留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜热通量缺失数据插补方法比较研究

杨强 李鑫豪 杜韬

韦如萍, 晏姝, 郑会全, 等. 乐昌含笑种源不同林龄生长变异及早期选择[J]. 浙江农林大学学报, 2023, 40(2): 365-373. DOI: 10.11833/j.issn.2095-0756.20220357
引用本文: 杨强, 李鑫豪, 杜韬. 潜热通量缺失数据插补方法比较研究[J]. 浙江农林大学学报, 2024, 41(4): 810-819. DOI: 10.11833/j.issn.2095-0756.20230526
WEI Ruping, YAN Shu, ZHENG Huiquan, et al. Growth variation of Michelia chapensis provenance in different ages and its early selection[J]. Journal of Zhejiang A&F University, 2023, 40(2): 365-373. DOI: 10.11833/j.issn.2095-0756.20220357
Citation: YANG Qiang, LI Xinhao, DU Tao. Comparative study of interpolation methods for missing latent heat flux data[J]. Journal of Zhejiang A&F University, 2024, 41(4): 810-819. DOI: 10.11833/j.issn.2095-0756.20230526

潜热通量缺失数据插补方法比较研究

DOI: 10.11833/j.issn.2095-0756.20230526
基金项目: 国家自然科学基金青年基金资助项目(32101588)
详细信息
    作者简介: 杨强(ORCID: 0009-0007-5317-402X),工程师,从事水土保持与林业生态工程研究。E-mail: yangqiang@ncpe.com.cn
    通信作者: 李鑫豪(ORCID: 0000-0002-3507-7556),工程师,从事碳水循环及其调控机制研究。E-mail: 458819027@qq.com
  • 中图分类号: Q945.11

Comparative study of interpolation methods for missing latent heat flux data

  • 摘要:   目的  分析比较不同插补方法对生态系统潜热通量(FLE)缺失值的插补精度。  方法  利用涡度相关法于2019年对北京市松山国家级自然保护区典型天然落叶阔叶林生态系统FLE与环境要素进行原位连续监测,通过3种插补方法(边缘分布抽样法、线性回归法、人工神经网络法)对FLE缺失数据(0.5 h数据中随机剔除)进行插补,分析实测FLE、插补FLE与环境因子间的关系。  结果  3种插补结果均低估了实测FLE,其中人工神经网络插补值最接近实测值(决定系数R2=0.40)。实测FLE与空气温度(Ta)、饱和水汽压差(DVP)间均呈指数关系。边缘分布抽样法插补FLETaDVP间的关系最接近实测FLE,然而3种插补方法都不同程度改变了FLETaDVP的敏感性。  结论  人工神经网络法的插补结果与实测值最接近,边缘分布抽样法的结果与环境因子间的关系最接近实测值与环境因子间的关系,因此未来研究应依据研究目的选取合适的插补方法。图5表1参41
  • 乐昌含笑Michelia chapensis为木兰科Magnoliaceae含笑属Michelia常绿大乔木,已被列入中国《国家二级保护植物名录》,具有生长快、树干挺拔、花色优雅、四季葱郁、木材易于加工等优良特性,是中国南方优良的乡土阔叶树种[12]。自20世纪80年代起,乐昌含笑树种逐渐得到重视,早期多应用于园林绿化中,近些年在森林康养、生态公益林、碳汇林建设中得到广泛应用[24]。种源选择是树种改良的重要方法之一,在林业生产中具有重要作用。但由于林木的生长周期长,且不同生长期所表达的基因不同,给林木育种策略的科学制定带来困难[5]。根据目标性状的遗传力和幼林期与成熟林期性状相关性随年龄增长的变化趋势,可确定种源的早期选择年龄,进而加速林木遗传改良的进程[59]。但乐昌含笑树种研究起步较晚,较多研究集中在种群分布、苗木繁育、栽培技术等方面,在遗传改良方面的研究,尤其是早期选择适宜林龄的研究较少[10]。广东省于2003年启动乐昌含笑良种选育研究工作,并先后在广东省内多个区域布置了种源和家系试验林[11]。目前,早期营建的试验林已达近熟林期,了解此期间林木主要生长性状的变异特征,以及生长性状的早晚期相关性,对推进乐昌含笑遗传改良进程具有重要意义。本研究根据早期营建的乐昌含笑种源试验林的多年度观测数据,分析乐昌含笑生长性状的年度变化模式及性状间的早晚期相关性,为解析乐昌含笑种源的生长变异规律以及开展早期选择提供理论依据。

    以广东省韶关市国有曲江林场和国有九曲水林场为研究地。其中,曲江林场试验林(QJ06)地处24°41′N,113°36′E,年均气温为20.5 ℃,年均积温为6 559.5 ℃,年均降水量为1 751 mm,位于山坡下部,海拔约180 m。九曲水林场试验林(JQS06)地处24°22′N,114°05′E,年均气温为20.3 ℃,年均积温为6 570.7 ℃,年均降水量为1 787 mm,位于山坡下部,海拔约250 m。2片试验林均为花岗岩成土,红壤,土层厚1 m以上,肥力中等。

    曲江林场试验林参试种源15个,九曲水林场试验林参试种源12个(表1)。2004年采集种子,2005年培育苗木,所有造林苗木均为1年生容器苗,出圃规格为苗高≥35 cm,地径≥0.5 cm。

    表 1  参试种源信息
    Table 1  Information of tested provenance
    造林号种源号来源地经纬度试验林
    曲江林场九曲水林场
    1 HNLL 湖南醴陵县王仙镇 27.663°N,113.455°E
    2 HNTD 湖南通道县草坪镇 26.216°N,109.732°E
    3 HNZX 湖南资兴县黄草镇 25.934°N,113.452°E
    4 HNGD 湖南桂东县红星镇 25.982°N,113.893°E
    5 HNSN 湖南遂宁县黄桑镇 26.713°N,110.196°E
    6 JXCY 江西崇义县茶滩镇 25.677°N,113.452°E
    7 JXSY 江西上犹县陡水镇 25.935°N,114.392°E
    8 JXLN 江西龙南县九连山 24.856°N,114.512°E
    9 LCJF 广东乐昌县九峰镇 25.243°N,113.244°E
    10 MZF 广东南雄县帽子峰镇 25.184°N,114.366°E
    11 NXJT 广东南雄县江头镇 25.183°N,114.376°E
    12 RHCJ 广东仁化县长江镇 25.203°N,113.767°E
    13 SXLJ 广东始兴县刘家山 24.847°N,114.099°E
    14 JXQN 江西全南县龙下镇 24.854°N,114.517°E
    15 JXAY 江西安远县车头镇 25.233°N,115.384°E
    下载: 导出CSV 
    | 显示表格

    试验林采用随机完全区组设计,18株小区(3株×6株或2株×9株),4次重复。2005年底完成试验林整地,植穴规格为50 cm×40 cm×35 cm,每穴施250 g磷肥为基肥。试验林四周栽植2行木荷Schima superba作隔离行。2006年3月造林,造林当年及第2年每年抚育2次,第3年抚育1次,均未追肥。2007年11月调查试验林2年生的保存率,2008年11月、2011年11月、2016年11月、2019年11月分别对试验林进行每木调查,其中树高用塔尺测量,胸径用胸径尺测量,测量位置为树干根部往上1.3 m处。

    利用SAS 9.1统计软件[12]对数据进行分析。在Proc Means过程中进行数据特征描述,应用限制最大似然(REML)方法在Proc Mixed 过程估算各效应方差分量,应用SIN方法在Proc Cluster过程进行聚类分析,以小区平均值为数据运用Proc GLM过程进行单地点方差分析,分析模型为:Yij=μ+Bi+Fj+Eij。其中:Yiji区组j种源的小区平均值,μ为性状的群体均值,Bii区组效应,Fj为第j个种源效应,Eijj种源i区组的小区均值离差。单株材积、表型相关系数、遗传相关系数、种源遗传力等估算公式参照文献[11]。

    图1可见:2片乐昌含笑试验林的保存率均较高,其中,在林龄2 a时,保存率曲江林场试验林为85.19%,九曲水试验林为95.02%。曲江林场和九曲水试验林的保存率变化趋势较相似,在林龄3~11 a间保存率均变化不大,分别为80.56%~81.51%和89.24%~94.44%;在林龄11~14 a间保存率有较明显下降,在林龄14 a时,曲江林场试验林为77.96%,九曲水林场试验林为80.79%。

    图 1  曲江林场(A)和九曲水林场(B)试验林不同林龄的保存率
    Figure 1  Preservation rate of different ages of two testing forests in Qujiang forest farm (A) and Jiuqushui forest farm (B)

    由乐昌含笑种源不同林龄生长表现(表2)可知:曲江林场试验林树高速生期出现在林龄3 a之前和11~14 a,年均生长量分别为0.79和0.81 m·a−1;胸径速生期出现在林龄3~6 a和11~14 a,年均生长量分别为1.20和1.05 cm·a−1。九曲水林场试验林树高的速生期出现在林龄3 a之前和6~11 a,年均生长量分别为0.98和0.63 m·a−1;胸径速生期出现在林龄3~6 a和6~11 a,年均生长量分别为0.95和0.80 cm·a−1。2片试验林单株材积生长速生期均在林龄11~14 a。随着林龄的增大,3个生长性状在种源间的分化也不断增大,各性状的变异系数随林龄的增长呈逐渐增大后减小的趋势,从大到小依次为单株材积变异系数、胸径变异系数、树高变异系数。

    表 2  不同林龄种源的生长表现
    Table 2  Growth performance of provenances at different ages
    试验林林龄/a树高胸径单株材积
    均值/m变幅/m变异系数均值/cm变幅/cm变异系数均值/m3变幅/m3变异系数
    曲江林场  3 2.36 1.20~4.40 12.37 1.68 0.20~5.50 22.53 3.93×10−4 2.17×10−6~4.37×10−3 48.98
    6 4.04 1.40~7.60 17.19 5.28 0.50~14.90 24.32 6.38×10−3 1.00×10−5~5.85×10−2 58.77
    11 7.31 2.20~13.50 15.59 9.48 2.00~25.00 18.95 3.47×10−2 5.20×10−4~2.78×10−1 52.87
    14 9.73 2.40~17.50 11.58 12.64 2.50~30.50 15.37 8.10×10−2 6.10×10−4~4.54×10−1 36.49
    九曲水林场 3 2.94 1.00~6.20 9.72 2.88 0.50~8.40 17.34 1.24×10−3 1.00×10−5~1.22×10−2 38.08
    6 4.76 1.50~11.00 10.24 5.73 0.70~16.50 13.72 8.39×10−3 2.00×10−5~1.08×10−1 41.27
    11 7.93 2.50~18.10 10.65 9.74 2.20~23.50 13.92 3.54×10−2 6.10×10−4~3.22×10−1 42.91
    14 9.37 2.80~16.20 11.64 11.09 2.40~34.20 13.78 6.27×10−2 8.50×10−4~6.76×10−1 34.90
    下载: 导出CSV 
    | 显示表格

    方差分析结果(表3)显示:不同林龄的树高、胸径、单株材积在参试种源间均达到极显著水平(P<0.01),说明不同种源的生长性状存在很大差别,从种源试验林中筛选丰产型优良种源以及开展种源早期选择是可行的。由方差分量占比分析结果还可知:在不同林龄时,遗传效应、环境效应以及遗传和环境互作效应都对乐昌含笑生长性状的变异有影响。在遗传方面,树高、胸径和单株材积生长性状的遗传模式比较一致,总体表现为随林龄增大遗传效应逐渐增强或趋于平稳的趋势;不同林龄遗传效应的影响总体大于遗传和环境互作效应的影响,这种差异在林龄为14 a时尤其明显。此外,环境效应对生长性状的影响也不容忽视,其中,曲江林场试验林中环境效应表现为随林龄增加影响逐渐减少的趋势,在九曲水林场试验林中不同林龄的环境效应则表现相对稳定,这也说明了在种源试验过程中控制环境变异并提高测量准确性是十分必要的。

    表 3  不同林龄生长性状的方差分析
    Table 3  Variance analysis of growth traits at different ages
    性状林龄/a曲江林场试验林九曲水林场试验林
    自由度F方差分量占比/%自由度F方差分量占比/%
    种源种源×区组误差种源种源×区组误差
    树高  3143.64**30.0227.8042.18115.58**40.8923.4135.70
    6144.40**31.3131.8136.88118.25**53.5116.9829.51
    11145.68**37.7829.9332.29117.12**43.9025.5030.60
    14149.94**56.2918.5325.18116.74**41.2521.3537.40
    胸径  3144.52**36.2822.4641.26113.19**24.4530.8644.69
    6144.54**32.8829.9737.15117.97**53.3216.0930.59
    11146.52**42.6226.5030.88117.12**46.2223.5830.20
    14149.11**57.1614.6428.20117.37**55.439.7634.81
    单株材积3145.41**44.6514.8540.50113.79**30.4725.8043.73
    6143.55**33.3225.9740.71114.71**36.6423.8939.47
    11144.24**32.4230.2337.35114.52**32.3830.7936.83
    14146.93**48.0219.6132.37116.30**51.1910.2138.60
      说明:**表示性状方差分析差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格

    表4表明:树高、胸径、单株材积3个性状的种源遗传力均属中上水平,变幅为0.69~0.90。其中,曲江林场试验林树高、胸径的种源遗传力随林龄增加呈逐渐增大后趋于稳定的趋势,到林龄14 a时分别为0.90和0.89;而九曲水林场试验林不同林龄各性状的种源遗传力表现相对稳定,为0.82~0.88。

    表 4  不同林龄生长性状的种源遗传力估算值
    Table 4  Estimation of provenance heritability of growth traits at different ages
    林龄/aQJ06遗传力估算值JQS06遗传力估算值
    树高胸径单株材积树高胸径单株材积
    30.730.780.820.820.690.74
    60.770.780.720.880.880.79
    110.820.850.760.850.860.78
    140.900.890.860.820.860.84
      说明:QJ06为曲江林场试验林;JQS06为九曲水林场试验林
    下载: 导出CSV 
    | 显示表格

    利用不同林龄参试种源的树高、胸径、单株材积分别与14 a的单株材积做相关分析可知(表5):2片试验林不同林龄各性状间的表型相关系数为0.22~0.44,遗传相关系数为0.83~1.00。遗传相关系数均大于表型相关系数,并在林龄为3 a以上时,呈极显著正相关关系(P<0.01)。表明乐昌含笑单株材积的早期选择在林龄为3 a后开展是可行的。随着林龄的增大,曲江林场试验林各性状间的表型和遗传相关系数均相对稳定,而九曲水林场试验林各性状间的表型和遗传相关系数则有逐渐增大后趋于稳定的趋势,而且不同林龄的胸径与14 a的单株材积间的相关系数均大于树高与其的相关系数,到林龄6 a时,其胸径、单株材积和14 a的单株材积间的遗传相关系数均达到1.0并趋于稳定。由此推测,根据幼林期胸径或单株材积的生长选择乐昌含笑丰产型优良种源,其效果应优于根据树高的选择效果,而且选择林龄越晚,选择效果将会越好。

    表 5  幼林期和近熟林期生长性状相关系数
    Table 5  Correlation coefficients of the main growth traits between the juvenile and mature age
    性状林龄/aQJ06试验林14 a
    单株材积
    JQS06试验林14 a
    单株材积
    表型相
    关系数
    遗传相
    关系数
    表型相
    关系数
    遗传相
    关系数
    树高  30.42**0.98**0.29**0.83**
    60.35**0.95**0.29**0.92**
    110.41**0.96**0.38**0.95**
    胸径  30.38**0.97**0.30**0.98**
    60.36**0.97**0.31**1.00**
    110.40**0.98**0.41**1.00**
    单株材积30.37**1.00**0.22**0.90**
    60.36**0.97**0.35**1.00**
    110.37**0.96**0.44**1.00**
      说明:QJ06为曲江林场试验林;JQS06为九曲水林场试验林。**表示两两性状间极显著相关(P<0.01)
    下载: 导出CSV 
    | 显示表格

    种源分类评价方法有综合指标法和单指标法。综合指标法利用胸径、树高、单株材积3个指标的聚类分析结果进行种源分类评价;单指标法依据单株材积1个指标的大小进行种源分类评价。根据聚类分析结果,可把种源分为3类(表6)。其中:综合指标法的分类标准为:Ⅰ类种源总体生长表现最好,其树高、胸径、单株材积3个指标与群体均值相比均有明显增益,为丰产型种源;Ⅱ类种源总体生长表现较好,树高、胸径、单株材积3个指标与群体均值相比差异不明显,为普通型种源;Ⅲ类种源总体生长表现较差,树高、胸径及单株材积均明显小于群体均值,为低产型种源。单指标法的分类标准为:Ⅰ类丰产型种源,单株材积生长表现最好,与群体均值相比现实增益≥15%;Ⅱ类普通型种源,单株材积生长表现较好,与群体均值相比现实增益为0~15%;Ⅲ类低产型种源,单株材积生长表现较差,与群体均值相比无增益。在不同林龄时,曲江林场试验林采用2种评价方法筛选所得丰产型Ⅰ类种源的数量占比均为33%~40%,九曲水林场试验林采用综合指标法筛选所得Ⅰ类种源的数量占比为17%~42%,单指标法所得Ⅰ类种源的数量占比为25%~33%,而且2种评价方法各类群所归类的种源个体总体差异不明显,表明2种方法对Ⅰ类种源的分类结果较一致,但单指标法在操作上相对来说更简单。此外,表6还表明:2片试验林中绝大多数种源的早晚期生长表现较一致,如造林号为8、10、11、14、15的种源在各林龄时均属于Ⅰ类种源,具有良好的持续生长特性;而在林龄3、6 a时属于Ⅲ类的种源,绝大部分在林龄11、14 a时仍属于Ⅲ类。这说明乐昌含笑生长性状具有较好的稳定性。

    表 6  各林龄参试种源分类评价
    Table 6  Clustering analysis of provenances at different ages
    试验林类群林龄3 a的种源林龄6 a的种源林龄11 a的种源林龄14 a的种源
    综合指标单指标综合指标单指标综合指标单指标综合指标单指标
    曲江林场  7、8、10、11、14、15 7、8、10、11、14、15 8、10、11、14、15 8、10、11、14、15 8、10、11、14、15 7、8、10、11、14、15 8、10、11、14、15 8、10、11、14、15
    9、13 9、13 7、9 7、9 7、9 9 7、9、13 7、9、13
    1、2、3、4、5、6、12 1、2、3、4、5、6、12 1、2、3、4、5、6、12、13 1、2、3、4、5、6、12、13 1、2、3、4、5、6、12、13 1、2、3、4、5、6、12、13 1、2、3、4、5、6、12 1、2、3、4、5、6、12
    九曲水林场 7、8、10、11 7、8、10、11 7、8、10、11 7、8、10、11 7、8、10、11 7、8、10、11 8、10、11 7、8、10、11
    2、6、9、12、 2、4、9、12 2、4、9、12 4、9 4、7、9 4、9
    1、3、4、5 1、2、3、4、5、6、9、12 1、3、5、6 1、2、3、4、5、6、9、12 1、3、5、6 1、2、3、5、6、12 1、2、3、5、6、12 1、2、3、5、6、12
      说明:表中数字为参试种源对应的造林号,具体种源信息见表1
    下载: 导出CSV 
    | 显示表格

    作为一般用材林经营时,软阔类树种龄级划分标准为:林龄≤5 a为幼龄林,6~10 a为中龄林,11~15 a为近熟林,16~25 a为成熟林[13]。据此可知,本研究乐昌含笑种源试验林已是近熟林。若分别以综合指标和单指标法进行种源分类评价,以林龄14 a的近熟林Ⅰ类种源选择结果为标准,进一步对不同林龄筛选出的Ⅰ类种源进行风险评估(表7)。由表7可知:采用2种分类评价方法开展Ⅰ类种源选择,在林龄3、6 a时,曲江林场试验林Ⅰ类种源的选对率分别为83%、100%,漏选率均为0;九曲水林场试验林则以单指标法选对率更高,在林龄3、6 a的选对率均为100%,而综合指标法的选对率均为75%,2种方法的漏选率均为0。由此可知,2种分类评价方法的早期选择风险存在一定差异,总体上以单指标法开展早期选择的风险更低,但采用2种分类评价方法在林龄为3、6 a时开展Ⅰ类种源的早期选择,所得Ⅰ类种源中均能包含14 a时入选Ⅰ类种源的100%。

    表 7  乐昌含笑种源不同林龄选择风险评估
    Table 7  Selection risk of M. chapensis provenances at different ages
    评价
    方法
    林龄/
    a
    曲江林场试验林 九曲水林场试验林
    入选数/
    选对数/
    选对率/
    %
    错选数/
    错选率/
    %
    漏选数/
    漏选率/
    %
    入选数/
    选对数/
    选对率/
    %
    错选数/
    错选率/
    %
    漏选数/
    漏选率/
    %
    单指标 3658311700441000000
    6551000000441000000
    11658311700441000000
    14551000000441000000
    综合指标3658311700437511500
    6551000000437511500
    11551000000437511500
    14551000000331000000
    下载: 导出CSV 
    | 显示表格

    本研究的2片乐昌含笑种源试验林林木保存率随着林龄的增大以及个体间竞争的加大而逐渐降低,尤以林龄11~14 a的保存率下降速度较快。据观察,死亡的个体多为林冠内中、下层林木,这些矮小林木的死亡,会对参试种源生长量评价及遗传参数估算产生不利影响。因此,在现有3 m×3 m的造林密度下,在已郁闭且林木尚未大量死亡前作评价,结果是相对可靠的;当死亡植株大量增加时,评价结果将产生较大偏差。若要比较准确评价参试种源在达到轮伐期时的现实生产力,则在造林时适当加大株行距以增大种植空间可能更合适。

    性状的遗传变异是林木遗传改良的前提,丰富而有效的遗传变异奠定了林木的改良潜力[5, 14]。丘作忠等[15]对九曲水林场试验林的研究表明:林龄为6 a时,树高、胸径、单株材积生长性状和树干通直度、冠幅、树冠密度等性状在种源间均有极显著差异,生长性状的种源遗传力为0.79~0.88,若以单株材积为选择目标时,可筛选出优良种源4个,材积现实增益达27.78%~84.43%。王润辉等[11]进一步对在2006年春季造林的九曲水林场试验林、曲江林场试验林、八一林场试验林(已在2015年被砍伐) 3片乐昌含笑种源试验林林龄为6 a的调查表明:种源、地点及种源和地点互作效应均对树高、胸径、单株材积有显著或极显著影响,3个生长性状的种源遗传力为0.70~0.80,结合多地点种源年生长量指标综合表现,可筛选出优良种源6个,材积现实增益达11.95%~41.03%。本研究表明:在林龄为3~14 a,乐昌含笑胸径、树高、单株材积在参试种源间均存在极显著差异,表明生长性状在种源间存在丰富变异,这与之前的研究结果相似[11, 15]。性状的遗传力是从亲代传递给子代的能力上得以体现,本研究中,乐昌含笑种源不同林龄的树高、胸径、单株材积的种源遗传力为0.69~0.90,均在中等以上水平。而且随着林龄的增加,各性状的遗传力表现为上升并趋于稳定的趋势,说明乐昌含笑种源生长性状有较为稳定的遗传特性,也进一步表明乐昌含笑种源早期选择的可行性。

    早期选择是缩短林木育种周期、提高遗传改良效率的重要手段,对林业生产和林木育种工作具有重要意义[1617]。林木生长性状的早晚相关性为早期选择提供了理论基础[18],但不同树种由于不同的生长规律、木材用途及培育目标,其早期选择年龄存在较大的差异。相关研究多集中在杉木Cunninghamia lanceolata、马尾松Pinus massoniana等传统针叶用材树种上。如叶培忠等[6]指出:在林龄为6~7 a时进行杉木家系早期选择可以增大年度效益;王章荣等[7]研究认为:马尾松在林龄为9~10 a时开展选择的可靠性较高。钟伟华[19]基于火炬松Pinus taeda子代林近20 a的测定结果,提出林龄为6 a时是火炬松材积早期选择的最佳林龄。近些年,有学者陆续对木兰科树种开展遗传改良研究工作,并取得阶段性进展。如陈清根[20]对灰木莲Manglietia conifera开展家系选择发现:在林龄为8 a时入选的8个优良家系中,有5个与林龄3 a时入选的家系相同,但由于试验林尚未达到成熟期,2个林龄的选对率以及灰木莲早期选择的最佳林龄等问题仍需进一步确定。王云鹏等[5]对木荷优树自由授粉家系在林龄为3、5、10 a的生长性状研究表明:在林龄为5 a时以胸径作为早期选择性状的选择效率更高,但早期选择最佳林龄还需持续观测后确定。本研究表明:乐昌含笑种源的生长性状在早晚年度间存在极显著的遗传相关和表型相关,表明开展早期选择是可行且有效的。进一步结合2片试验林的种源分类评价结果发现:当以丰产型的Ⅰ类种源为选择目标时,在林龄为3、6 a时开展早期选择,无论是采用综合指标法还是单指标法所得Ⅰ类种源中都能包含14 a时入选Ⅰ类种源的100%。这一方面可能是因为树高、胸径2个生长性状与单株材积间具有密切相关性,另一方面可能也说明了乐昌含笑树高、胸径、单株材积性状具有良好的遗传稳定性。而且,本研究的种源试验林已是近熟林,所得结果可靠性较高。但由于试验林尚未到轮伐期,分析所得早期选择的适宜林龄仍需后续的进一步验证。

    乐昌含笑的树高、胸径、材积生长性状在种源间差异达极显著水平(P<0.01),各林龄3个生长性状的种源遗传力为0.69~0.90,属于中上水平;参试种源在林龄为3、6、11 a的树高、胸径、单株材积分别与14 a时的单株材积间有极显著相关关系(P<0.01),其中表型相关系数为0.22~0.44,遗传相关系数为0.83~1.00,并且各林龄的遗传相关系数均大于表型相关系数。当以丰产型种源为选择目标时,乐昌含笑种源早期选择的适宜林龄为3~6 a,在此期间开展单株材积的早期选择,选对率较高,漏选率较低,入选的种源中能包含林龄14 a时入选种源的100%。

  • 图  1  2019年样地环境因子的季节变化

    Figure  1  Dynamics in daily means of environmental variables in 2019 in the sample plots

    图  2  2019年样地实测潜热通量(FLE)及3种插补方法结果

    Figure  2  Results of measured latent heat flux (FLE) and the modeled FLE with three gap-filling methods in 2019 in the sample plots

    图  3  实测潜热通量(FLE)与模拟FLE间关系

    Figure  3  Relationship between the measured latent heat flux (FLE) and modeled FLE

    图  4  气温(Ta)与实测潜热通量(FLE)及3种插补FLE间的关系

    Figure  4  Relationship between air temperature (Ta) and measured latent heat flux (FLE) and the three modeled FLE

    图  5  饱和水汽压差(DVP)与实测潜热通量(FLE)及3种插补FLE间的关系

    Figure  5  Relationship between vapor pressure deficit (DVP) and measured latent heat flux (FLE) and the three modeled FLE

    表  1  第1层隐藏层不同神经元个数拟合结果

    Table  1.   Result of the fitting of the number of different neurons in ANNs

    隐藏层神经元个数均方误差平均值
    12345
    30.009 70.010 00.009 90.009 60.010 00.009 8
    40.009 30.009 80.009 60.009 80.010 00.009 7
    50.009 40.009 90.010 30.009 80.009 90.009 9
    60.009 40.009 40.008 80.009 10.009 30.009 2
    70.008 90.009 30.009 90.009 50.009 60.009 5
    80.009 40.009 20.009 30.008 60.008 70.009 0
    90.008 60.008 80.008 50.009 20.009 10.008 8
    100.009 40.009 00.009 50.009 10.009 10.009 2
    110.009 10.009 10.009 10.008 90.009 30.009 1
    120.009 20.010 00.009 30.009 30.009 10.009 4
      说明: 均方误差下的1、2、3、4、5分别指人工神经网络模拟的重复数(即不同的重复)。
    下载: 导出CSV
  • [1] FRANK D, REICHSTEIN M, BAHN M, et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts [J]. Global Change Biology, 2015, 21(8): 2861 − 2880.
    [2] JIANG Peng, LIU Hongyan, PIAO Shilong, et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests [J/OL]. Nature Communications, 2019, 10: 195[2023-09-24]. doi: 10.1038/s41467-018-08229-z.
    [3] MATSUMOTO K, OHTA T, NAKAI T, et al. Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East [J]. Agricultural and Forest Meteorology, 2008, 148(12): 1978 − 1989.
    [4] MCCAUGHEY J H, PEJAM M R, ARAIN M A, et al. Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada [J]. Agricultural and Forest Meteorology, 2006, 140(1/4): 79−96.
    [5] KUME T, TANAKA N, KURAJI K, et al. Ten-year evapotranspiration estimates in a Bornean tropical rainforest [J]. Agricultural and Forest Meteorology, 2011, 151(9): 1183 − 1192.
    [6] XIE Jing, ZHA Tianshan, ZHOU Caixian, et al. Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought [J]. Agricultural and Forest Meteorology, 2016, 221: 142 − 151.
    [7] WU Jiabing, GUAN Dexin, HAN Shijie, et al. Energy budget above a temperate mixed forest in northeastern China [J]. Hydrological Processes, 2007, 21(18): 2425 − 2434.
    [8] WILSON K B, GOLDSTEIN A, FALGE E, et al. Energy balance closure at flux net sites [J]. Agricultural and Forest Meteorology, 2002, 113: 223 − 243.
    [9] HUANG Jianping, YU Haipeng, GUAN Xiaodan, et al. Accelerated dryland expansion under climate change [J]. Nature Climate Change, 2016, 6: 166 − 171.
    [10] FORNER A, VALLADARES F, BONAL D, et al. Extreme droughts affecting mediterranean tree species’ growth and water-use efficiency: the importance of timing [J]. Tree Physiology, 2018, 38(8): 1127 − 1137.
    [11] BALDOCCHI D, FALGE E, GU Lianhong, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bulletin of the American Meteorological Society, 2001, 82: 2415 − 2434.
    [12] PAPALE D, VALENTINI R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization [J]. Global Change Biology, 2003, 9(4): 525 − 535.
    [13] JIA Xin, ZHA Tianshan, GONG Jinnan, et al. Energy partitioning over a semi-arid shrubland in northern China [J]. Hydrological Process, 2016, 30(6): 972 − 985.
    [14] HANSON P J, AMTHOR J S, WULLSCHLEGER S D, et al. Carbon and water cycle simulations for an upland oak forest using 13 stand-level models: intermodel comparisons and evaluations against independent measurements [J]. Ecological Monographs, 2004, 74(3): 443 − 489.
    [15] GONG Jinnan, JIA Xin, ZHA Tianshan, et al. Modeling the effects of plant-interspace heterogeneity on water-energy balances in a semiarid ecosystem [J]. Agricultural and Forest Meteorology, 2016, 221: 189 − 206.
    [16] GONG Jinnan, WANG Ben, JIA Xin, et al. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity [J]. Biogeosciences, 2018, 15(1): 115 − 136.
    [17] WUTZLER T, LUCAS-MOFFAT A, MIGLIAVACCA M, et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc [J]. Biogeosciences, 2018, 15(16): 5015 − 5030.
    [18] JIA Xin, MU Yu, ZHA Tianshan, et al. Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland [J/OL]. Science of the Total Environment, 2020, 709: 136210[2023-09-24]. doi: 10.1016/j.scitotenv.2019.136210.
    [19] FALGE E, TENHUNEN J, BALDOCCHI D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements [J]. Agricultural and Forest Meteorology, 2002, 113(1/4): 75 − 95.
    [20] MA Jingyong, ZHA Tianshan, JIA Xin, et al. Energy and water vapor exchange over a young plantation in northern China [J]. Agricultural and Forest Meteorology, 2019, 263: 334 − 345.
    [21] LIU Peng, BLACK T A, JASSAL R S, et al. Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999−2017 [J]. Global Change Biology, 2019, 25(9): 3056 − 3069.
    [22] PASTORELLO G, TROTTA C, CANFORA E, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data [J/OL]. Scientific Data, 72 [2023-09-24]. doi: 10.1038/s41597-021-00851-9.
    [23] BARR A G, BLACK T A, HOGG E H, et al. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994−2003 [J]. Global Change Biology, 13(3): 561−576.
    [24] BALDOCCHI D, KNOX S, DRONOVA I, et al. The impact of expanding flooded land area on the annual evaporation of rice [J]. Agricultural and Forest Meteorology, 2016, 223: 181 − 193.
    [25] TSURUTA K, KOSUGI Y, TAKANASHI S, et al. Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest [J]. Hydrological Process, 2016, 30(26): 5012 − 5026.
    [26] MIAO Haixia, CHEN Shiping, CHEN Jiquan, et al. Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes [J]. Agricultural and Forest Meteorology, 2009, 149(11): 1810 − 1819.
    [27] POWELL T L, STARR G, CLARK K L, et al. Ecosystem and understory water and energy exchange for a mature, naturally regenerated pine flatwoods forest in north Florida [J]. Canadian Journal of Forest Research, 2005, 35: 1568 − 1580.
    [28] PAPALE D, REICHSTEIN M, AUBINET M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation [J]. Biogeosciences, 2006, 3(4): 571 − 583.
    [29] REICHSTEIN M, FALGE E, BALDOCCHI D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm [J]. Global Change Biology, 2005, 11(9): 1424 − 1439.
    [30] AMIRO B D, BARR A G, BLACK T A, et al. Carbon, energy and water fluxes at mature and disturbed forest sites Saskatchewan, Canada [J]. Agricultural and Forest Meteorology, 2006, 136(3/4): 237 − 251.
    [31] BURBA G G, MCDERMITT D K, GRELLE A, et al. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers [J]. Global Change Biology, 2008, 14(8): 1854 − 1876.
    [32] MAUDER M, CUNTZ M, DRÜE C, et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements [J]. Agricultural and Forest Meteorology, 2013, 169: 122 − 135.
    [33] 武夏宁, 胡铁松, 王修贵, 等. 区域蒸散发估算测定方法综述[J]. 农业工程学报, 2006, 22(10): 257 − 262.

    WU Xianing, HU Tiesong, WANG Xiugui, et al. Review of estimating and measuring regional evapotranspiration [J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 257 − 262.
    [34] 王怡宁, 张晓萌, 路璐, 等. 通径分析结合BP神经网络方法估算夏玉米作物系数及蒸散量[J]. 农业工程学报, 2020, 36(7): 109 − 116.

    WANG Yining, ZHANG Xiaomeng, LU Lu, et al. Estimation of crop coefficient and evapotranspiration of summer maize by path analysis combined with BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 109 − 116.
    [35] 张川, 闫浩芳, 大上博基, 等. 表层有效土壤水分参数化及冠层下土面蒸发模拟[J]. 农业工程学报, 2015, 31(2): 102 − 107.

    ZHANG Chuan, YAN Haofang, OUE Hiroki, et al. Parameterization of surface soil available moisture and simulation of soil evaporation beneath canopy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 102 − 107.
    [36] 吴友杰, 杜太生. 基于氧同位素的玉米农田蒸散发估算和区分[J]. 农业工程学报, 2020, 36(4): 127 − 134.

    WU Youjie, DU Taisheng. Estimating and partitioning evapotranspiration of maize farmland based on stable oxygen isotope [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 127 − 134.
    [37] 李鑫豪, 闫慧娟, 卫腾宙, 等. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889 − 898.

    LI Xinhao, YAN Huijuan, WEI Tengzhou, et al. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chinese Journal of Plant Ecology, 2019, 43(10): 889 − 898.
    [38] 高冠龙, 冯起, 刘贤德, 等. 3种经验模型模拟荒漠河岸柽柳叶片气孔导度[J]. 生态学报, 2020, 40(10): 3486 − 3494.

    GAO Guanlong, FENG Qi, LIU Xiande, et al. Simulating the leaf stomatal conductance of the desert riparian Tamarix ramosissima Ledeb. based on three empirical models [J]. Acta Ecologica Sinica, 2020, 40(10): 3486 − 3494.
    [39] 周文君, 查天山, 贾昕, 等. 宁夏盐池油蒿叶片水分利用效率的生长季动态变化及对环境因子的响应[J]. 北京林业大学学报, 2020, 42(7): 98 − 105.

    ZHOU Wenjun, ZHA Tianshan, JIA Xin, et al. Dynamics of water use efficiency of Artemisia ordosica leaf in growing season in response to environmental factors in Yanchi, Ningxia of northwestern China [J]. Journal of Beijing Forestry University, 2020, 42(7): 98 − 105.
    [40] 冯新妍, 贾昕, 黄金泽, 等. ANN-BiLSTM 模型在温带荒漠灌丛碳通量数据缺失值插补中的应用[J]. 北京林业大学学报, 2023, 45(9): 62 − 72.

    FENG Xinnyan, JIA Xin, HUANG Jinze, et al. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub [J]. Journal of Beijing Forestry University, 2023, 45(9): 62 − 72.
    [41] LIU Jianzhao, ZUO Yunjiang, WANG Nannan, et al. Comparative analysis of two machine learning algorithms in predicting site-level net ecosystem exchange in major biomes [J/OL]. Remote Sensing, 2021, 13(12): 2242[2023-09-24]. doi: 10.3390/rs13122242.
  • [1] 汤瑞麒, 吴奇, 郑蓉, 卞玉宣, 问青青, 庄前进, 傅佳琴, 谢家杰, 王云泉, 陈建华.  浙江婺城南山落叶阔叶林物种组成及群落结构特征 . 浙江农林大学学报, 2025, 42(1): 23-33. doi: 10.11833/j.issn.2095-0756.20240442
    [2] 郑枭, 王通, 庞春梅, 宋思婧, 丁山, 余树全.  气候变化背景下天目山落叶阔叶林乔木层1996—2017年动态研究 . 浙江农林大学学报, 2023, 40(6): 1250-1260. doi: 10.11833/j.issn.2095-0756.20230185
    [3] 龚元, 纪小芳, 花雨婷, 张银龙, 李楠.  基于涡动相关技术的森林生态系统二氧化碳通量研究进展 . 浙江农林大学学报, 2020, 37(3): 593-604. doi: 10.11833/j.issn.2095-0756.20190412
    [4] 徐庆华, 杨进良, 黄练忠, 张星元, 谭雪莲, 张璐.  次生常绿阔叶林群落林冠结构对林下植被的影响 . 浙江农林大学学报, 2019, 36(6): 1151-1157. doi: 10.11833/j.issn.2095-0756.2019.06.012
    [5] 刘肖肖, 戴伟, 戴奥娜.  北京山地4种阔叶林土壤酶活性及动力学特征 . 浙江农林大学学报, 2018, 35(5): 794-801. doi: 10.11833/j.issn.2095-0756.2018.05.002
    [6] 朱宇颐, 解潍嘉, 黄华国.  基于三维模型ENVI-met对黑河森林和北方森林的潜热及显热通量模拟 . 浙江农林大学学报, 2018, 35(3): 440-452. doi: 10.11833/j.issn.2095-0756.2018.03.007
    [7] 陈丽萍, 李平衡, 莫路锋, 周国模, 李金荣.  基于通量源区模型的雷竹林生态系统碳通量信息提取 . 浙江农林大学学报, 2016, 33(1): 1-10. doi: 10.11833/j.issn.2095-0756.2016.01.001
    [8] 牛晓栋, 江洪, 方成圆, 陈晓峰, 孙恒.  天目山常绿落叶阔叶混交林生态系统水汽通量特征 . 浙江农林大学学报, 2016, 33(2): 216-224. doi: 10.11833/j.issn.2095-0756.2016.02.005
    [9] 徐建, 韦新良, 王敬, 汪贤挺, 俞立鹏.  龙王山落叶阔叶林优势树种的种内种间竞争 . 浙江农林大学学报, 2014, 31(6): 868-876. doi: 10.11833/j.issn.2095-0756.2014.06.007
    [10] 蔺恩杰, 江洪, 陈云飞.  太湖源雷竹林水汽通量变化及其对净辐射的响应 . 浙江农林大学学报, 2013, 30(3): 313-318. doi: 10.11833/j.issn.2095-0756.2013.03.001
    [11] 杜华强, 汤孟平, 崔瑞蕊.  天目山常绿阔叶林土壤养分的空间异质性 . 浙江农林大学学报, 2011, 28(4): 562-568. doi: 10.11833/j.issn.2095-0756.2011.04.007
    [12] 杨国平, 巩合德, 郑征, 张一平, 刘玉洪, 鲁志云.  哀牢山常绿阔叶林优势树种热值与养分特征 . 浙江农林大学学报, 2010, 27(2): 251-258. doi: 10.11833/j.issn.2095-0756.2010.02.015
    [13] 江挺, 汤孟平.  天目山常绿阔叶林优势种群竞争的数量关系 . 浙江农林大学学报, 2008, 25(4): 444-450.
    [14] 巩合德, 张一平, 刘玉洪, 杨国平, 鲁志云, 卢华正.  哀牢山常绿阔叶林林冠的截留特征 . 浙江农林大学学报, 2008, 25(4): 469-474.
    [15] 方国景, 汤孟平, 章雪莲.  天目山常绿阔叶林的混交度研究 . 浙江农林大学学报, 2008, 25(2): 216-220.
    [16] 金则新.  浙江天台山落叶阔叶林优势种群结构与动态分析 . 浙江农林大学学报, 2001, 18(3): 245-251.
    [17] 俞益武, 江志标, 胡永旭.  杭州木荷常绿阔叶林的林分特征 . 浙江农林大学学报, 1999, 16(3): 242-246.
    [18] 林开敏, 林国清, 张沈龙, 俞立烜.  天然阔叶林与杉木连栽林地土壤肥力的差异* . 浙江农林大学学报, 1995, 12(2): 221-225.
    [19] 陈国瑞, 叶林, 王伟, 俞益武, 李天佑.  浙北不同森林类型调温调湿效应的异同性 . 浙江农林大学学报, 1994, 11(2): 143-150.
    [20] 陶涛, 光太俊, 黄庆丰, 唐雪海, 欧强新, 刘华.  天马国家级自然保护区落叶阔叶林主要树种空间分布格局及其关联性 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240486
  • 期刊类型引用(3)

    1. 张怡,王润辉. 育苗基质对乐昌含笑林分早期生长的影响. 林业与环境科学. 2024(06): 40-45 . 百度学术
    2. 朱报著,王海华,徐放,李祥彬. 广东含笑属检索表及树种应用研究. 林业与环境科学. 2023(04): 61-67 . 百度学术
    3. 胡辉群. 新丰县乐昌含笑嫁接育苗技术及抚育管理措施. 南方农业. 2023(18): 143-145 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230526

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/4/810

图(5) / 表(1)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  45
  • PDF下载量:  10
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-04-04
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-07-12

潜热通量缺失数据插补方法比较研究

doi: 10.11833/j.issn.2095-0756.20230526
    基金项目:  国家自然科学基金青年基金资助项目(32101588)
    作者简介:

    杨强(ORCID: 0009-0007-5317-402X),工程师,从事水土保持与林业生态工程研究。E-mail: yangqiang@ncpe.com.cn

    通信作者: 李鑫豪(ORCID: 0000-0002-3507-7556),工程师,从事碳水循环及其调控机制研究。E-mail: 458819027@qq.com
  • 中图分类号: Q945.11

摘要:   目的  分析比较不同插补方法对生态系统潜热通量(FLE)缺失值的插补精度。  方法  利用涡度相关法于2019年对北京市松山国家级自然保护区典型天然落叶阔叶林生态系统FLE与环境要素进行原位连续监测,通过3种插补方法(边缘分布抽样法、线性回归法、人工神经网络法)对FLE缺失数据(0.5 h数据中随机剔除)进行插补,分析实测FLE、插补FLE与环境因子间的关系。  结果  3种插补结果均低估了实测FLE,其中人工神经网络插补值最接近实测值(决定系数R2=0.40)。实测FLE与空气温度(Ta)、饱和水汽压差(DVP)间均呈指数关系。边缘分布抽样法插补FLETaDVP间的关系最接近实测FLE,然而3种插补方法都不同程度改变了FLETaDVP的敏感性。  结论  人工神经网络法的插补结果与实测值最接近,边缘分布抽样法的结果与环境因子间的关系最接近实测值与环境因子间的关系,因此未来研究应依据研究目的选取合适的插补方法。图5表1参41

English Abstract

韦如萍, 晏姝, 郑会全, 等. 乐昌含笑种源不同林龄生长变异及早期选择[J]. 浙江农林大学学报, 2023, 40(2): 365-373. DOI: 10.11833/j.issn.2095-0756.20220357
引用本文: 杨强, 李鑫豪, 杜韬. 潜热通量缺失数据插补方法比较研究[J]. 浙江农林大学学报, 2024, 41(4): 810-819. DOI: 10.11833/j.issn.2095-0756.20230526
WEI Ruping, YAN Shu, ZHENG Huiquan, et al. Growth variation of Michelia chapensis provenance in different ages and its early selection[J]. Journal of Zhejiang A&F University, 2023, 40(2): 365-373. DOI: 10.11833/j.issn.2095-0756.20220357
Citation: YANG Qiang, LI Xinhao, DU Tao. Comparative study of interpolation methods for missing latent heat flux data[J]. Journal of Zhejiang A&F University, 2024, 41(4): 810-819. DOI: 10.11833/j.issn.2095-0756.20230526
  • 气候变化及其对生态系统造成的影响已经成为全球变化研究的重点问题[1]。随着气候变化强度的不断加剧,生态系统的结构和功能必定会受到影响[2]。森林生态系统约占陆地生态系统总面积的30%以上,是陆地生态系统的主体[3],有降低大气二氧化碳(CO2)浓度、涵蓄和调节降水、减少地表侵蚀、调节区域小气候等重要作用[37]。因此,在气候变化背景下,研究森林生态系统过程,如生态系统潜热通量(FLE),对深入理解环境因子对生态系统的调控机制具有重要意义[810]

    涡动相关法已成为从小时到年际时间尺度监测生态系统碳、水和能量通量的主要方法,并成为自下而上估算全球生态系统碳、水平衡过程的支柱[1113]。此外,涡度相关数据也越来越多地被用于生态系统模型的校准和验证[1416]。为了定量估计生态系统过程,准确插补由于不利的气象状况或仪器故障等原因造成的缺失数据是非常重要的[1718]。不同插补方法得到的结果可能有很大差别[1921]。目前,大多数研究只关注插补结果,鲜有研究对插补方法进行比较分析,因此,对现有主要插补方法进行比较分析可以更好地理解生态系统对气候变化的响应。

    如今在世界范围内利用涡动相关系统已经建立了许多通量数据集,尽管各大通量网系统(如FLUXNET、加拿大通量网等)建立数据集的数据收集方法得到了统一,但组织间数据处理方法仍有所不同。例如FLUXNET通量网通常采用边缘分布抽样法对缺失数据进行插补[22],而加拿大通量网通常利用线性与非线性回归法对缺失数据进行插补[23]。这导致相关数据可比性不强[2425]。考虑到气候变化强度不断增强,增强通量数据的可比性是定量预测未来全球生态系统水文循环和改善森林管理决策的关键。

    生态系统蒸散发(ET)作为全球水循环的第二大组成部分,在生态系统内部与外界进行能量和物质交换过程中发挥着重要作用,同时还影响着许多其他重要的生态过程[2627]。本研究于北京松山自然保护区生态环境及生物多样性监测站开展,以天然落叶阔叶林生态系统为研究对象,通过涡度相关法连续监测数据,分析比较落叶阔叶林生态系统FLE缺失值插补的不同方法。本研究假设:插补结果会低估FLE,同时,不同插补方法得到的FLE模拟值有差异。本研究主要解决以下2个问题:①插补FLE与实测FLE是否存在偏差?②插补FLE与环境因子间关系是否和实测FLE与环境因子间关系相同?

    • 松山自然保护区生态环境及生物多样性监测站位于北京市延庆区松山国家级自然保护区内(40°30′48″N,115°47′11″E),离延庆区张山营镇中心约10 km,离北京中心约104 km,北侧与大海坨自然保护区相邻,东南侧为佛峪口水库。

      研究区属于北温带,气候为大陆性季风气候。研究区受所处地形的影响,气温低,湿度高,是典型的山地气候。降水季节分布不均,保证率低,多年平均降水量为450.0 mm,集中在6—9月;多年平均气温为8.9 ℃,极端最高气温为38.1 ℃,极端最低气温为−28.6 ℃,多年平均无霜期为153 d。2018年12月,以通量塔为中心,在冬奥延庆赛区外围松山国家级自然保护区内设立50 m×50 m的样方(40°53′N,116°18′E,海拔为1161 m)。样地内主要乔木树种为胡桃楸Juglans mandshurica,其他乔木树种为大果榆Ulmus macrocarpa、白蜡Fraxinus chinensis等。灌木以绣线菊Spiraea salicifolia、铁线莲Clematis florida为主。经样地调查,胡桃楸平均胸径为10.96 cm,平均树高为4.71 m;大果榆平均胸径为7.20 cm,平均树高为3.88 m;白蜡平均胸径为7.64 cm,平均树高为3.97 m。

    • 通量监测采用开路式涡度相关系统,仪器初始安装高度为20 m。测量系统主要由三维超声分速仪(WindMaster,Campbell Scientific, Inc. Logan)、开路CO2/H2O红外气体分析仪(7500 DS, Campbell Scientific, Inc. Logan)和数据采集器(CR1000,Campbell Scientific, Inc. Logan)构成。同步测量的气象变量包括:净辐射[四分量辐射仪(CNR-4, Campbell Scientific, Inc. Logan)]、空气温度与湿度[空气温湿度传感器(ATMOS14, Campbell Scientific, Inc, Logan, )]、降雨量[雨量桶(ECRN-100, Campbell Scientific, Inc. Logan)],传感器安装高度均为20 m。采用CR1000数据采集器(CR1000, Campbell Scientific, Inc. Logan)采集气象数据,采样频率与涡度相关监测频率同步。

      通量塔5 m半径内随机布设的5套热通量板(HFP01, Campbell Scientific, Inc. Logan)监测土壤热通量,传感器布设深度为10 cm。土壤温度和土壤含水量(CSW)分别由通量塔5 m半径内随机布设的5套土壤温度传感器(5TM, Campbell Scientific, Inc. Logan)和土壤水分传感器(5TM, Campbell Scientific, Inc. Logan)测定,布设深度为10 cm。采用CR1000数据采集器(CR1000, Campbell Scientific, Inc. Logan)采集土壤监测数据。

    • 使用EddyPro软件(version 4, LI-COR, Lincoln)对原始10 Hz数据进行预处理,处理步骤包括峰值去除、倾斜校正(双轴旋转)、传感器滞后校正、光谱校正、去趋势化和0.5 h通量计算[20]。本研究采用PAPALE等[28]的方法剔除0.5 h通量数据异常值,利用数据相对绝对中位偏差(MAD)的偏离程度识别异常数据。具体如下:

      $$ d_i=\left(F_{{\rm{L E}} i}-F_{{\rm{L E}} i-1}\right)-\left(F_{{\rm{L E}} i+1}-F_{{\rm{L E}} i}\right) 。 $$

      其中:FLEiFLEi−1FLEi+1分别为第i时刻及其前后时刻的FLE数值,diFLEi在数列中的相对位置,di如果满足以下条件则被定义为异常值:

      $$ {d_i} < {M_{\rm{d}}} - \frac{{{\textit{z}} \times {M_{{\rm{AD}}}}}}{{0.674\;5}}\; {\rm{或}}\; {d_i} > {M_{\rm{d}}} + \frac{{{\textit{z}} \times {M_{{\rm{AD}}}}}}{{0.674\;5}} 。 $$

      其中:z为阈值,不同的z可以用来评价该方法对数据的影响,本研究中z取4[28]Md为数列di的中位数。MAD的计算公式如下:

      $$ {M_{{\rm{AD}}}} = {\rm{median}}(\left| {{d_{{i}}} - {M_{\text{d}}}} \right|) 。 $$

      通过自举法确定摩擦风速阈值[28],夜间摩擦风速低于阈值的湍流均认为交换不均匀,剔除对应FLE值。本研究中摩擦风速阈值为0.204 m·s−1。另外,为了避免由于红外气体分析仪光路受影响导致的测量误差,光路信号值低于70的数据也被剔除。2019年由于仪表故障、系统维护和质量控制等原因剔除掉的FLE占全年数据的37.96%。

    • 边缘分布抽样法(MDS)通过RStudio 1.1.463中的REddyProc程序包完成[29]。该算法主要分为2种不同的情况:①只缺失主要数据,其他气象数据可用;②部分或所有气象数据缺失。在第1种情况下,搜索7 d时间窗口内相似气象条件下是否存在数值,如果有,用满足条件数值的平均值插补缺失值。其中相似气象条件为总辐射(RG, W·m−2)、空气温度(Ta, ℃)和饱和水汽压差(DVP, Pa)相较于缺失值对应的RGTaDVP变化幅度不超过50 W·m−2、2.5 ℃和500 Pa。如果在7 d时间窗口内没有相似气象条件,则将时间窗口增加到14 d。以此类推。

      在第1种情况下,14 d时间窗口内相似条件下存在数值,插补数据质量为高等;21 d时间窗口内相似条件下存在数值,插补数据质量为中等;28 d时间窗口内相似条件下存在数值,插补数据质量为低等。在第2种条件下,FLE缺失数据的时间间隔小于1 h,插补数据质量为高等;FLE缺失数据的时间间隔小于1 d,插补数据质量为中等;FLE缺失数据的时间间隔大于1 d,插补数据质量为低等。

    • 线性回归法主要采用AMIRO等[30]的方法。缺失值的时间间隔小于2 h采用线性内插法插补,其中夜间数据(即RG<20 W·m−2)设为0。缺失值的时间间隔超过2 h分为生长季和非生长季2种情况。生长季(Ta >0 ℃)采用240个连续数据时间窗口内的FLE与净辐射减去土壤热通量(即可利用能量)线性回归插补,时间窗口每次移动48个时间点(1个时间点为0.5 h)。非生长季(Ta<0 ℃)内采用缺失值前5 d至后5 d对应时间的平均值插补。

    • 人工神经网络(ANN)是一种可以映射输入与输出数据间非线性关系的模型。本研究使用BP神经网络,模型为4层结构。输入层包含用于进行模型预测的自变量,输出层包含需要预测的变量,输入层和输出层由2个隐藏层连接。第1个隐藏层的激励函数为tansig函数,第2个隐藏层的激励函数为线性函数,训练方法为Levenberg-Marquardt。1层中的每个神经节点都与相邻层的所有神经节点相连。第1层隐藏层的神经节点数量范围由下式确定:

      $$ m = \sqrt {n + l} + \alpha 。 $$

      其中:m为第1层隐含层神经节点数,nl为输入层和输出层变量个数,α为1~10的正整数。第2层隐藏层神经元个数为1。

      本研究中输入变量为RGTaDVPCSW。为了强调昼夜造成的影响而加入RG,同时将RG<20 W·m−2的值设置为0。白天输入变量为RGTaDVPCSW;夜晚RG=0,输入变量为TaDVPCSW。本研究采用均方误差(ERMSE)来衡量不同m构建的神经网络模型的优劣(表1)。m=9的神经网络模型的ERMSE最低,故本研究中m取9。

      表 1  第1层隐藏层不同神经元个数拟合结果

      Table 1.  Result of the fitting of the number of different neurons in ANNs

      隐藏层神经元个数均方误差平均值
      12345
      30.009 70.010 00.009 90.009 60.010 00.009 8
      40.009 30.009 80.009 60.009 80.010 00.009 7
      50.009 40.009 90.010 30.009 80.009 90.009 9
      60.009 40.009 40.008 80.009 10.009 30.009 2
      70.008 90.009 30.009 90.009 50.009 60.009 5
      80.009 40.009 20.009 30.008 60.008 70.009 0
      90.008 60.008 80.008 50.009 20.009 10.008 8
      100.009 40.009 00.009 50.009 10.009 10.009 2
      110.009 10.009 10.009 10.008 90.009 30.009 1
      120.009 20.010 00.009 30.009 30.009 10.009 4
        说明: 均方误差下的1、2、3、4、5分别指人工神经网络模拟的重复数(即不同的重复)。
    • 本研究中涡度相关系统采用开路式红外气体分析仪。为了避免出现冬季由于仪器运作散发热量导致的错误通量[31],数据分析时只使用2019年4月11日至10月27日的数据。

      为了评估3种数据插补方法的优良程度,采用随机取点的方法去除30%的FLE有效实测数据(2019年选定日期内数据共11 040个,其中有效实测数据7 576个,即随机去除其中2 272个数据),分别采用上述3种方法插补。插补完成后与实测数据进行比较。

      由于线性回归法将生长季夜晚FLE的缺失值直接填补为0,为了更好地表现线性回归法的结果,本研究将其分为2种情况:第1种为正常线性回归插补(线性回归法Ⅰ),第2种为去除夜晚FLE数据插补(线性回归法Ⅱ)。

      通过分段平均法分析人为去除的有效实测FLE数据及3种数据插补结果与环境因子间的关系,其中线性回归法采用去除夜间FLE插补数据进行分析。Ta按2.5 ℃分段,即每隔2.5 ℃取1次FLE均值; DVP按0.2 kPa分段,分段平均后再拟合。TaFLE使用指数方程y=aexp(bx)进行拟合,其中yFLExTaab为拟合参数;DVPFLE使用指数-二次方程y=exp(a+bx+cx2)进行拟合,其中yFLExDVPabc为拟合参数。

      指数-二次方程可以很好地模拟FLEDVP增大先升高后降低的趋势,可以根据方程计算出最适DVP (DVPopt)为−b/2c

      除MDS方法使用RStudio软件外,其余所有分析均在MATLAB (Version 7.5.0, The MathWorks)中进行。

    • 研究区2019年空气温度(Ta)、10 cm深度土壤温度(Ts)及净辐射(Rn)日均值的变化特征相似,春、冬季较低,夏、秋季较高。研究期内平均Rn为104.85 W·m−2Rn日均值为−13.93~211.82 W·m−2 (图1A)。研究期内平均Ta为13.25 ℃,Ta日均值为−10.63~25.00 ℃。平均Ts为12.08 ℃,Ts的日均值为−0.34~19.28 ℃ (图1B)。平均DVP为0.71 kPa,日均值为0.02~1.98 kPa (图1C)。研究期内降雨总量为503.3 mm,降雨季节分布不均,降雨大多出现在6—9月,占全年降雨总量的78.4%(图1D)。10 cm深度土壤体积含水量(CSW)季节变化范围为0.129 ~ 0.301 m3·m−3。土壤热通量(G)在春冬季为负值,温度上升后开始逐渐增加,在4月7日达到最大值(11.50 W·m−2),研究期内均值为−12.26 W·m−2

      图  1  2019年样地环境因子的季节变化

      Figure 1.  Dynamics in daily means of environmental variables in 2019 in the sample plots

    • 实测FLE与3种插补方法模拟的FLE结果如图2所示,其中插补FLE与实测FLE对比见图3。边缘分布抽样法、线性回归法及人工神经网络法得到的模拟值均低估了FLE,其中决定系数(R2)最高的为人工神经网络法,回归斜率最高的为线性回归法Ⅰ。插补FLE与实测FLE间回归直线截距均在0左右(图3)。

      图  2  2019年样地实测潜热通量(FLE)及3种插补方法结果

      Figure 2.  Results of measured latent heat flux (FLE) and the modeled FLE with three gap-filling methods in 2019 in the sample plots

      图  3  实测潜热通量(FLE)与模拟FLE间关系

      Figure 3.  Relationship between the measured latent heat flux (FLE) and modeled FLE

      图4所示:3种插补结果中FLETa间拟合参数最接近原始数据的为边缘分布抽样法,拟合效果最好(R2最高)的为边缘分布抽样法。实测FLE及3种插补方法模拟的FLE均随Ta增加而增加,低温时FLETa上升而增加的幅度不大,在15 ℃之后随Ta上升有明显增加。线性回归法插补的FLETa间指数关系不明显。

      图  4  气温(Ta)与实测潜热通量(FLE)及3种插补FLE间的关系

      Figure 4.  Relationship between air temperature (Ta) and measured latent heat flux (FLE) and the three modeled FLE

      3种插补结果中,FLEDVP间分段平均后拟合曲线最接近原始数据的为边缘分布抽样法,R2最高的为人工神经网络法(图5)。实测FLE及3种插补FLEDVP间关系均为指数-二次形式,随DVP的增加先增加后减小。实测数据对应的最适DVP(DVPopt)为3.115 kPa,插补结果中DVP最小为边缘分布抽样法,为3.538 kPa,最大DVPopt为线性回归法的4.178 kPa,DVPopt结果与原始数据最接近的为边缘分布抽样法。

      图  5  饱和水汽压差(DVP)与实测潜热通量(FLE)及3种插补FLE间的关系

      Figure 5.  Relationship between vapor pressure deficit (DVP) and measured latent heat flux (FLE) and the three modeled FLE

    • 数据插补本质上是在类似气象条件下对有效数据的平均与模拟[8]。本研究中3种插补方法得到的0.5 h数据与实测值间的回归斜率为0.28~0.40,即插补结果与实测FLE相比均有一定程度的低估,其中最接近实测数据的方法为人工神经网络法。涡度相关系统存在随机误差和系统误差(数据采集过程中的错误、仪器自身的偏差及空气的平流运动导致的误差等),监测结果与真实值间会不可避免地出现偏差。该偏差数学分布为标准正态分布,均值为0[32]

      边缘分布抽样法的本质是取类似气象条件下实测有效的平均值进行插补[26],插补值消除了随机偏差,但是这种方法并不能将缓慢变化的生物因素的影响考虑在内(如物候变化)。线性回归法同理。这可能是插补值与实测值间有偏差的原因之一。而人工神经网络法则是利用已有环境数据建模,再根据建立的模型进行反演,建模时已经将原始数据进行了最小二乘回归,即实测值的波动被消除一部分。本研究中插补值与实测值间的比较使用了0.5 h数据,插补值与实测值的日均值间差异可能很小。为了保证插补时有效数据的数量,本研究中无法连续剔除几天数据用于插补,否则会对插补结果造成影响,所以插补结果的日均值是否低估实测值,仍需进一步研究。

    • FLETa呈指数形式。涡度相关中蒸散发由FLE计算得到,蒸散发可以分为土壤蒸发和植物蒸腾2个部分,植物蒸腾主要受水势差控制,而土壤蒸发主要受Ta控制[3334]。本研究中FLETa增加而增加,在气温较低时(<15 ℃) FLETa增加幅度不大,而气温较高时增加幅度变大。这可能是由于气温较低时蒸散发组分增加都不明显,而气温较高时蒸散发开始以土壤蒸发为主,且研究地处于天然森林,土壤中水分充足,所以FLETa增加呈指数形式上升[3536]。3种插补结果中,边缘分布抽样法插补的FLETa间关系与实测值最接近,可能是因为边缘分布抽样法使用了实测数据进行平均插补,可以很好地重现FLETa间的关系。人工神经网络法与线性回归法分段平均后的曲线都与实测数据不符。这可能是因为人工神经网络法是先基于已有数据建模反演,建模时Ta权重较大,所以结果呈明显指数型。线性回归则是利用了RnG间的关系模拟FLE,所以FLETa间关系较差。

      FLEDVP间关系呈指数-二次形式。DVP较低时,FLEDVP增加趋势与Ta类似。DVPTa与相对湿度决定,所以DVP增加会促进生态系统蒸散发上升。随着DVP的不断上升,植被蒸腾失水严重,植物为了保证自身正常生命活动,会主动关闭部分气孔降低自身水分损失,所以随着DVP的不断上升,FLE会先升高后下降[3739]。与Ta相同,边缘分布抽样法与DVP间关系最接近实测值与DVP的关系,人工神经网络法分段平均后FLEDVP整体变化较快,线性回归法没有很好地模拟出FLEDVP先平缓后增加的变化趋势。

    • 3种插补方法各有优缺点,需视具体情况使用。研究表明:人工神经网络通常比其他方法更能准确插补通量缺失数据[4041]。本研究中,将RGTaDVPCSW等影响FLE的主要环境因素作为人工神经网络输入变量,模拟FLE比线性回归与边缘分布抽样法更加贴近实测FLE。人工神经网络法是一种纯经验的“黑箱”模型,其预测能力取决于输入、输出数据集及模型训练过程,输入变量的选择对于其预测能力的影响很大[41]。因此,在预测变量(即气象数据)较全面、监测时序较长的情况下,优先选择人工神经网络对缺失数据进行插补,可以很好地重现FLE动态变化。线性回归法从能量平衡的角度插补数据,这种方法显然没有考虑环境因子对FLE的控制,无法重现与环境因子的关系[29]。边缘分布抽样法将气象条件与FLE的变化同时考虑在内,可以较好地重现与环境因子的关系。因此,尽管线性回归法对FLE动态变化的模拟结果略优于边缘分布抽样法,但是鉴于其对环境因子与FLE关系的重现结果较差,在探究FLE调控机制的研究工作中并不建议使用线性回归法插补FLE缺失数据。当研究中驱动因子有效性不足时,可能需要使用边缘分布抽样法[28];如果插补结果被用于模型验证,为了避免数据与模型间出现虚假或循环关系的现象,可能需要使用线性回归法等[27]

    • ①3种插补方法各有优缺点,得到的插补FLE均对实测FLE有一定低估,人工神经网络法插补结果与实测数据最为接近。②人工神经网络法会过分拟合FLE与环境因子间的关系,线性回归插补结果与环境因子间的关系跟实测数据差别最大,边缘分布抽样法与环境因子间的关系最接近实测FLE

参考文献 (41)

目录

/

返回文章
返回