留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝胁迫对绣球组培苗生长及生理特性的影响

李叶华 陈爽 赵冰

彭希, 赵安玖, 陈智超, 等. 雅安周公山不同发育阶段峨眉含笑的枝叶性状[J]. 浙江农林大学学报, 2021, 38(1): 65-73. DOI: 10.11833/j.issn.2095-0756.20200209
引用本文: 李叶华, 陈爽, 赵冰. 铝胁迫对绣球组培苗生长及生理特性的影响[J]. 浙江农林大学学报, 2020, 37(6): 1064-1070. DOI: 10.11833/j.issn.2095-0756.20200121
PENG Xi, ZHAO Anjiu, CHEN Zhichao, et al. Twig and leaf traits of Michelia wilsonii at different developmental stages in Zhougong Mountain, Ya’an[J]. Journal of Zhejiang A&F University, 2021, 38(1): 65-73. DOI: 10.11833/j.issn.2095-0756.20200209
Citation: LI Yehua, CHEN Shuang, ZHAO Bing. Effect of aluminum stress on growth and physiological characteristics of Hydrangea tissue culture seedlings[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1064-1070. DOI: 10.11833/j.issn.2095-0756.20200121

铝胁迫对绣球组培苗生长及生理特性的影响

DOI: 10.11833/j.issn.2095-0756.20200121
基金项目: 陕西省西安市科技计划项目(20NYYF0064)
详细信息
    作者简介: 李叶华,从事八仙花逆境生理等研究。E-mail: 1780527445@qq.com
    通信作者: 赵冰,副教授,博士,从事园林植物种质资源及逆境研究。E-mail: bingbing2003915@163.com
  • 中图分类号: Q945.5

Effect of aluminum stress on growth and physiological characteristics of Hydrangea tissue culture seedlings

  • 摘要:   目的  探究蜡莲绣球Hydrangea strigosa和莼兰绣球Hydrangea longipes组培苗的耐铝能力,为抗铝植物的应用和酸性土壤特殊资源的利用奠定基础。  方法  以蜡莲绣球和莼兰绣球组培苗为试验材料,研究培养基中不同氯化铝质量浓度(0、25、50、100、200 mg·L−1)对绣球组培苗生长及生理特性的影响。  结果  较低质量浓度铝胁迫下(25、50 mg·L−1),蜡莲绣球生长正常,长势与对照组相当,莼兰绣球长势不及对照组;中高质量浓度铝胁迫下(100、200 mg·L−1),组培苗长势明显减弱,平均根长和根体积均低于对照组,表明铝胁迫对绣球的地上与地下部分均产生了抑制作用。随着铝胁迫质量浓度的增加,蜡莲绣球叶绿素质量分数在50 mg·L−1时有所增加,莼兰绣球叶绿素质量分数呈现不断下降趋势,表明蜡莲绣球在低质量浓度铝胁迫时促进了叶绿素合成,莼兰绣球在铝胁迫下叶绿素受损。蜡莲绣球与莼兰绣球叶片丙二醛质量摩尔浓度先下降后上升,过氧化氢酶和过氧化物酶活性不断增强,超氧化物歧化酶活性均低于对照组,但差异不显著。蜡莲绣球脯氨酸质量分数在氯化铝质量浓度25 mg·L−1处理下低于对照组,其余质量浓度处理下高于对照组,莼兰绣球铝胁迫处理组脯氨酸质量分数均高于对照组。  结论  绣球在铝胁迫下能作出积极的生长与生理响应,且不同种绣球的耐铝程度有差异。综合各指标分析,蜡莲绣球和莼兰绣球对低质量浓度的铝胁迫有一定的抗性。图2表3参24
  • 植物功能性状是指对植物个体生存与发展有着一定影响的植物特征,与植物自身的生存策略密切相关[1-2]。植物的生物学特性间接反映植物各功能性状间的权衡方式,影响着植物在群落中的生存与发展。在植物的各种器官间,小枝和叶片是植物器官分支系统中最敏感的部分,在植物的不同发育阶段,小枝和叶性状是植物与环境相互作用的结果[3]。植物如何通过调整小枝内各构件之间的生长关系,来适应不断变化的环境,是研究植物生态策略的重要内容[4]。作为植物光合作用重要的器官,叶片能够将光能转化为自身发育所需要的物质,其大小直接影响着植物个体的发育模式以及对光能的捕获和转化能力[5]。小枝是植物叶片直接着生的器官,它能够传输茎运输过来的养分及叶光合作用产生的同化物质,与植物在空间上的开展情况密切相关,并决定着叶片的投资方式[6]。小枝与叶片之间的关系是植物个体在不同发育阶段的生态策略体现[7]。不同物种对环境的适应情况不同,因此生存策略方式也不同,即快速高效策略和慢速高质量策略[8-10]。物种内存在不同发育阶段的植物个体,它们在环境中获得的资源情况不同。为了提高对环境的适应性,植物枝叶可能会在不同发育阶段有着不同的投资方式。植物小枝与叶片对环境变化的敏感性强,植物个体在不同发育阶段的生态策略容易在其性状上表现出来[10]。种群空间格局指种群个体在空间上的分布情况,是与外界环境相互作用的结果,在一定程度上反映种群的生态策略方式[11]。目前,关于种群空间格局的研究主要集中在不同物种间、物种内不同发育阶段等方面[11-12],在植物性状间空间格局的分析较少。地统计学作为研究植物空间格局的重要方法,可以真实反映植物的空间变化[13]。SIEFERT[14]采用半方差变异函数对农田植物叶功能性状的空间格局进行了研究,发现叶功能性状具有中等空间自相关性,植物功能性状在空间上是连续变化的,进而能够预测植物性状的空间变化情况。探究植物枝叶性状的空间变化有助于理解植物对环境的适应策略。峨眉含笑Michelia wilsonii是多年生常绿乔木,主要生长于气候湿润,海拔600~2 000 m的常绿阔叶林中。虽然峨眉含笑的结实量较多,但其自然更新困难,分布区域较小,现已濒临灭绝,为国家Ⅱ级保护树种。目前,对于峨眉含笑的研究主要集中在群落结构、凋落物特征等方面[15-16],对其生态策略方式还不清楚。因此,本研究以四川省雅安周公山峨眉含笑优势阔叶林为基础,选取种群内不同发育阶段个体为研究对象,分析枝叶性状在空间上的自相关性,以期为了解峨眉含笑枝叶性状之间的资源权衡方式和生态策略方式提供依据。

    研究区位于四川省雅安周公山国家森林公园内(29°58′09″N,103°02′58″E)。该区属亚热带季风性湿润气候,降水量大,年均降水量为1 774.3 mm;湿度大,年平均相对湿度79%;气温较低,年平均气温14.0 ℃,海拔900~1 180 m;土壤类型以山地黄壤为主。研究区内植被丰富,以常绿阔叶林为主,除峨眉含笑优势树种外,伴生有杉木Cunninghamia lanceolata、华中樱桃Cerasus conradinae、栗Castanea mollissima、日本杜英Elaeocarpus japonicus、刺楸Kalopanax septemlobus、灯台Bothrocaryum controversum、南酸枣Choerospondias axillaris等乔木树种,林分郁闭度为0.8~0.9;林下主要有水竹Phyllostachys heteroclada、姬蕨Hypolepis punctata及一些禾草等植物,盖度达80%以上[15]

    在峨眉含笑种群分布较多的地区,建立1块200 m×200 m的固定样地,并将样地划分为100个20 m×20 m的样方。逐一对样方内所有胸径≥5 cm的峨眉含笑个体进行挂牌登记,并记录胸径、树高等信息,以便进行后期采样工作。

    于2018年7月采集样地内峨眉含笑个体的叶片和枝条。根据研究区域峨眉含笑种群的年龄结构及数量动态特征[16],将其划分为小树(胸径5~15 cm)、中树(胸径15~25 cm)和大树(胸径>25 cm) 3个阶段。定义当年生小枝为1年生小枝,沿着1年生小枝依次向内为2年生、3年生小枝。为了保证每株树采集的1、2年生枝条和叶来自同一个树枝,本研究在树冠南部枝条分叉处直径约1 cm粗的地方剪取1个树枝,从树枝上采集6个能明显区分1、2年生的小枝。采集小枝上成熟的当年生叶片15片,并将1、2年生小枝中均匀生长的部分截断,将其保存在自封袋中,做好标记带回实验室进行后续指标测定。共采集20株小树、59株中树、34株大树的枝叶。

    叶片鲜质量使用电子天平(精度0.000 1 g)称量;将称量过后的叶片放入烘箱中,在105 ℃下烘20 min进行杀青,然后在80 ℃下烘48 h,用电子天平称其干质量(精度0.000 1 g)。用叶面积(LI-3100C,LI COR,美国)扫描仪测定叶片后,在PS6中计算叶片面积;用游标卡尺测量叶片厚度(精度0.01 mm)。叶干鲜比=叶片干质量(g)/叶片鲜质量(g);比叶面积=叶片面积(cm2)/叶片干质量(g)。将所有小枝浸入去离子水中8~12 h,待小枝达到饱和状态后将其取出,用排水法测量小枝体积。将测量完体积的小枝,用吸水纸吸去表面水分后用电子天平称量(精度0.000 1 g),获得小枝鲜质量,然后将其放入烘箱中80 ℃烘48 h,用电子天平称量(精度0.000 1 g),获得小枝干质量。小枝干鲜比=小枝干质量(g)/小枝鲜质量(g);小枝密度=小枝干质量(g)/小枝体积(cm3)。

    采用单因素方差分析对峨眉含笑种群不同发育阶段枝叶性状进行差异分析;采用标准化主轴分析计算枝叶性状间的相关性。为了使枝叶性状呈正态分布,对其进行了对数转换(以10为底数)。数据分析在R语言的smatR包中进行。

    通过主成分分析获得每株树木第1轴枝叶性状的得分值,然后采用半方差函数法对峨眉含笑种群不同发育阶段枝叶性状主成分得分进行空间格局分析[17-18]。其计算公式为:

    $$ \gamma \left(h\right)=\frac{1}{2N\left(h\right)}\sum _{i=1}^{N\left(h\right)}{[Z\left({x}_{i}\right)-Z({x}_{i}+h\left)\right]}^{2} {\text{。}} $$

    式(1)中:γ(h)为林木个体间距为h时的半方差函数值;N(h)为林木个体间距为h时的样本对数;Z(xi)为林木个体i在位置点xi处的实测值;Z(xi+h)为林木个体在位置点xi+h处的实测值。通过半方差值进行模型拟合,绘制半方差函数图。

    本研究选取4种模型进行拟合(球状模型、指数模型、高斯模型和线性模型),选取模型决定系数(R2)最大和残差最小的模型。通过最优模型获得基台值(C0+C)、偏基台值(C)、块金值(C0)和变程(A),求得结构方差比[C/(C0+C)]来表示研究区变量的最大变异程度。一般认为结构方差>75%时,空间自相关性强;结构方差位于25%~75%时,空间自相关性中等,结构方差<25%时,空间自相关弱,此时不宜采用克里格(Kringing)插值进行变量预测。

    不同发育阶段叶鲜质量、叶干质量和2年生小枝密度差异显著(P<0.05),大树与中树、小树之间叶面积、比叶面积、1年生小枝密度差异显著(P<0.05),中树和小树之间叶干鲜比和2年生小枝干鲜比差异显著(P<0.05),其余性状差异不显著(P>0.05)(表1)。叶鲜质量、叶干质量、叶面积、叶厚、1年生小枝干鲜比、1年生小枝密度随着林木胸径的增加呈显著增加(P<0.05),比叶面积随着林木胸径的增加显著降低(P<0.05)(表2)。主成分分析前2轴的解释总方差为56.99%,其中第1轴的解释方差为39.95%,第2轴的解释方差为17.04%(图1)。对枝叶性状进行排序,叶性状与第1排序轴的相关性较高,枝性状与第2排序轴相关性较好。在第1排序轴中,除比叶面积外,从左到右,枝叶性状增加,幼树有着较高的比叶面积值,而大树除比叶面积外,其他枝叶性状较高;在第2排序轴中,从下到上,枝性状逐渐增加,叶性状逐渐减小,幼树有着较低的枝叶性状。这意味着更高发育阶段的个体有着更高的枝叶性状。

    表 1  不同发育阶段枝叶性状特征
    Table 1  Traits of twig and leaf in different development stages
    发育
    阶段
    叶鲜
    质量/g
    叶干
    质量/g
    叶厚/mm叶干鲜比叶面积/cm2比叶面积/
    (cm2·g−1)
    1年生小枝
    干鲜比
    1年生小枝
    密度/(g·cm−3)
    2年生小枝
    干鲜比
    2年生小枝
    密度/(g·cm−3)
    大树1.20±0.23 a0.44±0.09 a0.21±0.03 a0.37±0.05 ab50.52±6.15 a113.37±18.12 b0.38±0.02 a0.45±0.04 a0.41±0.03 a0.45±0.04 a
    中树0.96±0.22 b0.37±0.10 b0.18±0.03 b0.38±0.06 a 46.56±7.42 b130.10±26.26 a0.37±0.02 a0.42±0.04 b0.41±0.02 a0.43±0.04 b
    小树0.84±0.14 c0.31±0.07 c0.18±0.03 b0.35±0.03 b 43.41±5.79 b140.67±21.46 a0.38±0.03 a0.42±0.03 b0.39±0.02 b0.40±0.04 c
      说明:不同字母表示不同发育阶段同一性状差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格
    图 1  不同发育阶段枝叶性状主成分排序图
    Figure 1  PCA ordination of twig and leaf traits at different developmental stages
    箭头表示枝叶性状
    表 2  枝叶性状与胸径之间的相关系数
    Table 2  Correlation coefficient between twig, leaf traits and DBH
    性状叶鲜质量叶干质量叶厚叶干鲜比叶面积比叶面积1年生小枝干鲜比1年生小枝密度2年生小枝干鲜比2年生小枝密度
    胸径0.60**0.52**0.38**−0.41**−0.010.44**0.22*0.41**0.150.41**
      说明:*P<0.05;**P<0.01
    下载: 导出CSV 
    | 显示表格

    标准化主轴分析发现(表3):叶性状之间及枝性状之间有着较强的相关关系,叶性状与茎性状之间相关性较弱,仅叶鲜质量和叶干质量与小枝性状具有相关性。主成分分析(PCA)也发现(图1):叶性状与小枝性状存在正交关系。从表4~6可以看出:不同发育阶段叶性状间相关显著(P<0.05),其中,大树和中树阶段叶性状间相关性均比小树阶的段相关性强;不同发育阶段枝性状之间相关性从大到小依次为小树、中树、大树。枝叶性状之间相关性,除了小树阶段叶干质量和1年生小枝密度,大树阶段叶鲜质量和1年生小枝干鲜比、1年生小枝密度,中、小树阶段比叶面积和1年生小枝密度,中树阶段叶厚和1年生小枝密度显著相关外(P<0.05),其余均不显著(P>0.05)。

    表 3  整个发育阶段枝叶性状之间的相关系数
    Table 3  Correlation coefficient between the twig and leaf traits in the whole development stage
    性状LFWLDWLTLDMCLASLAABDMCABTDBBDMCBBTD
    LFW1
    LDW0.850**1
    LT0.585**0.604**1
    LDMC−0.0280.304**0.1381
    LA0.722**0.697**0.408**0.0521
    SLA−0.588**−0.733**−0.513**−0.496**−0.284**1
    ABDMC0.310**0.253**0.0830.0300.065−0.220**1
    ABTD0.371**0.395**0.295**0.0980.151−0.374**0.440**1
    BBDMC0.0760.1330.0260.1710.031−0.0990.255**0.216**1
    BBTD0.250**0.258**0.1490.1720.095−0.2910.325**0.352**0.507**1
      说明:*P<0.05;**P<0.01。LFW. 叶鲜质量;LDW. 叶干质量;LT. 叶厚;LDMC. 叶干鲜比;LA. 叶面积;SLA. 比叶面积;     ABDMC. 1年生小枝干鲜比;ABTD. 1年生小枝密度;BBDMC. 2年生小枝干鲜比;BBTD. 2年生小枝密度
    下载: 导出CSV 
    | 显示表格
    表 4  大树阶段枝叶性状之间的相关系数
    Table 4  Correlation coefficient between the twig and leaf traits in big tree stage
    性状LFWLDWLTLDMCLASLAABDMCABTDBBDMCBBTD
    LFW1
    LDW0.817**1
    LT0.623**0.616**1
    LDMC−0.0170.1830.1351
    LA0.651**0.638**0.472*0.0031
    SLA−0.540**−0.607**−0.433**−0.567*−0.2641
    ABDMC0.344*0.1700.1240.1640.108−0.0241
    ABTD0.449*0.3050.294−0.0260.1830.0310.547**1
    BBDMC0.020−0.077−0.0580.2260.086−0.0560.2190.0041
    BBTD0.2590.0450.2440.1470.206−0.2050.0240.1760.2791
      说明:*P<0.05;**P<0.01。LFW. 叶鲜质量;LDW. 叶干质量;LT. 叶厚;LDMC. 叶干鲜比;LA. 叶面积;SLA. 比叶面积;     ABDMC. 1年生小枝干鲜比;ABTD. 1年生小枝密度;BBDMC. 2年生小枝干鲜比;BBTD. 2年生小枝密度
    下载: 导出CSV 
    | 显示表格
    表 5  中树阶段枝叶性状之间的相关系数
    Table 5  Correlation coefficient between the twig and leaf traits in middle tree stage
    性状LFWLDWLTLDMCLASLAABDMCABTDBBDMCBBTD
    LFW1
    LDW0.831**1
    LT0.486**0.573**1
    LDMC−0.0430.394**0.2481
    LA0.732**0.695**0.301*0.1251
    SLA−0.506**−0.718**−0.509**−0.540**−0.2121
    ABDMC0.2280.175−0.033−0.072−0.075−0.2481
    ABTD0.1240.2360.0700.166−0.033−0.348*0.373*1
    BBDMC−0.0470.097−0.0440.030−0.0860.0370.2320.1871
    BBTD−0.0240.066−0.0250.118−0.196−0.1180.369*0.2400.511**1
      说明:*P<0.05;**P<0.01。LFW. 叶鲜质量;LDW. 叶干质量;LT. 叶厚;LDMC. 叶干鲜比;LA. 叶面积;SLA. 比叶面积;     ABDMC. 1年生小枝干鲜比;ABTD. 1年生小枝密度;BBDMC. 2年生小枝干鲜比;BBTD. 2年生小枝密度
    下载: 导出CSV 
    | 显示表格
    表 6  小树阶段枝叶性状之间的相关系数
    Table 6  Correlation coefficient between the twig and leaf traits in small tree stage
    性状LFWLDWLTLDMCLASLAABDMCABTDBBDMCBBTD
    LFW1
    LDW0.737**1
    LT0.510*0.471*1
    LDMC−0.1220.3360.1051
    LA0.4380.4370.361−0.3601
    SLA−0.342−0.649*−0.246−0.472*0.1961
    ABDMC0.3930.481*0.0290.2620.219−0.2431
    ABTD0.3680.570*0.478*0.3150.094−0.645*0.3361
    BBDMC0.2660.3460.3720.3430.007−0.3770.4130.679**1
    BBTD0.2680.4480.1260.3350.172−0.3880.570*0.573**0.775**1
      说明:*P<0.05;**P<0.01。LFW. 叶鲜质量;LDW. 叶干质量;LT. 叶厚;LDMC. 叶干鲜比;LA. 叶面积;SLA. 比叶面积;     ABDMC. 1年生小枝干鲜比;ABTD. 1年生小枝密度;BBDMC. 2年生小枝干鲜比;BBTD. 2年生小枝密度
    下载: 导出CSV 
    | 显示表格

    在不同发育阶段枝叶性状中,选择第1轴的林木个体枝叶性状主成分得分进行半变异函数方差分析(表7图2)。对整体林分而言,单木整体性状、叶性状和枝性状的结构方差比分别为25.2%、31.8%、0,单木整体性状和叶性状具有中等程度的空间自相关,枝性状空间自相关性弱,拟合最优模型为线性,说明其性状表现呈随机分布。在大树阶段,单木整体、叶性状和枝性状的结构方差比分别为50.5%、50.4%和50.5%,具有中等的空间自相关程度,有效变程分别为75.60、73.70和212.70 m,拟合最优模型分别为球状模型、球状模型和指数模型,呈聚集分布,枝性状的有效变程最大,说明枝性状的空间连续性更大。在中树和小树阶段,模型拟合效果差,且结构方差低,说明小树阶段枝叶性状空间自相关性弱,不宜采用克里格插值(Kringing)空间预测。

    图 2  枝叶性状半方差函数图
    Figure 2  Isotropic semi-variogram of twig and leaf functional traits
    表 7  枝叶性状半方差模型及参数
    Table 7  Isotropic semi-variogram model and parameters of twig and leaf traits
    发育阶段变量模型块金值C0基台值C0+C结构方差比C/(C0+C)/%有效变程A/m决定系数R2残差
    整个发育阶段单木整体性状线性0.105 20.140 725.2144.950.6300.001 0
    叶     线性0.114 00.167 131.8144.950.6250.002 2
    枝     线性0.091 70.091 70144.950.5090.004 3
    大树     单木整体性状球状0.045 90.092 850.575.600.3820.004 6
    叶     球状0.056 10.113 250.473.700.3280.008 9
    枝     指数0.052 10.105 250.5212.100.3700.000 3
    中树     单木整体性状高斯0.009 20.083 088.92.770.0010.001 3
    叶     线性0.113 40.113 4078.300.0390.002 2
    枝     线性0.078 90.078 9078.300.0000.004 9
    小树     单木整体性状球状0.015 30.085 682.19.000.0400.020 3
    叶     球状0.003 70.059 493.810.100.1170.008 2
    枝     线性0.144 60.144 6082.420.4490.070 9
    下载: 导出CSV 
    | 显示表格

    植物之间的生存策略方式会在植物的性状上表现出来。比叶面积与植物的光合利用效率有关[19],本研究中比叶面积随着林木大小增加显著降低,这与其他不同物种及生境下得到的研究结果一致[20]。耿梦娅等[21]通过对不同发育阶段叶性状的研究发现:发育后期的植物个体有着更大更厚的叶片,且不同的发育阶段叶片性状差异显著,与本研究结果相符。较高的林木在进行长距离水分运输时,必须克服阻力问题,而较高的茎干鲜比将有利于水分的运输[22]。本研究发现:枝干鲜比与林木大小的关系不显著,可能是研究区内湿度高,水资源没有成为限制植物生长的环境因子,这与HE等[23]的研究结果一致。研究还发现:随着林木的发育,小枝密度逐渐增大,高密度的小枝除了能够加强对外界环境的抵抗外,还能够承载更大更多的叶片;较低的小枝密度意味着有更低构造细胞的成本,有利于小树阶段枝条的快速生长[24]。这反映了种群的生态策略方式从小树到大树阶段由快收益向慢收益转变,这是物种的生存策略所决定的。自然界中,无论从单个物种的发育阶段还是不同生活型的物种来看,大部分矮小的林木有着小的叶片,高大的林木个体叶片和枝密度更高[25],与本研究结果相符。

    本研究发现:在小枝与叶片的10个性状中,叶性状间的相关性强,与FORTUNEL等[26]的研究结果一致。部分性状间在小树阶段相关性较低或不显著,可能是在激烈的竞争环境下,由于生存策略的优化方式,不同器官间的权衡方式在各性状间独立运行的原因[27]。小枝与叶功能性状相关性较弱,仅小枝密度与叶鲜质量和干质量呈正相关,然而MÉNDEZ-ALONZO等[28]研究发现:茎密度与水分传导速率呈显著负相关,本研究结果与其相反,原因是茎的密度远大于小枝密度,足以支持林木生长的需要,因此更应该考虑长距离运输过程中高密度组织细胞带来的水分运输问题,这是茎与小枝不同的功能作用造成的。对茎叶经济谱的研究发现[9, 29]:茎经济谱与叶经济谱呈正交状态,本研究中小枝与叶性状在排序轴呈正交状态,这是造成枝叶性状相关性弱的重要原因。叶片质量与枝密度呈显著正相关,较大的枝密度意味着小枝能够承受更多的质量负荷。对不同发育阶段叶片质量与枝密度之间的相关性分析发现:这种现象在大树阶段表现得更加显著,其原因是小枝密度与叶生物量密切相关[6],本研究也发现大树有着更大更厚的叶。通过研究4个枝性状之间的关系,两两之间呈正相关,较高的小枝密度需要更多的结构组织,这种现象在不同的发育阶段都有着不同程度的表现,小树阶段小枝性状间相关性更大,这主要是因为小树阶段的生物学特征决定的。关于茎经济谱[9]的研究表明:茎密度与茎干鲜比密切相关,本研究中小枝性状间也出现这种相关性。对于茎经济谱理论,同样也能适用于小枝部分性状的研究。

    在地统计学分析中,整体林分的枝叶性状分布模式以随机分布为主,其空间自相关性为中等,其原因是天然林中阔叶树种的分布方式常以随机分布为主[29]。大树阶段,枝叶性状以聚集分布为主,刘妍妍[30]通过对阔叶林的空间格局分析发现:具有较大叶片的个体通常以聚集形式分布,与本研究相符。叶片和小枝性状是影响植物冠幅大小的重要因素,能够影响成年植物冠层的结构形式及发展状态,进而影响植物对资源的获取能力。大树阶段枝性状主成分得分的有效影响变程均大于整体和叶性状,说明枝条的开展情况比叶的大小更能加剧大树个体之间的影响。中、小树阶段枝叶性状的拟合效果和结构方差比较小,不成连续变化状态,中、小树阶段林木枝叶性状的预测不宜采用克里格(Kringing)插值估算,与SIEFERT[14]的研究不一致,主要原因可能是中、小树阶段的空间格局分布方式为随机分布,林木间的距离较远,空间自相关性弱。若要预测样地整体功能性状的表现,需要测量更多林木个体的功能性状值。

    综上所述,不同发育阶段枝叶性状差异显著,大树倾向于高质量的投资策略,小树的投资策略为快速投资;不同发育阶段叶性状间和小枝性状间相关性显著;峨眉含笑种群大树阶段枝叶性状具有空间自相关性。

  • 图  1  铝胁迫后2种绣球组培苗形态

    1、2、3、4、5代表氯化铝质量浓度分别为0、25、50、100、200 mg·L−1。左图为蜡莲绣球,右图为莼兰绣球

    Figure  1  Morphology of Hydrangea tissue culture seedlings of aluminum stress

    图  2  2种组培苗2个月后生根情况

    1、2、3、4、5代表氯化铝质量浓度分别为0、25、50、100、200 mg·L−1。左图为蜡莲绣球,右图为莼兰绣球

    Figure  2  Rooting of tissue cultured seedlings after 2 months

    表  1  铝胁迫对2种绣球组培苗生根指标的影响

    Table  1.   Effects of aluminum stress on rooting indexes of Hydrangea tissue culture seedlings

    氯化铝/
    (mg·L−1)
    生根率/%平均根长/cm根体积/cm3
    蜡莲绣球 0100.00 a5.61±0.45 a 7.35±2.97 a
    25100.00 a4.85±0.37 ab2.79±0.76 b
    50100.00 a4.22±0.32 b 1.85±0.44 b
    100100.00 a4.27±0.39 b 0.68±0.21 b
    200 96.67 a3.12±0.53 b 0.43±0.23 b
    莼兰绣球 0100.00 a6.07±0.41 a 3.45±0.92 a
    25100.00 a5.36±0.21 a 1.22±0.47 b
    50100.00 a5.60±0.10 a 0.26±0.08 b
    100100.00 a5.63±0.29 a 0.12±0.02 b
    200 93.33 b2.26±0.36 b 0.02±0.00 b
      说明:不同字母表示在0.05水平上差异显著(P<0.05)
    下载: 导出CSV

    表  2  铝胁迫对2种绣球组培苗叶绿素质量分数的影响

    Table  2.   Effect of aluminum stress on chlorophyll content of Hydrangea tissue culture seedlings

    氯化铝/
    (mg·L−1)
    叶绿素a/
    (mg·g−1)
    叶绿素b/
    (mg·g−1)
    叶绿素a+b/
    (mg·g−1)
    蜡莲绣球 00.78±0.20 a0.30±0.08 a1.08±0.28 a
    250.73±0.29 a0.29±0.11 a1.02±0.41 a
    500.85±0.07 a0.34±0.03 a1.18±0.10 a
    1000.78±0.01 a0.30±0.04 a1.07±0.05 a
    2000.68±0.03 a0.20±0.14 a0.88±0.18 a
    莼兰绣球 01.18±0.15 a0.50±0.05 a1.68±0.20 a
    250.78±0.08 b0.32±0.03 b1.10±0.11 b
    500.67±0.17 b0.30±0.07 b0.97±0.24 b
    1000.58±0.16 b0.23±0.06 b0.81±0.20 b
    2000.22±0.12 c0.09±0.05 c0.32±0.17 c
      说明:不同字母表示在0.05水平上差异显著(P<0.05)
    下载: 导出CSV

    表  3  铝胁迫对绣球组培苗生理指标的影响

    Table  3.   Effects of aluminum stress on physiological indexes of Hydrangea tissue culture seedlings

    氯化铝/
    (mg·L−1)
    MDA/
    (×10−2 μmol·g−1)
    Pro/
    (μg·g−1)
    CAT活性/
    (×16.67 nkat·g−1·min−1)
    SOD活性/
    (×16.67 nkat·g−1)
    POD活性/
    (×16.67 nkat·g−1·s−1)
    蜡莲绣球 03.40±0.54 a30.79±1.89 a2.96±0.57 b372.41±2.47 a553.25±33.27 a
    253.01±0.55 a30.77±2.16 a2.97±0.58 b371.90±7.86 a554.74±29.89 a
    503.02±0.25 a32.52±3.91 a3.59±0.68 ab367.34±4.89 a570.44±23.56 a
    1003.60±0.05 a31.71±2.14 a3.92±0.52 ab364.44±5.86 a593.59±16.10 a
    2003.74±0.18 a43.13±8.98 a5.49±1.17 a366.51±7.64 a655.73±86.45 a
    莼兰绣球 02.72±0.36 a79.05±3.04 b4.62±1.19 a389.24±3.21 a417.76±39.83 c
    252.39±0.32 a80.06±7.65 b5.89±2.93 a378.19±2.70 a562.57±34.05 b
    502.54±0.76 a79.22±9.04 b7.61±1.69 a373.34±4.89 a586.71±53.88 b
    1003.05±0.52 a87.25±7.34 a13.01±5.50 a378.67±10.30 a595.71±11.78 b
    2003.33±0.20 a100.46±5.16 a14.72±3.62 a372.10±5.77 a798.41±26.64 a
      说明:不同字母表示在0.05水平上差异显著(P<0.05)
    下载: 导出CSV
  • [1] 王鑫月, 张梅娟, 熊炳霖, 等. 铝胁迫对水稻膜脂组分和含量的影响[J]. 植物生理学报, 2016, 52(4): 461 − 470.

    WANG Xinyue, ZHANG Meijuan, XIONG Binglin, et al. Effects of aluminum stress on the composition and content of membrane lipids in rice(Oryza sativa) [J]. Plant Physiol J, 2016, 52(4): 461 − 470.
    [2] 贾松涛, 郑阳霞, 邱爽, 等. 铝胁迫对西瓜幼苗生长及生理特性的影响[J]. 农业环境科学学报, 2014, 33(8): 1485 − 1492.

    JIA Songtao, ZHENG Yangxia, QIU Shuang, et al. Effects of aluminum stress on growth and physiological characteristics of watermelon seedlings [J]. J Agro-Environ Sci, 2014, 33(8): 1485 − 1492.
    [3] 武孔焕, 陈奇, 李昆志, 等. 铝胁迫对黑大豆膜脂过氧化及抗氧化酶活性的影响[J]. 西北植物学报, 2012, 32(3): 511 − 517.

    WU Konghuan, CHEN Qi, LI Kunzhi, et al. Effects of aluminum stress on membrane lipid peroxidation and antioxidant enzyme activities in black soybean [J]. Acta Bot Boreali-Occident Sin, 2012, 32(3): 511 − 517.
    [4] 夏斌, 刘莹, 胡尚春, 等. 水淹胁迫对虎尾草生理指标的影响[J]. 东北林业大学学报, 2019, 47(7): 31 − 36.

    XIA Bin, LIU Ying, HU Shangchun, et al. Physiological responses of Chloris virgata to different flooding stresses [J]. J Northeast For Univ, 2019, 47(7): 31 − 36.
    [5] KOCHIAN L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Ann Rev Plant Physiol Plant Mol Biol, 1995, 46(1): 237 − 260.
    [6] GUPTA D K, NICOLOSO F T, SCHETINGER M R C, et al. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress [J]. J Hazardous Mater, 2009, 172(1): 479 − 484.
    [7] 陈海霞, 胡春梅, 彭尽晖, 等. 铝胁迫诱导八仙花根系分泌有机酸的研究[J]. 天津农业科学, 2017, 23(2): 1 − 7, 15.

    CHEN Haixia, HU Chunmei, PENG Jinhui, et al. Al stress-induced organic acid secretion from roots in Hydrangea macrophylla [J]. Tianjin Agric Sci, 2017, 23(2): 1 − 7, 15.
    [8] 周红灿. 八仙花抗铝胁迫下的生理特性研究[D]. 长沙: 湖南农业大学, 2008.

    ZHOU Hongcan. Studies on the Physical Characteristics of Hydrangea macrophylla under Aluminum Stress[D]. Changsha: Hunan Agricultural University, 2008.
    [9] 龚雯. 铝胁迫下八仙花组培苗的生理特性研究[D]. 长沙: 湖南农业大学, 2011.

    GONG Wen. Studies on the Physical Characteristics of Tissue Culturing Seedings of H. macrophyllaCoeruleaunder Aluminum Stress[D]. Changsha: Hunan Agricultural University, 2011.
    [10] 彭尽晖, 陈海霞, 龚雯, 等. 铝胁迫对八仙花离体植株质膜透性与抗氧化系统的影响[J]. 湖南农业大学学报(自然科学版), 2013, 39(增刊 1): 42 − 44.

    PENG Jinhui, CHEN Haixia, GONG Wen, et al. Effects of aluminum stress on plasma membrane permeability and antioxidant system in vitro of Hydrangea [J]. J Hunan Agric Univ Nat Sci, 2013, 39(suppl 1): 42 − 44.
    [11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [12] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    [13] 蒋时姣, 钟宇, 刘海鹰, 等. 铝胁迫对柳杉组培苗生长及生理特性的影响[J]. 植物生理学报, 2015, 51(2): 227 − 232.

    JIANG Shijiao, ZHONG Yu, LIU Haiying, et al. Effect of aluminum stress on the growth and some physiological characteristics in Cryptomeria fortunei tisssue culture seedlings [J]. Plant Physiol J, 2015, 51(2): 227 − 232.
    [14] 胡彦, 何虎翼, 何龙飞. 高等植物铝胁迫研究新进展[J]. 文山师范高等专科学校学报, 2006, 19(1): 74 − 78.

    HU Yan, HE Huyi, HE Longfei. New progress of aluminum stress in higher plants [J]. J Wenshan Teach Coll, 2006, 19(1): 74 − 78.
    [15] 初晓辉, 张艾青, 段新慧, 等. 铝胁迫对多花黑麦草生长和生理的影响[J]. 草原与草坪, 2017, 37(6): 48 − 56.

    CHU Xiaohui, ZHANG Aiqing, DUAN Xinhui, et al. Effects of aluminum stress on growth and physiology of Lolium multiflorum [J]. Grassl Turf, 2017, 37(6): 48 − 56.
    [16] 李媛, 韩迎儒, 赵冰, 等. 污水胁迫下7种草本地被植物耐污性比较研究[J]. 草地学报, 2018, 26(6): 1392 − 1399.

    LI Yuan, HAN Yingru, ZHAO Bing, et al. Comparative study on stain resistance of seven herbaceous ground cover plants under sewage stress [J]. Acta Agrestia Sin, 2018, 26(6): 1392 − 1399.
    [17] 胡雪华, 李蕴, 邹天才. 车前对铝胁迫生理响应的研究[J]. 热带亚热带植物学报, 2014, 22(5): 495 − 501.

    HU Xuehua, LI Yun, ZOU Tiancai. Studies on physiological responses to aluminum stress of Plantago asiatica [J]. J Trop Subtrop Bot, 2014, 22(5): 495 − 501.
    [18] 王佳星, 余国源, 谢瑛, 等. 土壤镉胁迫对紫金牛生理特性的影响[J]. 东北林业大学学报, 2019, 47(5): 25 − 29.

    WANG Jiaxing, YU Guoyuan, XIE Ying, et al. Effects of Cd stress on physiological characteristics of Ardisia japonica [J]. J Northeast For Univ, 2019, 47(5): 25 − 29.
    [19] AWASTHI J, SAHA B, PANIGRAHI J, et al. Redox balance, metabolic fingerprint and physiological characterization in contrasting North East Indian rice for Aluminum stress tolerance[J]. Sci Rep, 2019, 9(1): doi: 10.1038/s41598-019-45158-3.
    [20] 安渊, 陈凡毅, 王俊, 等. 半秋眠和非秋眠紫花苜蓿品种耐涝性能研究[J]. 中国草地, 2004, 26(8): 31 − 36.

    AN Yuan, CHEN Fanyi, WANG Jun, et al. Studies on waterlogging tolerance of semi-fall and non-fall dormant alfalfa cultivars [J]. Grassl China, 2004, 26(8): 31 − 36.
    [21] HERNÁNDEZ J A, JIMÉNEZ A, MULLINEAUX P, et al. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences [J]. Plant,Cell Environ, 2000, 23(8): 853 − 862.
    [22] 关梦茜, 董然, 李红婷, 等. Cu胁迫对大花萱草生长及生理的影响[J]. 东北林业大学学报, 2014, 42(7): 91 − 94.

    GUAN Mengqian, DONG Ran, LI Hongting, et al. Growth and physiological characteristics of Hemerocallis middendorffii under Cu stress [J]. J Northeast For Univ, 2014, 42(7): 91 − 94.
    [23] 田小霞, 毛培春, 郭强, 等. 镉胁迫对马蔺根系形态及部分生理指标的影响[J]. 西北植物学报, 2019, 39(6): 1105 − 1113.

    TIAN Xiaoxia, MAO Peichun, GUO Qiang, et al. Effect of cadmium on root morphology and partial physiological indexes of Iris lactea var. chinensis [J]. Acta Bot Boreali-Occident Sin, 2019, 39(6): 1105 − 1113.
    [24] 袁月, 代志国, 张丙秀, 等. 土壤pH对蓝莓生理特性的影响[J]. 西北植物学报, 2019, 39(8): 1434 − 1443.

    YUAN Yue, DAI Zhiguo, ZHANG Bingciu, et al. Effects of soil pH on physiological characteristics of blueberry [J]. Acta Bot Boreali-Occident Sin, 2019, 39(8): 1434 − 1443.
  • [1] 郑琳, 王凤敏, 凡婷婷, 王克涛, 胡恒康, 黄坚钦, 张启香.  核桃JrGA3ox基因表达对生长及干旱胁迫的响应 . 浙江农林大学学报, 2025, 42(2): 261-272. doi: 10.11833/j.issn.2095-0756.20240327
    [2] 张梅, 董琼, 段华超, 叶澜, 李燕燕, 金友帆.  白枪杆幼苗叶片形态和生理性状对钙的响应 . 浙江农林大学学报, 2022, 39(4): 845-851. doi: 10.11833/j.issn.2095-0756.20210597
    [3] 黄俊威, 孙永磊, 周金星, 刘玉国, 万龙.  白枪杆生长特性及光合特性对不同土壤水分的响应 . 浙江农林大学学报, 2019, 36(6): 1254-1260. doi: 10.11833/j.issn.2095-0756.2019.06.025
    [4] 胡肖肖, 段玉侠, 金荷仙, 唐宇力, 庄晓林.  4个杜鹃花品种的耐荫性 . 浙江农林大学学报, 2018, 35(1): 88-95. doi: 10.11833/j.issn.2095-0756.2018.01.012
    [5] 徐圆圆, 陆明英, 蒋维昕, 程飞, 谭玲, 杨梅.  铝胁迫下不同耐铝型桉树无性系根和叶抗氧化特征的差异 . 浙江农林大学学报, 2016, 33(6): 1009-1016. doi: 10.11833/j.issn.2095-0756.2016.06.012
    [6] 姜顺邦, 张怡, 韦小丽, 范辉华, 徐小琴, 段如雁.  不同闽楠优树子代苗期生长及光合生理特性比较 . 浙江农林大学学报, 2016, 33(1): 51-59. doi: 10.11833/j.issn.2095-0756.2016.01.007
    [7] 毛永成, 刘璐, 王小德.  干旱胁迫对3种槭树科植物生理特性的影响 . 浙江农林大学学报, 2016, 33(1): 60-64. doi: 10.11833/j.issn.2095-0756.2016.01.008
    [8] 骆文华, 唐文秀, 黄仕训, 梁惠凌, 赵博.  珍稀濒危植物德保苏铁迁地保护研究 . 浙江农林大学学报, 2014, 31(5): 812-816. doi: 10.11833/j.issn.2095-0756.2014.05.024
    [9] 杨升, 张华新, 刘涛.  16个树种盐胁迫下的生长表现和生理特性 . 浙江农林大学学报, 2012, 29(5): 744-754. doi: 10.11833/j.issn.2095-0756.2012.05.018
    [10] 马进, 刘志高, 郑钢.  差异蛋白质组学及其在植物盐胁迫响应研究中的应用 . 浙江农林大学学报, 2011, 28(1): 139-143. doi: 10.11833/j.issn.2095-0756.2011.01.022
    [11] 雷祖培, 余宏傲, 张书润, 林瑞丰, 康华靖.  不同植物生长调节物质和培养基对浙江雪胆组培苗繁殖系数的影响 . 浙江农林大学学报, 2011, 28(4): 662-666. doi: 10.11833/j.issn.2095-0756.2011.04.022
    [12] 刘颖坤, 蔡莎艺, 喻卫武, 冷华南, 桂仁意.  超高效液相色谱测定铝胁迫下水培毛竹根系分泌物中有机酸 . 浙江农林大学学报, 2011, 28(4): 533-537. doi: 10.11833/j.issn.2095-0756.2011.04.002
    [13] 朱小楼, 楼炉焕, 王慧.  土壤干旱胁迫对4种薹草植物生理生化特性的影响 . 浙江农林大学学报, 2009, 26(5): 656-662.
    [14] 申亚梅, 童再康, 马进, 吕健全, 韩潇, 巴蕾, 房亮亮, .  海水胁迫下2种观赏植物的生长与生理特性比较 . 浙江农林大学学报, 2009, 26(4): 490-497.
    [15] 阮秀春, 斯金平, 吴健, 黄文华, 郭宝林, 许元科.  雷公藤属植物生物学特性与生态适应性的初步研究 . 浙江农林大学学报, 2006, 23(5): 595-598.
    [16] 高建社, 刘玉媛, 符毓秦, 符军, 王军, 杨自湘.  不同种源青杨幼树的生长特性 . 浙江农林大学学报, 2004, 21(1): 115-118.
    [17] 周国英, 刘君昂, 李倩茹.  松乳菇菌种分离及菌丝生长特性的研究 . 浙江农林大学学报, 2003, 20(2): 158-161.
    [18] 严逸伦, 严其鹏, 胡立中.  杉木檫树混交林根系生理的初步研究 . 浙江农林大学学报, 2000, 17(1): 20-23.
    [19] 谢国阳, 林思祖, 张文富, 林开敏, 许泽煌.  不同施肥处理对杉木针叶生理特性的影响 . 浙江农林大学学报, 1999, 16(2): 119-122.
    [20] 徐维坤, 杨雄鹰, 胡勤奋, 史迎寅, 黄胜利.  沿海平原南方型杨树生长特性* . 浙江农林大学学报, 1995, 12(4): 367-373.
  • 期刊类型引用(2)

    1. 李东育,俞玉,许顺,温兵霞,施如康,韩大勇. 伊犁河谷小叶白蜡当年生枝条生长调节特征. 浙江农林大学学报. 2023(02): 382-389 . 本站查看
    2. 韦海航,杨景竣,覃杰,莫东宜,李进华,黄炳村,钟梦骅,卢志峰. 桂西北干热河谷天然次生林群落个体密度对木本植物枝叶关系的影响. 东北林业大学学报. 2023(11): 27-32 . 百度学术

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200121

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/6/1064

图(2) / 表(3)
计量
  • 文章访问数:  1195
  • HTML全文浏览量:  345
  • PDF下载量:  32
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-01-07
  • 修回日期:  2020-07-14
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2020-12-01

铝胁迫对绣球组培苗生长及生理特性的影响

doi: 10.11833/j.issn.2095-0756.20200121
    基金项目:  陕西省西安市科技计划项目(20NYYF0064)
    作者简介:

    李叶华,从事八仙花逆境生理等研究。E-mail: 1780527445@qq.com

    通信作者: 赵冰,副教授,博士,从事园林植物种质资源及逆境研究。E-mail: bingbing2003915@163.com
  • 中图分类号: Q945.5

摘要:   目的  探究蜡莲绣球Hydrangea strigosa和莼兰绣球Hydrangea longipes组培苗的耐铝能力,为抗铝植物的应用和酸性土壤特殊资源的利用奠定基础。  方法  以蜡莲绣球和莼兰绣球组培苗为试验材料,研究培养基中不同氯化铝质量浓度(0、25、50、100、200 mg·L−1)对绣球组培苗生长及生理特性的影响。  结果  较低质量浓度铝胁迫下(25、50 mg·L−1),蜡莲绣球生长正常,长势与对照组相当,莼兰绣球长势不及对照组;中高质量浓度铝胁迫下(100、200 mg·L−1),组培苗长势明显减弱,平均根长和根体积均低于对照组,表明铝胁迫对绣球的地上与地下部分均产生了抑制作用。随着铝胁迫质量浓度的增加,蜡莲绣球叶绿素质量分数在50 mg·L−1时有所增加,莼兰绣球叶绿素质量分数呈现不断下降趋势,表明蜡莲绣球在低质量浓度铝胁迫时促进了叶绿素合成,莼兰绣球在铝胁迫下叶绿素受损。蜡莲绣球与莼兰绣球叶片丙二醛质量摩尔浓度先下降后上升,过氧化氢酶和过氧化物酶活性不断增强,超氧化物歧化酶活性均低于对照组,但差异不显著。蜡莲绣球脯氨酸质量分数在氯化铝质量浓度25 mg·L−1处理下低于对照组,其余质量浓度处理下高于对照组,莼兰绣球铝胁迫处理组脯氨酸质量分数均高于对照组。  结论  绣球在铝胁迫下能作出积极的生长与生理响应,且不同种绣球的耐铝程度有差异。综合各指标分析,蜡莲绣球和莼兰绣球对低质量浓度的铝胁迫有一定的抗性。图2表3参24

English Abstract

彭希, 赵安玖, 陈智超, 等. 雅安周公山不同发育阶段峨眉含笑的枝叶性状[J]. 浙江农林大学学报, 2021, 38(1): 65-73. DOI: 10.11833/j.issn.2095-0756.20200209
引用本文: 李叶华, 陈爽, 赵冰. 铝胁迫对绣球组培苗生长及生理特性的影响[J]. 浙江农林大学学报, 2020, 37(6): 1064-1070. DOI: 10.11833/j.issn.2095-0756.20200121
PENG Xi, ZHAO Anjiu, CHEN Zhichao, et al. Twig and leaf traits of Michelia wilsonii at different developmental stages in Zhougong Mountain, Ya’an[J]. Journal of Zhejiang A&F University, 2021, 38(1): 65-73. DOI: 10.11833/j.issn.2095-0756.20200209
Citation: LI Yehua, CHEN Shuang, ZHAO Bing. Effect of aluminum stress on growth and physiological characteristics of Hydrangea tissue culture seedlings[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1064-1070. DOI: 10.11833/j.issn.2095-0756.20200121
  • 铝毒害是目前酸性土壤中限制植物生长及矿物质吸收而导致减产的主要因子[1-2]。一般情况下,铝以难溶性硅酸盐或氧化铝的形式存在,对植物没有毒害,但当土壤pH<5时,硅酸盐或氧化铝就在酸性条件下转变为溶解状态进入土壤中,可溶性的铝(主要是Al3+)对大多数植物都会产生毒害[3-4]。植物具体表现为根长生长受抑制,生根数量减少;细胞壁和细胞膜遭到破坏,透性增大,细胞内的可溶性物质外渗,体内酶活性受到影响等[5-6]。为了消除或者减缓伤害,植物一方面通过根系分泌有机酸来缓解胁迫[7],另一方面通过积累脯氨酸、可溶性糖等渗透调节物质,提高氧化酶系统酶活性来维持细胞正常生活状态。绣球属Hydrangea为虎耳草科Saxifragaceae植物,其花色在酸性土壤中呈蓝色,在碱性土壤中呈红色,而酸性土壤中铝离子的存在对蓝色花的形成有着重要作用,因此,探究绣球耐铝性一方面为铝污染地区植物栽培应用提供依据,另一方面在调控绣球花色时的硫酸铝施用量提供参考依据。目前,中国对铝胁迫的研究大都集中在农作物[1-3],对观赏植物研究较少,对绣球耐铝机制的研究仅集中在少数耐铝品种[8-10],缺乏对野生种的探究。野生种未经驯化移栽,可能保留了更多的耐性基因,因此,本研究以蜡莲绣球Hydrangea strigosa与莼兰绣球Hydrangea longipes 2个野生种组培苗为材料,研究绣球野生种在不同质量浓度铝胁迫下的生长及生理特性,探究其耐铝机制,为抗铝毒植物的应用和酸性土壤特殊资源的利用奠定基础。

    • 蜡莲绣球和莼兰绣球组培苗由种子经过组织培养获得。蜡莲绣球种子采自甘肃省陇南市徽县嘉陵镇吴家咀山区,莼兰绣球种子采自陕西省西安市太平国家森林公园。

    • 将株高约2 cm且长势一致的无菌幼苗接种于1/2MS+0.2 mg·L−1 IBA生根培养基上,蔗糖30 g·L−1,琼脂4 g·L−1,pH=4.5。用氯化铝溶液作为胁迫液,设0(ck)、25、50、100、200 mg·L−1 5个质量浓度梯度。每个处理接种10瓶,1瓶接种1株,重复3次。将试材置于温度为25 ℃,光照度为 2 000 lx,光暗比为 12 h/12 h的组培室内进行培养。

    • 铝胁迫处理1个月后进行叶片生理指标的测定,随机选取5瓶,剪取植株中部成熟叶片,剪碎混合后称量,测定指标有丙二醛(MDA)质量摩尔浓度、叶绿素质量分数、脯氨酸(Pro)质量分数、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性。测定方法参照李合生[11]和高俊凤[12]的方法稍有改动。铝胁迫处理2个月后,采用直接计数法对生根率进行统计,直接测量根长以及根球底面东西方向与南北方向直径,计算平均根长和根体积。

    • 采用SPSS 19对数据进行方差分析,采用LSD进行多重比较,Excel进行图表绘制。

    • 图1可知:胁迫1个月后,2种绣球在氯化铝(0~100 mg·L−1)处理下的组培苗长势差别不大,200 mg·L−1处理下的组培苗叶色发黄、植株矮小,小叶数明显少于其他处理组。2个月后,蜡莲绣球0、25和50 mg·L−1处理下的组培苗长势基本一致,100 mg·L−1处理下的组培苗叶片有发黄现象,长势减弱,200 mg·L−1处理下长势最弱。莼兰绣球25、50 mg·L−1处理下的组培苗有所生长,但长势弱于对照组,100、200 mg·L−1处理下的组培苗生长不良,叶片失绿严重。当氯化铝质量浓度大于100 mg·L−1时,2种绣球都受到严重伤害,生长受阻。

      图  1  铝胁迫后2种绣球组培苗形态

      Figure 1.  Morphology of Hydrangea tissue culture seedlings of aluminum stress

    • 表1可知:在氯化铝质量浓度为0~100 mg·L−1时,蜡莲绣球生根率均达到100%,可见在0~100 mg·L−1范围内,氯化铝对蜡莲绣球生根率没有产生抑制作用。当氯化铝质量浓度为200 mg·L−1时,生根率为96.67%,与对照组差异不显著。对照组的平均根长最大,为5.61 cm,200 mg·L−1处理组平均根长最小,为3.12 cm。25 mg·L−1处理组与对照组差异不显著,其他处理组显著低于对照组(P<0.05)。根体积随着氯化铝质量浓度的增加呈现逐渐下降的趋势,且对照组与其他处理组差异达显著水平(P<0.05)。生根情况见图2

      表 1  铝胁迫对2种绣球组培苗生根指标的影响

      Table 1.  Effects of aluminum stress on rooting indexes of Hydrangea tissue culture seedlings

      氯化铝/
      (mg·L−1)
      生根率/%平均根长/cm根体积/cm3
      蜡莲绣球 0100.00 a5.61±0.45 a 7.35±2.97 a
      25100.00 a4.85±0.37 ab2.79±0.76 b
      50100.00 a4.22±0.32 b 1.85±0.44 b
      100100.00 a4.27±0.39 b 0.68±0.21 b
      200 96.67 a3.12±0.53 b 0.43±0.23 b
      莼兰绣球 0100.00 a6.07±0.41 a 3.45±0.92 a
      25100.00 a5.36±0.21 a 1.22±0.47 b
      50100.00 a5.60±0.10 a 0.26±0.08 b
      100100.00 a5.63±0.29 a 0.12±0.02 b
      200 93.33 b2.26±0.36 b 0.02±0.00 b
        说明:不同字母表示在0.05水平上差异显著(P<0.05)

      图  2  2种组培苗2个月后生根情况

      Figure 2.  Rooting of tissue cultured seedlings after 2 months

      莼兰绣球生根率在氯化铝质量浓度为0~100 mg·L−1时均为100%,200 mg·L−1处理组的生根率为93.33%,显著低于其他处理组(P<0.05),可知200 mg·L−1处理可显著抑制莼兰绣球生根。对照组的平均根长最大为6.07 cm,200 mg·L−1处理组根长最小,为2.26 cm,对照组与25、50、100 mg·L−1处理组平均根长差异性均不显著,与200 mg·L−1处理组差异达显著水平(P<0.05)。随着氯化铝质量浓度的增加,莼兰绣球根体积呈现逐渐下降的趋势,对照组与其他处理组差异达显著水平(P<0.05),说明铝胁迫对莼兰绣球的根体积产生了抑制作用。生根情况见图2

    • 植物通过光合作用进行有机物的积累,叶绿素的高低与光合作用有关。从表2可知:在氯化铝胁迫下,蜡莲绣球叶绿素a、叶绿素b、叶绿素a+b质量分数经质量浓度为50 mg·L−1氯化铝处理后有所提高,分别比对照组增加了8.97%、13.33%、9.26%。200 mg·L−1处理后的叶绿素的质量分数最低,且对照组与各铝胁迫处理间差异均不显著,表明蜡莲绣球叶绿素质量分数受铝胁迫影响不大,50 mg·L−1的处理对蜡莲绣球叶绿素合成有一定的促进作用。

      表 2  铝胁迫对2种绣球组培苗叶绿素质量分数的影响

      Table 2.  Effect of aluminum stress on chlorophyll content of Hydrangea tissue culture seedlings

      氯化铝/
      (mg·L−1)
      叶绿素a/
      (mg·g−1)
      叶绿素b/
      (mg·g−1)
      叶绿素a+b/
      (mg·g−1)
      蜡莲绣球 00.78±0.20 a0.30±0.08 a1.08±0.28 a
      250.73±0.29 a0.29±0.11 a1.02±0.41 a
      500.85±0.07 a0.34±0.03 a1.18±0.10 a
      1000.78±0.01 a0.30±0.04 a1.07±0.05 a
      2000.68±0.03 a0.20±0.14 a0.88±0.18 a
      莼兰绣球 01.18±0.15 a0.50±0.05 a1.68±0.20 a
      250.78±0.08 b0.32±0.03 b1.10±0.11 b
      500.67±0.17 b0.30±0.07 b0.97±0.24 b
      1000.58±0.16 b0.23±0.06 b0.81±0.20 b
      2000.22±0.12 c0.09±0.05 c0.32±0.17 c
        说明:不同字母表示在0.05水平上差异显著(P<0.05)

      莼兰绣球叶绿素a、叶绿素b、叶绿素a+b质量分数随着氯化铝质量浓度的增加呈现下降的趋势。氯化铝胁迫处理组的叶绿素质量分数显著低于对照组(P<0.05),表明在铝胁迫下莼兰绣球叶绿素的合成受到抑制。

    • 表3可知:随着氯化铝质量浓度的增加,2种绣球叶片MDA质量摩尔浓度呈现先下降后上升的趋势。蜡莲绣球MDA质量摩尔浓度在25、50 mg·L−1氯化铝处理下,与对照组相比分别下降了13.51%、13.22%,在100、200 mg·L−1处理下,与对照相比分别提高了3.44%、7.47%。方差分析表明:蜡莲绣球对照组MDA质量摩尔浓度与铝胁迫处理组间差异性不显著。莼兰绣球MDA质量摩尔浓度在25、50 mg·L−1氯化铝处理下,与对照相比分别下降了12.13%、6.62%,在100、200 mg·L−1处理下,与对照组相比分别提高了12.13%、22.43%。莼兰绣球对照组MDA质量摩尔浓度与铝胁迫处理组间差异不显著。可知较低质量浓度的氯化铝胁迫不会对绣球膜系统造成伤害。氯化铝质量浓度大于100 mg·L−1后,植物膜系统会受到一定程度的损伤。

      表 3  铝胁迫对绣球组培苗生理指标的影响

      Table 3.  Effects of aluminum stress on physiological indexes of Hydrangea tissue culture seedlings

      氯化铝/
      (mg·L−1)
      MDA/
      (×10−2 μmol·g−1)
      Pro/
      (μg·g−1)
      CAT活性/
      (×16.67 nkat·g−1·min−1)
      SOD活性/
      (×16.67 nkat·g−1)
      POD活性/
      (×16.67 nkat·g−1·s−1)
      蜡莲绣球 03.40±0.54 a30.79±1.89 a2.96±0.57 b372.41±2.47 a553.25±33.27 a
      253.01±0.55 a30.77±2.16 a2.97±0.58 b371.90±7.86 a554.74±29.89 a
      503.02±0.25 a32.52±3.91 a3.59±0.68 ab367.34±4.89 a570.44±23.56 a
      1003.60±0.05 a31.71±2.14 a3.92±0.52 ab364.44±5.86 a593.59±16.10 a
      2003.74±0.18 a43.13±8.98 a5.49±1.17 a366.51±7.64 a655.73±86.45 a
      莼兰绣球 02.72±0.36 a79.05±3.04 b4.62±1.19 a389.24±3.21 a417.76±39.83 c
      252.39±0.32 a80.06±7.65 b5.89±2.93 a378.19±2.70 a562.57±34.05 b
      502.54±0.76 a79.22±9.04 b7.61±1.69 a373.34±4.89 a586.71±53.88 b
      1003.05±0.52 a87.25±7.34 a13.01±5.50 a378.67±10.30 a595.71±11.78 b
      2003.33±0.20 a100.46±5.16 a14.72±3.62 a372.10±5.77 a798.41±26.64 a
        说明:不同字母表示在0.05水平上差异显著(P<0.05)
    • 表3可知:蜡莲绣球Pro质量分数在铝胁迫处理下变化与对照组相比差异不显著,在铝胁迫质量浓度为25 mg·L−1时,Pro质量分数降到最低,为30.77 μg·g−1;铝胁迫质量浓度为200 mg·L−1时,Pro质量分数最高,为43.13 μg·g−1,是对照组的1.40倍。莼兰绣球对照组的Pro质量分数最低,为79.05 μg·g−1,各铝胁迫处理组的Pro质量分数均高于对照组,对照组与25、50 mg·L−1处理组间差异性不显著,与100、200 mg·L−1处理组差异达显著水平(P<0.05)。

    • CAT的主要作用是清除过氧化氢(H2O2),CAT活性的提高有助于植物清除H2O2。从表3可知:随着氯化铝质量浓度的增加,2种绣球叶片CAT活性呈现不断上升的趋势。蜡莲绣球在200 mg·L−1处理下CAT活性值最大,为5.49×16.67 nkat·g−1·min−1,比对照组提高了85.47%,且与对照组差异显著(P<0.05)。莼兰绣球在200 mg·L−1处理下,CAT活性值最大,为14.72×16.67 nkat·g−1·min−1,对照组与铝胁迫处理组间差异性不显著。表明绣球通过提高CAT活性来清除体内过量的H2O2,且蜡莲绣球CAT活性提高幅度高于莼兰绣球。

      SOD是植物体内的一种含金属酶,它能催化O2−发生歧化反应,生成氧气(O2)和H2O2,以此来保护细胞膜系统。从表3可知:经过氯化铝胁迫处理的2种绣球叶片的SOD活性值均低于对照组,但对照组与各铝胁迫处理组间差异不显著。蜡莲绣球的SOD活性在100 mg·L−1处理下降到最低,为364.44×16.67 nkat·g−1,莼兰绣球的SOD活性在200 mg·L−1处理下降到最低,为372.10×16.67 nkat·g−1。绣球的SOD活性变化比较平缓,原因可能是SOD在与O2−反应后质量分数趋于平衡。

      POD是抗氧化酶系统中重要的酶类,在植物受到逆境胁迫时,POD可分解一定的H2O2,减少H2O2对细胞膜的伤害。从表3可知:随着氯化铝质量浓度的增加,2种绣球叶片POD活性呈现不断上升的趋势。蜡莲绣球在200 mg·L−1处理下,POD活性最大,为655.73×16.67 nkat·g−1·s−1,对照组与各铝胁迫处理组间差异不显著。莼兰绣球在25、50、100、200 mg·L−1处理组的POD活力比对照组分别提高了34.66%、40.44%、42.60%、91.12%,对照组与各铝胁迫处理组间差异显著(P<0.05)。表明绣球通过提高POD活力来清除体内过量的H2O2,且莼兰绣球POD活性提高幅度高于蜡莲绣球。

    • 通常认为,铝对植物有毒害作用,铝胁迫会导致植物细胞膜结构和功能遭到破坏,使细胞膜透性增大,稳定性下降[13]。铝还可以与细胞内的蛋白质、脂质、糖类以及核酸等结合,破坏细胞内离子代谢平衡系统,阻碍生理生化过程的正常进行,从而抑制植物的生长[14]。但也有研究发现[15]:铝作为植物非必需元素,低浓度的铝元素可以促进植物生长,高浓度的铝元素会对植物造成伤害,而且植物的形态特征变化可直接体现出植物抗性的强弱[16-17]。本研究结果显示:铝胁迫2个月后,蜡莲绣球在低质量浓度铝处理下的组培苗长势与对照组相当,高质量浓度处理下的组培苗叶片发黄、长势减弱。莼兰绣球铝处理组长势不及对照组,氯化铝质量浓度越高长势越弱。平均根长与根体积随着铝胁迫质量浓度的增加呈现下降的趋势。陈海霞等[7]对八仙花Hydrangea macrophylla铝胁迫根系分泌有机酸的研究表明:铝毒对根尖的伤害包括抑制细胞分裂、细胞伸长和营养运输等,使根的生长受到抑制。本研究中铝胁迫对绣球地上和地下部分生长均有抑制作用,当氯化铝质量浓度大于100 mg·L−1时,抑制作用较明显。

      叶绿素是植物光合作用必不可少的物质,叶绿素含量与植物对光能的捕获能力成正相关。在金属胁迫下,叶绿素合成酶活性降低导致叶绿素合成受阻,叶绿素含量降低,从而影响到植物光合作用有机物的积累[18]。本研究中,蜡莲绣球叶绿素质量分数在50 mg·L−1氯化铝处理时高于对照组,这可能是植物为了弥补铝胁迫造成叶绿素功能降低损害而大量合成叶绿素。各处理组与对照组差异不显著,说明铝胁迫对蜡莲绣球叶绿素质量分数影响较小。莼兰绣球叶绿素质量分数随着铝胁迫质量浓度的增加呈现下降的趋势,对照组与各铝胁迫处理组差异达显著水平(P<0.05),说明铝胁迫对莼兰绣球叶绿体的结构功能以及叶绿素的合成途径造成了伤害。

      细胞膜是细胞与外界环境的屏障,参与生物体中物质代谢、能量转化、代谢调控以及激素的作用等[19]。MDA是植物膜脂过氧化的主要产物之一,其含量与植物膜系统受到的损伤呈正相关,当MDA含量增加时,说明植物体内膜脂过氧化作用增强,细胞膜透性增大[20]。本研究中,随着铝质量浓度的增加,蜡莲绣球与莼兰绣球MDA质量摩尔浓度呈现先下降后上升的趋势,说明低质量浓度氯化铝处理不会对细胞膜透性造成伤害,高质量浓度处理会使绣球组培苗细胞膜透性增大,但受伤程度不大。

      Pro是植物体内重要的渗透调节物质和抗氧化物质,具有调节细胞渗透势以及减缓膜脂过氧化伤害的功能。当植物受到胁迫时,体内的Pro增加以提高抗性[21]。本研究中,蜡莲绣球Pro质量分数在铝胁迫处理下变化与对照组相比差异不显著,Pro质量分数相对稳定说明蜡莲绣球受到伤害较小,耐铝性强。莼兰绣球各铝胁迫处理组的Pro质量分数均高于对照组,200 mg·L−1处理组与对照组差异显著(P<0.05),说明莼兰绣球体内抗铝机制在起作用,以抵御铝胁迫造成的伤害。

      植物在正常生长情况下,体内产生的活性氧自由基可通过抗氧化酶系统清除,从而达到平衡状态。在金属胁迫下,植物体内活性氧自由基含量会上升。活性氧升高会使抗氧化酶活性增加。各种抗氧化酶中,SOD、POD和CAT可有效降解活性氧、保护细胞膜、降低氧化应激,是清除活性氧的最重要的酶[22-24]。田小霞等[23]对马蔺Iris lactea var. chinensis的研究表明:叶片CAT活性高于根系CAT活性,原因是 CAT主要参与清除绿色组织中光呼吸途径代谢产生的H2O2。本研究中,2种绣球叶片的SOD活性无明显变化规律,对照组与铝胁迫处理组间差异不显著,可能是采样时间较晚;SOD在胁迫早期活性增加,1个月后趋于平衡,对铝胁迫表现出一定的适应性。CAT和POD活性随着铝质量浓度的增加呈现不断上升的趋势。3种酶起了协同作用,共同清除活性氧自由基等有害物质。

      综上所述,2种绣球均有一定的耐铝性。植物体内的抗铝机制极其复杂,不同绣球野生种由于遗传物质的差异,抗铝能力不同。在以后的研究中,需要测定组培苗地上、地下部分以及培养基中铝的含量和存在形态,以探究绣球富集铝的能力,进一步揭示绣球的抗铝机制。

参考文献 (24)

目录

/

返回文章
返回