germplasm resource for improvement of cultivated rice.

WANG Bei, HE Yu, WU Rong, SHEN Yafang, WANG Yang, ZHAO Guangwu. Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1028-1036. doi: 10.11833/j.issn.2095-0756.2019.05.024
Citation: WANG Bei, HE Yu, WU Rong, SHEN Yafang, WANG Yang, ZHAO Guangwu. Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1028-1036. doi: 10.11833/j.issn.2095-0756.2019.05.024
  • 水稻Oryza sativa是中国乃至世界最主要的粮食作物之一,水稻的产量和品质直接影响中国的粮食安全。目前,中国水稻栽培面积稳定,约为3.02×107 hm2,稻谷总产量约2.07×104万t,有超过60%的居住人口以水稻为主要粮食,占口粮消费总量的54.7%[1-2]。然而,中国水稻栽培过程中常遭受各种环境胁迫导致产量严重降低;杂草稻Oryza sativa f. spontanea是直接影响中国水稻产量和品质的环境因素之一,其灾害随着水稻栽培方式向轻简栽培改变以及水稻栽培面积不断扩大而呈爆发趋势。本研究拟对杂草稻的起源、分类和危害进行分析和总结,并调查了中国杂草稻的发生及其原因,总结了杂草稻的主要防控措施,为今后杂草稻的全面有效防治提供理论支撑。

  • 杂草稻是指发生在稻田内或稻田周围,具有强落粒性和杂草性,且能够在人类干扰下完成生活史的稻属Oryza植物[3-4]。杂草稻具有生长快、繁殖能力强、适应性强等基本特性,还具有区别于其他稻田杂草的独特性状。杂草稻的形态、生理特性均类似于栽培稻,且两者间无生殖隔离[5]

    杂草稻常因其果皮为红色而被称之为“红稻”,但是目前也发现了果皮为白色、淡红色和淡绿色的杂草稻类型[6]。杂草稻在形态、生理、生化等方面与栽培稻相似,亲缘关系密切,所以杂草稻的防治成为一大难题。作为栽培稻强劲的竞争对手,其竞争优势在于生育期较栽培稻提早,早发芽、早分蘖、早抽穗、早成熟,生长速度快,繁殖力强,分蘖多,抢夺养分的能力较强;此外还具有强抗逆性,包括抗寒、耐旱、耐盐碱和耐老化等特性[7]。再加之其种子的落粒性强,种子一旦成熟即从母株上脱落,且种子休眠性强、休眠期长;休眠后的种子只要温度适宜即可萌发出苗。这些特性都导致杂草稻日渐成为广泛分布于世界各地水稻栽培区并对水稻影响最为严重的杂草之一[8]。早在2007年,联合国粮农组织已将杂草稻列为世界稻田中仅次于稗草Echinochloa crusgalli和千金子Euphorbia lathyris的第三大杂草[9]

  • 研究认为杂草稻并非自然界天然存在的一类植物,而是由栽培稻逐渐演化而成的一类伴生物种[10]。综合前人的研究结果,杂草稻的起源大致可分以下3类[11-12]:①栽培稻与其他稻种杂交进化产生;②栽培稻个体间进化演变而来;③栽培稻种子自身繁殖保存而来。但目前栽培稻品种去驯化已被公认为是世界各地杂草稻起源的主要原因之一[13]。QIU等[13]通过对中国江苏、广东、辽宁和宁夏等地的155份杂草稻材料和76份当地历年栽培稻品种进行了全基因组重测序和群体分析后,认为中国杂草稻均起源于栽培稻,其中江苏、广州等地杂草稻起源于籼稻Oryza sativa subsp. xian,辽宁、宁夏等地则起源于粳稻Oryza sativa subsp. keng,4个种群的起源方式均为独立去驯化。LI等[14]基于全基因组单核苷酸多态性和驯化相关基因的研究同样证明了此观点。

    在植物分类上,由于杂草稻具有与栽培稻相同的基因组型,且外观表现与亚洲栽培稻类似,因此杂草稻和栽培稻都属于禾本科稻属[15]。但目前对杂草稻的分类尚缺乏统一的标准。一般认为:杂草稻和亚洲栽培稻一样,也存在籼粳分化,因此可将杂草稻分为籼型杂草稻和粳型杂草稻[16-17]。TANG等[18]对来源于不同国家的24份杂草稻材料依据籼粳分类标准进行11个同工酶位点的分析以及稃毛、酚反应和氯酸钾抗性3个指标的分析,并将其同野生稻Oryza rufipogon和栽培稻一起,在千粒重、种子休眠性﹑落粒性等方面进行了研究,结果发现可将杂草稻大致分为3类:第1类为拟籼型,主要来自日本、巴西、美国和中国长江上游;第2类为籼型自生型,主要分布在亚洲热带地区,主要表现为强落粒性和休眠性;第3类为粳型自生型,主要来自韩国和中国长江下游。此外,熊海波等[19]对河南省黄河流域豫北粳稻区采集的56份杂草稻利用插入缺失标记和籼粳分化分析表明:44份是典型籼型杂草稻,5份为籼型杂草稻,3份为偏籼型杂草稻,4份为中间型杂草稻,它们之间的遗传差异小。通过聚类分析发现:56份杂草稻中的92.86%的属于籼型杂草稻,7.14%属于中间型杂草稻,与当地粳型栽培稻的亲缘关系较远。因此,推测该地区的杂草稻可能是由曾经种植过的籼粳栽培品种杂交而产生,或由杂交品种收获时田间落粒的后代去驯化而生。

  • 杂草稻主要以伴生杂草形式存在,在自然环境中很难单独长期繁殖,在绝大多数稻田中均存在[20]。在中国,许多水稻生产的主要省份均在20世纪60年代期间发现了杂草稻,但随着后续耕作方式的改变以及精耕细作的普及,中国杂草稻几近灭绝[21]。然而,由于近年来水稻栽培方式的转变,直播稻大面积推广[22],稻田的翻耕次数骤减,导致杂草稻蔓延迅速扩大,危害极大。有研究表明:杂草稻在直播稻田更易滋生和诱发,特别是连续直播3 a以上的稻田杂草稻危害指数逐年升高[10]。其主要原因是直播稻田前期灌水采取湿润促进齐苗的方式,极易诱导田间杂草(含杂草稻)出苗和生长,使杂草稻的竞争能力增强,导致后期危害加重[23];而在移栽田中,由于水稻秧苗移栽后保持了一定的水层,加上化学除草剂对土壤进行封闭处理,不利于杂草稻种子萌发[24]。杂草稻的危害主要体现在其对栽培稻产量、品质和种子等方面的不利影响。

  • 杂草稻具有分蘖能力强、繁殖力强、生长速度快等生长优势,使得其与栽培稻争水、争肥、争光以及在争夺其他生长资源上占有优势,影响栽培稻的生长发育,导致栽培稻单株穗数、每穗粒数、结实率和千粒质量降低,严重影响栽培稻产量。前人的研究[25-27]表明:2~15株·m-2的杂草稻可使栽培稻减产19%~39%,15~20株·m-2时可造成水稻减产50%~60%,20~30株·m-2时则减产高达70%~87%。

  • 一是对稻米外观品质和等级的影响。杂草稻的种皮一般为红色,籽粒也不饱满,一旦混入栽培稻中会降低稻米的外观品质和稻米等级。因此,在稻米加工时,需进行强研磨或色选,以除去杂草稻粒,导致碎米率增加或出米率降低。加工企业在收购含有杂草稻稻谷时,认定有“红线米”的一般都拒收或降低等级收购[28]。二是对稻米品质纯度造成影响。杂草稻粒在加工过程中容易破碎,导致稻米商品价值大大降低,稻米售价的降低对农民经济造成损失。三是对栽培稻碾磨品质和营养品质造成影响[29]。据KANE等[30]研究报道:杂草稻种子直链淀粉含量高,米粒硬度大而黏性小,会造成含杂草稻粒的大米食味品质变差。

  • 由于杂草稻种子与栽培稻相似,在收获稻种时极易夹带着杂草稻种子,从而影响稻种纯度,引发种子质量事故和纠纷,甚至影响水稻新品种的推广。此外,一旦杂草稻种子混入稻种中,杂草稻的危害便会随稻种传播扩散,进一步扩大及恶化[24]

  • 杂草稻与栽培稻亲缘关系密切,导致化学除草剂在两者间的选择性程度降低。用除草剂除治杂草稻时,对栽培稻的生长也会造成影响。目前,针对杂草稻的有效除草剂种类很少,一些常见的药剂对其防治效果不甚理想,或者会产生药害[31-32]。此外,李其勇等[33]认为:虽然通过转入耐除草剂基因可培育出能抵抗除草剂的水稻品种,从而减轻除草剂对水稻的影响;但研究发现杂草稻在短期内就能进化出对除草剂的耐药性,导致杂草稻的竞争优势更加明显。这主要是由于杂草稻的柱头外露率极高,可达30%~40%,比栽培稻更易发生串粉和基因漂流现象[34];而一旦转基因水稻中的这些抗除草剂﹑抗虫基因等向杂草稻中渗入,便会使杂草稻秧苗出现抗性,增强杂草稻的竞争优势,导致潜在危害扩大,给水稻生产造成更大损失[29]

  • 杂草稻的分布极为广泛,几乎所有的稻作区均有发生,但发生程度不一。在中国广东、辽宁、宁夏、江苏、江西、黑龙江、安徽、山东、浙江等地均有杂草稻的报道,且杂草稻灾情一般出现在单季稻稻田中[10, 28, 35-40]。综合全国各地杂草稻发生情况,笔者认为杂草稻危害发生的原因主要有以下几个方面。

  • 随着农业机械化的大面积普及,水稻已普遍使用机械收割,机械化作业携带杂草稻种子是导致杂草稻扩散发生的原因之一。经鉴定,浙江省杂草稻大体为籼型和偏籼型,与江苏省杂草稻类型相似[41];因此推测省份间、市区间的收割机跨区作业,会将杂草稻种子跨区带入他省(市)农田,在田间、田边落粒残留导致杂草稻灾害的发生;加之近几年间杂草稻成熟落粒后未及时采取有效的防治措施,导致危害程度逐年加重,区域逐渐扩大。此外,部分杂草稻灾情最为严重的地区与杂草稻发生危害较严重的地区接壤,如浙江省发生最为严重的长兴县与江苏省接壤,因此极有可能是地区间跨区作业将杂草稻带入别省市;而后由于各地收割机跨区作业带入各个周边城市的单季稻栽培稻区或经稻种销售传播扩散等[40]

  • 直播技术作为传统的播种技术,具有省工省力的特点,因而在全国范围内广泛推广,从最初的黑龙江、新疆等北方稻区,到浙江、江苏、上海等南方稻区,浙江有近22万hm2的直播田面积,上海65%水稻田采取直播栽培技术[42]。有研究[24]发现:直播稻、人工撒播稻田杂草稻的发生程度显著大于移栽稻田,这可能与直播稻田管理粗放,湿润促齐苗的方式有关;而无稻垄的人工撒播田又不利于人工、机械防除,喷施的茎叶类除草剂对杂草稻防除无效果。相比之下,移栽稻田的封闭式除草和人工拔草更有利于除尽稻垄外与田埂上的杂草稻。如黎明等[35]发现:麦Triticum aestivum套稻、直播稻的发生率显著高于抛栽稻和移栽稻。张生忠等[39]甚至发现宁夏吴忠市直播稻田中杂草稻的发生面积可高达98.7%。宁国云等[40]也发现:浙江省北部地区,尤其是湖州市长兴县是浙江省目前已知的杂草稻发生最早且最为严重的地区,并指出目前长兴县杂草稻危害逐年加重的原因主要与当地的水稻栽培以直播稻有关。虽然中国机插水稻面积占比逐年上升,而直播水稻面积占比逐年下降,但直播水稻绝对面积仍较大,直播的栽培方式与稻套麦等轻型栽培措施的推广应用,在无有效防治方法的情况下为杂草稻的大面积侵略提供了有利的环境。

  • 由于杂草稻与栽培水稻的相似程度高,除草剂无法有效清除田间杂草稻;即使部分除草剂可防治杂草稻,但对栽培稻的安全性同样存在威胁,在此情况下杂草稻污染肆意蔓延。目前,尽管有研究[43]提出利用抗除草剂水稻品种来控制杂草稻的发生,但抗除草剂水稻本身存在一定的农艺威胁以及防效不稳定,同时还存在杂草稻基因突变抗性增强的可能性,因此暂时还不能作为杂草稻主要的防治方法。

  • 目前,农户对杂草稻的认识仍较为淡薄,部分表示未听说过杂草稻,或在田块发生杂草稻前未对其引起重视,大片田畈沦陷时才向当地农业部门上报情况。当杂草稻种子随着外来收割机掉落在稻田内并与栽培稻一同生长发育时,农民未及时发现并采取有效防治措施,而仅将其视为一般杂草;但由于杂草稻顽强的生命力和强劲的落粒性使其在稻田中肆意发展。直至被发现时,杂草稻已覆盖大片稻田并与栽培水稻抢夺光源水源,使栽培稻品质、产量均严重下降。

  • 由于杂草稻的特殊形态和生理特性,目前防治非常困难,其防除需要根据杂草稻自身的特点,结合多种措施和方法,包括预防措施、耕作方式、化学防除等,才能获得较好的防控效果。目前防控措施主要倾向于人工拔除,调整栽培方式(套播、直播转变为移栽、机插),实施水旱轮作,施用丙草胺类除草剂等方式。

  • 对于水稻育种、种子生产田,必须要加强杂草稻植株的清除,从源头上控制杂草稻流向大田[23]。此外,在种子销售时,也要求种子生产商、经销商严格律己,不销售假劣种子;种子监管部门也要加强种子质量监管,及时去除假劣种子;多方通力合作才能确保杂草稻种子不进入大田。同时,还要加强对农户的杂草稻防治技术培训,增强农户的早期防范意识。

  • 目前,最有效的防治杂草稻方法还是人工拔除,但比较耗时耗力,也存在未能拔除干净的可能性。因此,针对杂草稻发生较重的田块,可在稻谷收割后牧鸭Anatinae,鹅Anser cygnoides orientalis等,以取食散落在田间的杂草稻种子[24]。冬前深翻,将杂草稻种子埋入地下,阻止其发芽出苗。CHAUHAN[44]研究显示:4个杂草稻品种有3个在8 cm深度的土壤中不能发芽;春季稻田灌水促进杂草稻种子提早萌发,再喷施除草剂杀除[45]。还可采取水旱轮作或改套播、直播为移栽、机插,在直接播种水稻的地块,提高播种率可干扰杂草稻的生长,ESTORNINOS等[46]指出:杂草稻的地上生产量随水稻播种率的增加而下降。CHOI等[47]研究发现:在未耕翻的稻田、轮作的稻田中杂草稻的发生率分为8.4%和0.9%,而翻耕后轮作的田块其发生率可降为0。此外,还需注意在不同田块间使用过的农机需清理干净后再转移到其余田块进行作业[48]

  • 除了最传统的人工拔除外,利用适宜的化学除草剂也是防治杂草稻的重要手段。如李国君等[49]发现:将催芽好的水稻种子浸泡在质量分数为30%的解草啶和吲哚丁酸悬浮剂中1 h,再晾至种子易于散开时即播种,2 d后再喷施丙草胺除草剂可有效防除杂草稻。另外,根据不同的直播方式合理使用噁草酮也可达到有效防治杂草稻的效果,如杨林等[50]研究发现:水直播整地后泥水状态施用噁草酮300 g·hm-2,水层落干后播种,保持土壤湿润且土表不出现水渍,可使栽培稻顺利出苗;在出苗后及时上水(以不淹没苗心为宜)可达到有效防治杂草稻的效果。李瑞民等[51]采用洁田技术对直播稻田中的杂草稻进行了防除试验,结果表明:洁田技术处理后田间杂草稻发生率极低,平均杂草稻发生率为0.07%,且具有节约成本,增加收入的效果,操作简便,省工省时,防控效果极显著。

  • 目前,有2类耐除草剂水稻品种:一类为非转基因的耐除草剂水稻,如“Clearfield”水稻,该类型已在美国、欧洲和巴西的许多水稻种植区得到推广应用。MEROTTO等[52]报道称:通过栽培该类型水稻品种,上述地区的杂草稻危害得到了有效控制,巴西的水稻产量也增加了近50%,马来西亚的水稻产量也因此显著增加[53]。但由于耐除草剂的水稻品种与杂草稻之间易发生基因交换,导致杂草稻的除草剂耐性也在逐渐增加[54]。比如在美国的阿肯色州,BURGOS等[54]调查发现:大约10%~60%的杂草稻产生了除草剂的耐性。另一类就是转基因的耐除草剂水稻品种,如拜耳作物科学公司研发的转基因耐除草剂水稻品种已经被批准在澳大利亚、巴西、美国、俄罗斯、墨西哥等地栽培。但这类水稻品种同样也存在着基因漂流的问题,即随着栽培世代增加,杂草稻中也出现了部分耐除草剂的植株[55]

  • 生物防治,尤其是生物除草剂、微生物除草剂的开发或许是今后杂草稻防控的另一种可供选择的有效手段[56]。另外,应当大力推广和改良对杂草生长有强烈抑制作用的水稻品种,比如IR24[48]。还可以利用植物之间的化感作用来防控杂草稻,例如BATISH等[57]发现:在稻田中施用万寿菊Tagetes erecta的干粉可以有效抑制田间杂草并增加作物产量。而培育具有明显形态特征的水稻品种,比如紫色叶片水稻的种植有助于减少田间杂草稻的种子库,农民在进行田间除草作业时,只需要拔除绿色叶片杂草即可[58]。此外,FERRERO[59]还发现:栽培高秆、生育期长的水稻品种比早熟、矮秆品种更利于控制杂草稻的发生。综上,杂草稻的防治需协同使用多种方法处理,并且由于不同地区杂草稻的生物学特性和发生规律不一致,还需根据不同地区的耕作制度和环境条件采取适宜的防控措施。

  • 杂草稻已经成为中国主要水稻种植区的一大稻田杂草,且由于其区别于其他杂草的独特生物学特性,如与栽培稻伴生、生长速度快、繁殖能力强、生育期提早、落粒性高、休眠性强、耐逆境等,如果任由其自然发展,势必对中国水稻栽培造成不可估量的损失。因此,有必要开展杂草稻的综合防治工作。同时,由于杂草稻自身变异类型丰富,其遗传背景和生态分布均与栽培稻相似,因此可作为改良栽培稻品质和产量的重要种质资源。由于长期的人工驯化和自然选择,栽培稻的遗传背景变得越发狭窄,通过混合外源种质可增加其遗传多样性。杂草稻的一些优良性状,如耐寒、抗病、耐盐碱、耐旱、休眠性强、生长势强等,均可作为水稻育种的宝贵种质资源。例如在落粒性方面,GU等[60]通过基因序列分析,发现杂草稻与水稻之间存在1个碱基位点差异,如加以利用可减少栽培稻的落粒数量。此外,有关杂草稻的耐冷性、耐旱性和耐盐碱等研究也已展开[42, 61-62]。因此,通过对杂草稻资源中的优良基因进行挖掘,可拓宽水稻育种的基因资源,对培育适应性和抗逆性强的水稻品种具有重要意义。

Reference (62)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return