留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光超疏水透明竹材的制备及性能研究

郑淼 彭浩哲 林波 李延军 王开立

郑淼, 彭浩哲, 林波, 李延军, 王开立. 荧光超疏水透明竹材的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20240296
引用本文: 郑淼, 彭浩哲, 林波, 李延军, 王开立. 荧光超疏水透明竹材的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20240296
ZHENG Miao, PENG Haozhe, LIN Bo, LI Yanjun, WANG Kaili. Preparation and properties of fluorescent and superhydrophobic bifunctional transparent bamboo material[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240296
Citation: ZHENG Miao, PENG Haozhe, LIN Bo, LI Yanjun, WANG Kaili. Preparation and properties of fluorescent and superhydrophobic bifunctional transparent bamboo material[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240296

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

荧光超疏水透明竹材的制备及性能研究

doi: 10.11833/j.issn.2095-0756.20240296
基金项目: 国家自然科学基金青年基金资助项目(32301516);南平市科技计划项目(N2022CX101)
详细信息
    作者简介: 郑淼(ORCID: 0009-0009-1039-2742),从事木竹基功能材料研究。E-mail: zhengm@njfu.edu.cn
    通信作者: 王开立(ORCID: 0000-0002-9605-7567),副教授,博士,从事木竹基功能材料研究。E-mail: wangkaili@njfu.edu.cn
  • 中图分类号: TQ351

Preparation and properties of fluorescent and superhydrophobic bifunctional transparent bamboo material

  • 摘要:   目的  制备具有荧光和超疏水功能的透明竹材,并对其进行性能研究与评价,为竹材的功能化应用提供参考。   方法  通过对竹材进行脱木素处理、掺杂荧光微胶囊环氧树脂的真空浸渍处理、超疏水处理等步骤,制备出具有荧光和超疏水性能的透明竹材,并对其各项性能进行表征。  结果  制备的透明竹材具有高透明度、高雾度、光散射性能、热绝缘性能、荧光性能和超疏水性能等优良特性。超疏水荧光透明竹材在波长400~800 nm内的光透过率为80%,雾度基本保持在80%以上,相比较透明竹材透光率略微下降,但雾度有了一定的提升,具有良好的光散射性;其纵向抗拉强度为123.3 MPa,横向拉伸强度相比较刨切竹单板有了显著的提升,达3.2 MPa;能够在365 nm紫外光下发出蓝色荧光。与玻璃和荧光透明竹材相比,超疏水荧光透明竹材具有更低的导热系数,为0.302 3 W·m−1·K−1。该材料具备超疏水性能,水在其表面的接触角为151.2°,滚动角为3.5°。  结论  本研究制备的超疏水荧光透明竹材融合了高透光性、高雾度、光散射性、良好的机械强度、优异的热绝缘性能、荧光特性和超疏水性等优异性能于一体。图11参27
  • 图  1  不同竹材样品的外观

    Figure  1  Appearance of different bamboo samples

    图  2  竹材(A, B)、刨切竹单板(C)和荧光透明竹材(D)的扫描电镜图

    Figure  2  Scanning electron micrographs of bamboo (A, B), sliced bamboo veneer (C) and fluorescent transparent bamboo (D)

    图  3  不同竹材样品的成分相对含量和密度

    Figure  3  Component content and density of different bamboo samples

    图  4  刨切竹单板、脱木素竹材、荧光透明竹材和超疏水荧光透明竹材的红外光谱图

    Figure  4  Infrared spectra of sliced bamboo veneer, delignified bamboo, fluorescent transparent bamboo, and superhydrophobic fluorescent transparent bamboo

    图  5  荧光透明竹材(A)和超疏水荧光透明竹材(B)的透光率和雾度

    Figure  5  Transmittance and haze of fluorescent transparent bamboo (A) and superhydrophobic fluorescent transparent bamboo (B)

    图  6  荧光透明竹材(A)和超疏水荧光透明竹材(B)的散射光强度分布图

    Figure  6  Scattered light intensity distribution of fluorescent transparent bamboo (A) and superhydrophobic fluorescent transparent bamboo (B)

    图  7  刨切竹单板、脱木素竹材和超疏水荧光透明竹材应力应变曲线图

    Figure  7  Stress-strain diagrams of sliced bamboo veneer, delignified bamboo and superhydrophobic fluorescent transparent bamboo

    图  8  刨切竹单板、荧光透明竹材以及超疏水荧光透明竹材导热系数和温度-时间曲线图

    Figure  8  Thermal conductivity and temperature-time curves of sliced bamboo veneer, fluorescent transparent bamboo and superhydrophobic fluorescent transparent bamboo

    图  9  不同竹材表面的水润湿性以及超疏水荧光透明竹材表面电镜图

    Figure  9  Water wettability of different bamboo sample surfaces, and SEM image of superhydrophobic fluorescent transparent bamboo

    图  10  严苛环境测试下超疏水荧光透明竹材的水接触角

    Figure  10  Surface water contant angle of superhydrophobic fluorescent transparent bamboo after harsh environment test

    图  11  竹单板(A)、荧光透明竹材(B)、超疏水荧光透明竹材(C)的自清洁性能

    Figure  11  Self-cleaning performance of bamboo veneer (A), fluorescent transparent bamboo (B), superhydrophobic fluorescent transparent bamboo (C)

  • [1] 林涛, 张聪, 殷学风, 等. 透明木基功能化复合材料的应用研究进展[J]. 中国造纸, 2022, 41(5): 80 − 87.

    LIN Tao, ZHANG Cong, YIN Xuefeng, et al. Advances in the application of transparent wood-based functional composites [J]. China Pulp & Paper, 2022, 41(5): 80 − 87.
    [2] FINK S. Transparent wood: a new approach in the functional study of wood structure [J]. Holzforschung, 1992, 46(5): 403 − 408.
    [3] ZHU Mingwei, SONG Jianwei, LI Tian, et al. Highly anisotropic, highly transparent wood composites[J/OL]. Advanced Materials, 2016, 28 (35): 7653[2024-03-30]. doi: 10.1002/adma.201600427.
    [4] ZHU Mingwei, LI Tian, DAVIS C, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells [J]. Nano Energy, 2016, 26: 332 − 339.
    [5] FU Qiliang, YAN Min, JUNGSTEDT E, et al. Transparent plywood as a load-bearing and luminescent biocomposite [J]. Composites Science and Technology, 2018, 8(164): 296 − 303.
    [6] MI Ruiyu, LI Tian, DALGO D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows[J/OL]. Advanced Functional Materials, 2020, 30 (1): 1907511[2024-03-30]. doi: 10.1002/adfm.201907511.
    [7] 闫实, 杨正勇, 周晓剑, 等. 竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响[J]. 浙江农林大学学报, 2024, 41(4): 861 − 869.

    YAN Shi, YANG Zhengyong, ZHOU Xiaojian, et al. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana [J]. Journal of Zhejiang A&F University, 2024, 41(4): 861 − 869.
    [8] NKEUWA W N, ZHANG Jialin, SEMPLE K E, et al. Bamboo-based composites: a review on fundamentals and processes of bamboo bonding[J/OL]. Composites Part B: Engineering, 2022, 235 , 109776[2024-03-30]. doi: 10.1016/j.compositesb.2022.109776.
    [9] YUAN Tiancheng, ZHANG Tao, HUANG Yaqian, et al. Study on bamboo longitudinal flattening technology[J/OL]. Polymers, 2022, 14 (4): 816[2024-03-30]. doi: 10.3390/polym14040816.
    [10] 王戈, 陈复明, 程海涛, 等. 中国竹产业的特色优势与创新发展[J]. 世界竹藤通讯, 2020, 18 (6): 6 − 13, 29.

    WANG Ge, CHEN Fuming, CHENG Haitao, et al. Special advantage and innovative development of bamboo industry in China[J]. World Bamboo and Rattan, 2020, 18 (6): 6 − 13, 29.
    [11] WANG Zihao, TONG Jiewei, KUAI Bingbin, et al. Preparation and performance of fluorescent transparent bamboo[J/OL]. 2022, 186 : 115222[2024-03-30]. doi: 10.1016/j.indcrop.2022.115222.
    [12] WANG Xuan, SHAN Shuya, SHI S Q, et al. Optically transparent bamboo with high strength and low thermal conductivity [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1662 − 1669.
    [13] WANG Youyong, GUO Fangliang, LI Yuanqing, et al. High overall performance transparent bamboo composite via a lignin-modification strategy[J/OL]. Composites Part B: Engineering, 2022, 235 : 109798[2024-03-30]. doi: https://doi.org/10.1016/j.compositesb.2022.109798.
    [14] 苏嘉慧. 透明竹材的制备及其功能化研究[D]. 长沙: 中南林业科技大学, 2023.

    SU Jiahui. Preparation of Transparent Bamboo and Its Functionalization Research[D]. Changsha: Central South University of Forestry and Technology, 2023.
    [15] QIU Xiangsheng, WANG Zihao, ZHANG Yaoli, et al. Preparation and performance on fluorescent magnetic transparent bamboo[J/OL]. Industrial Crops and Products, 2024, 208 : 117881[2024-03-30]. doi: 10.1016/j.indcrop.2023.117881.
    [16] WANG Kaili, PENG Haozhe, GU Qiyu, et al. Scalable, large-size, and flexible transparent bamboo[J/OL]. Chemical Engineering Journal, 2023, 451 : 138349[2024-03-30]. doi: 10.1016/j.foodhyd.2018.03.054.
    [17] CHEN Bo, LEISTE U H, FOURNEY W L, et al. Hardened wood as a renewable alternative to steel and plastic [J]. Matter, 2021, 4(12): 3941 − 3952.
    [18] LOU Zhichao, WANG Qiuyi, SUN Wei, et al. Bamboo flattening technique: a literature and patent review [J]. European Journal of Wood and Wood Products, 2021, 79: 1035 − 1048.
    [19] YUAN Tiancheng, HAN Xin, WU Yifei, et al. A new approach for fabricating crack-free, flattened bamboo board and the study of its macro-/micro-properties [J]. European Journal of Wood and Wood Products, 2021, 79: 1531 − 1540.
    [20] 李红晨, 何盛, 张仲凤, 等. 竹材显微构造与孔隙结构研究进展[J]. 竹子学报, 2019, 38 (3): 52 − 58, 77.

    LI Hongchen, HE Sheng, ZHANG Zhongfeng, et al. Research progress of microstructure and porous structure of bamboo[J]. Journal of Bamboo Research. 2019, 38 (3): 52 − 58, 77.
    [21] WANG Kaili, LIU Xiaorong, TAN Yi, et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation [J]. Chemical Engineering Journal, 2019, 371: 769 − 780.
    [22] GUAN Hao, CHENG Zhiyong, WANG Xiaoqing. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents [J]. ACS Nano, 2018, 12(10): 10365 − 10373.
    [23] CHENG Shichao, HUANG Anmin, WANG Shennan, et al. Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood [J]. BioResources, 2016, 11(2): 4006 − 4016.
    [24] HUANG Xu, ZHANG Weidong. Preparation of cellulose sulphate and evaluation of its properties[J] Journal of Fiber Bioengineering and Informatics, 2010, 3 (1): 32 − 39.
    [25] WANG Kaili, LIU Xiaorong, TAN Yi, et al. Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings [J]. Chemical Engineering Journal, 2019, 359: 626 − 640.
    [26] ELLERBROCK R, STEIN M, SCHALLER J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR[J/OL]. Scientific Reports, 2022, 12 : 11708[2024-03-30]. doi: 10.1038/s41598-022-15882-4.
    [27] ZHANG Tao, ZHENG Miao, LI Hongji, et al. Photochromic transparent bamboo composite with excellent optical and thermal management for smart window applications[J/OL]. Industrial Crops and Products. 2023; 205 : 117532[2024-03-30]. doi: 10.1016/j.indcrop.2023.117532.
  • [1] 闫实, 杨正勇, 周晓剑, 陈新义, 杨杰芳, 贺磊, 黄慧.  竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响 . 浙江农林大学学报, 2024, 41(4): 861-869. doi: 10.11833/j.issn.2095-0756.20230586
    [2] 李荣荣, 贺楚君, 彭博, 王传贵.  毛竹材不同部位纤维形态及部分物理性能差异 . 浙江农林大学学报, 2021, 38(4): 854-860. doi: 10.11833/j.issn.2095-0756.20200649
    [3] 刘庭菘, 王慧, 王同属, 姜俊, 王婕, 孙芳利, 杨先金.  竹材气相氟化处理的尺寸稳定性和防霉性能 . 浙江农林大学学报, 2020, 37(2): 350-356. doi: 10.11833/j.issn.2095-0756.2020.02.021
    [4] 莫珏, 马中青, 聂玉静, 马灵飞.  高温快速热压处理对毛竹材物理力学性能的影响 . 浙江农林大学学报, 2019, 36(5): 974-980. doi: 10.11833/j.issn.2095-0756.2019.05.017
    [5] 王倩颖, 常鹏杰, 申亚梅, 张超, 董彬, 时宝柱.  景宁木兰热胁迫下实时荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 935-942. doi: 10.11833/j.issn.2095-0756.2019.05.012
    [6] 夏雨, 牛帅红, 李延军, 夏俐, 马俊敏, 王丽, 余肖红.  常压高温热处理对红竹竹材物理力学性能的影响 . 浙江农林大学学报, 2018, 35(4): 765-770. doi: 10.11833/j.issn.2095-0756.2018.04.023
    [7] 宋剑刚, 王发鹏, 顾笛.  竹材表面仿生构筑类月季花超疏水结构的研究 . 浙江农林大学学报, 2017, 34(5): 921-925. doi: 10.11833/j.issn.2095-0756.2017.05.020
    [8] 郦宜斌, 郭明, 燕冰宇, 郭斌, 王春歌.  新型水热方法降解纤维素及降解产物分析 . 浙江农林大学学报, 2014, 31(5): 730-738. doi: 10.11833/j.issn.2095-0756.2014.05.011
    [9] 汤颖, 李君彪, 沈钰程, 金勇男, 王云芳, 李延军.  热处理工艺对竹材性能的影响 . 浙江农林大学学报, 2014, 31(2): 167-171. doi: 10.11833/j.issn.2095-0756.2014.02.001
    [10] 于红卫, 刘志坤, 方群, 罗从军, 沈哲红, 鲍滨福.  淀粉-碱木素改性酚醛树脂的粘接性能及固化动力学研究 . 浙江农林大学学报, 2014, 31(1): 129-135. doi: 10.11833/j.issn.2095-0756.2014.01.020
    [11] 董升忠, 王美燕, 孙钢强, 杨飞, 章益梁, 许少春, 吴杭冬, 周瞿龙.  7种木塑材料墙体的热工性能分析 . 浙江农林大学学报, 2011, 28(6): 931-936. doi: 10.11833/j.issn.2095-0756.2011.06.016
    [12] 高群英, 高岩, 张汝民, 杜明利, 李刚.  3种菊科植物香气成分的热脱附气质联用分析 . 浙江农林大学学报, 2011, 28(2): 326-332. doi: 10.11833/j.issn.2095-0756.2011.02.025
    [13] 李延军, 张璧光, 张齐生, 李贤军, 刘志坤.  木束高温干燥过程中的热质传递模型 . 浙江农林大学学报, 2008, 25(2): 131-136.
    [14] 刘波, 余树全, 周国模, 郑文达, 刘雪松, 卢凤珠, 黄志伟, 张子焰.  利用锥形量热仪测试木荷燃烧性能的方法探讨 . 浙江农林大学学报, 2008, 25(1): 69-71.
    [15] 嵇伟兵, 姚文斌, 马灵飞.  龙竹和绿竹竹材壁厚度方向的梯度力学性能 . 浙江农林大学学报, 2007, 24(2): 125-129.
    [16] 孙芳利, 毛胜凤, 文桂峰, 段新芳, 陈其乐.  不同浸提处理后竹材的防霉性能 . 浙江农林大学学报, 2006, 23(2): 135-139.
    [17] 卢凤珠, 徐跃标, 钱俊, 徐群芳, 严建敏.  不同竹龄毛竹材燃烧性能的研究 . 浙江农林大学学报, 2005, 22(2): 198-202.
    [18] 姜志宏, 许益柳, 祝迎春, 李向帆, 孔才源.  浸胶量与竹材层压板物理力学性能的关系 . 浙江农林大学学报, 1997, 14(4): 350-354.
    [19] 马灵飞, 韩红, 徐真旺, 张静文, 马乃训.  部分竹材灰分和木素含量的分析 . 浙江农林大学学报, 1996, 13(3): 276-279.
    [20] 马灵飞, 韩红, 马乃训, 戴启惠.  丛生竹材纤维形态及主要理化性能 . 浙江农林大学学报, 1994, 11(3): 274-280.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240296

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2025/1/1

图(11)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-11-04
  • 录用日期:  2024-11-18

荧光超疏水透明竹材的制备及性能研究

doi: 10.11833/j.issn.2095-0756.20240296
    基金项目:  国家自然科学基金青年基金资助项目(32301516);南平市科技计划项目(N2022CX101)
    作者简介:

    郑淼(ORCID: 0009-0009-1039-2742),从事木竹基功能材料研究。E-mail: zhengm@njfu.edu.cn

    通信作者: 王开立(ORCID: 0000-0002-9605-7567),副教授,博士,从事木竹基功能材料研究。E-mail: wangkaili@njfu.edu.cn
  • 中图分类号: TQ351

摘要:   目的  制备具有荧光和超疏水功能的透明竹材,并对其进行性能研究与评价,为竹材的功能化应用提供参考。   方法  通过对竹材进行脱木素处理、掺杂荧光微胶囊环氧树脂的真空浸渍处理、超疏水处理等步骤,制备出具有荧光和超疏水性能的透明竹材,并对其各项性能进行表征。  结果  制备的透明竹材具有高透明度、高雾度、光散射性能、热绝缘性能、荧光性能和超疏水性能等优良特性。超疏水荧光透明竹材在波长400~800 nm内的光透过率为80%,雾度基本保持在80%以上,相比较透明竹材透光率略微下降,但雾度有了一定的提升,具有良好的光散射性;其纵向抗拉强度为123.3 MPa,横向拉伸强度相比较刨切竹单板有了显著的提升,达3.2 MPa;能够在365 nm紫外光下发出蓝色荧光。与玻璃和荧光透明竹材相比,超疏水荧光透明竹材具有更低的导热系数,为0.302 3 W·m−1·K−1。该材料具备超疏水性能,水在其表面的接触角为151.2°,滚动角为3.5°。  结论  本研究制备的超疏水荧光透明竹材融合了高透光性、高雾度、光散射性、良好的机械强度、优异的热绝缘性能、荧光特性和超疏水性等优异性能于一体。图11参27

English Abstract

郑淼, 彭浩哲, 林波, 李延军, 王开立. 荧光超疏水透明竹材的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20240296
引用本文: 郑淼, 彭浩哲, 林波, 李延军, 王开立. 荧光超疏水透明竹材的制备及性能研究[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20240296
ZHENG Miao, PENG Haozhe, LIN Bo, LI Yanjun, WANG Kaili. Preparation and properties of fluorescent and superhydrophobic bifunctional transparent bamboo material[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240296
Citation: ZHENG Miao, PENG Haozhe, LIN Bo, LI Yanjun, WANG Kaili. Preparation and properties of fluorescent and superhydrophobic bifunctional transparent bamboo material[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240296
  • 透明木材因其独特的光、热、力学属性,在智能透光建筑、光电子器件、家居材料等方面有着巨大的应用前景[13]。通过在树脂中引入功能基团或纳米材料,一系列功能化透明木材,如荧光透明木材、紫外/红外屏蔽透明木材、隔热透明木材等,相继被开发出来,进一步扩宽了透明木材的应用领域[46]。然而,由于木材稀缺和国家的环保政策,寻找低成本高质量的替代原料具有现实意义,而竹子以其快速生长和良好性能成为潜在的替代品[78]。但是,由于竹材较高密度和组织结构的差异,竹材在制成透明材料时面临着渗透和保持结构完整性的挑战[911]。WANG等[12]使用质量浓度为1%的氢氧化钠溶液预处理竹子,成功制备出透光率为80%的透明竹材。WANG等[13]利用碱性过氧化氢体系对竹材中木质素进行改性处理,制备出结构更为完整且力学性能更强的透明竹材。但是,目前所报道的大多数透明竹材是以原竹竹筒进行剖分、去青去黄、刨平而得到的窄长竹块为原材料[1415],其宽度一般不超过20 mm,因此存在幅面尺寸太小导致应用受限的问题。针对此问题,WANG等[16]以刨切竹单板为原料(刨切竹单板是由原竹经过高温软化、展平和刨切制得,此过程会轻微破坏和降解竹材的结构和成分,使其脱木素过程难度加大),提出利用丙三醇三缩水甘油醚(PTGE)预交联竹材后再脱木素的策略,成功制备出更大幅面(135 mm × 135 mm × 1 mm)的透明竹材,推进了透明竹材的大幅面化应用。尽管大尺寸透明竹材已被成功制备,但其功能性和应用场景有待进一步丰富和挖掘。因此,本研究鉴于透明木材的功能化应用,通过对刨切竹单板依次进行脱木素处理、掺杂荧光微胶囊环氧树脂的真空浸渍处理、超疏水处理,制备出具有荧光、超疏水双功能透明竹材,对所制备透明竹材的微观结构、化学成分、光学性能、力学性能、热学性能以及超疏水性能等进行了表征与研究,以期为竹基功能化材料的发展和应用以及竹材的高值化利用提供科学依据。

    • 材料选用展平竹刨切单板,厚度为1 mm;荧光微胶囊(带负电荷石墨烯量子点与阳离子聚电解质组装而成);亚氯酸钠,纯度为80%;乙酸(分析纯);氢氧化钠,纯度为95%;无水乙醇;环氧树脂及固化剂,GD333;PTGE,纯度为98 %;二氧化硅粒子,粒径为0.3 μm;氨水,纯度为10%;正硅酸乙酯,纯度为95%;全氟烷基三甲氧基硅烷,纯度为97 %。

    • 采用亚氯酸钠脱木素方法,具体步骤如下:配置质量浓度为1%的氢氧化钠溶液,将刨切竹单板浸渍于溶液中,于80 ℃水浴加热8~12 h,后用去离子水清洗多次去除残留试剂。配置PTGE的水/乙醇溶液(PTGE体积分数为10%,水和乙醇体积比为1∶1),将上一步骤浸渍氢氧化钠溶液的刨切竹单板浸渍于此溶液中,于60 ℃下反应4~6 h,再用去离子水清洗多次去除残留试剂。配置质量浓度为1%的次氯酸钠溶液,乙酸调节溶液pH 4.6,再将上一步骤刨切竹单板浸没于溶液中,于80 ℃水浴进行脱木素处理,每6 h更换1次溶液,直至竹片颜色完全变白。将脱木素竹片浸渍在无水乙醇中待用。

    • 首先配置柔性环氧树脂AB胶(型号为GD333,特软),将A、B组分按照3∶1的质量比混合均匀,然后加入荧光微胶囊(添加量为环氧树脂质量的1%),利用磁力搅拌器搅拌均匀,将上述脱木素竹片浸渍于配置好的荧光微胶囊掺杂的环氧树脂中,进行真空浸渍处理。然后将竹片取出,置于2片聚四氟膜之间,于60 ℃下固化获得荧光透明竹材。

    • 制备超疏水纳米粒子,步骤如下:称取10 g粒径为500 nm的二氧化硅粒子,超声分散到500 mL无水乙醇中,然后体系中加入20 mL氨水,剧烈搅拌,继续加入24 mL正硅酸乙酯,搅拌10 min后加入24 mL全氟烷基三甲氧基硅烷,搅拌反应24 h。温度升高至80 ℃继续反应2 h。反应结束后,疏水粒子用无水乙醇离心清洗3次,置于60 ℃烘箱中干燥。

      超疏水涂料制备:研磨超疏水粒子,并过200目筛网,称取2 g超疏水粒子分散到20 g无水乙醇中,搅拌均匀,装入喷笔的喷壶中,调节气泵压力进行喷涂。将一定量的超疏水涂料喷涂在预固化透明竹材表面,待环氧树脂完全固化后,可获得超疏水荧光透明竹材。

    • 采用扫描电子显微镜(SEM)观察刨切竹单板和透明竹材的微观结构。样品断面用切片机切平整,用导电胶黏到样品台上,进行喷金处理。观察时,扫描电镜的加速电压为5.0 kV。

      采用傅里叶红外光谱仪(FTIR)对刨切竹单板、脱木素竹材和透明竹材的化学成分变化进行表征,光谱仪采用衰减全反射(ATR)模式。光谱扫描范围为4 000~500 cm−1,扫描次数为32次,分辨率为4 cm−1

      竹材纤维素、半纤维素和木质素相对含量的测定参考文献[17]。

      采用带积分球的雾度计测量透明竹材样品的光透过率和雾度。此外,采用532 nm单模激光作为入射光源,入射光垂直照射到样品上,光束通过透明竹材后迅速发散,投射到后置屏幕上,使用照度计测量散射光沿x方向和y方向的强度分布,以此表征透明竹材的光散射行为。激光光源与透明竹材样品之间的距离为50 cm,屏幕与透明竹材样品之间的距离为10 cm。

      用导热系数仪测定透明竹材的导热系数,测试方法为热板法。每个样品重复测试3次,取平均值作为最终结果。

      利用万能力学试验机测定刨切竹单板和透明竹材的力学拉伸强度,样品尺寸为50 mm × 5 mm × 1 mm,拉伸速度为10 mm·min−1。每组样品重复测试6次,取平均值。

      将试件放置于接触角测量仪样品台上。将吸取去离子水的注射器固定在测试仪上,调节焦距和样品位置,使成像清晰。然后将3 μL的水滴滴在样品表面,记录液滴在试件表面的接触角,并用SCA20软件进行数据处理,每个样品测试6次,取平均值。取10 μL去离子水滴在样品表面,倾斜样品台,直至水滴滚落或移动,记录样品台倾斜角度即为滚动角值,每个样品重复测试6次,取平均值。

    • 采用Excel、SPSS等软件对数据进行处理和分析,使用Origin 2018作图。

    • 图1A所示:将刨切竹单板裁剪成幅面为100 mm ×100 mm的竹单板样品(图1B)。刨切竹单板是利用原竹制成竹展平板,再通过刨切制备获得,在此过程中,竹材的微观结构和化学成分发生了轻微破坏和降解,使得脱木素处理难度加大[1819]。针对这一问题,对传统的亚氯酸钠/冰醋酸脱木素方法进行了改良,首先利用低质量浓度的氢氧化钠溶液润胀竹材,提升其渗透性;然后,利用PTGE交联竹材纤维成分,以增强竹材的横向结合强度;最终,利用亚氯酸钠/冰醋酸溶液对其进行脱木素处理。如图1C和1D所示:通过改良工艺对刨切竹单板进行脱木素和掺杂荧光微胶囊环氧树脂的真空浸渍后,成功制备出荧光透明竹材,其结构完好无损,没有发生开裂,并且在365 nm的紫外灯照射下,制备的透明竹材呈现出均匀且通透的蓝色荧光,同时竹材的透明质地仍然清晰可见。进一步地,在预固化荧光透明竹材的表面喷涂超疏水涂料,待环氧树脂完全固化后,得到具有超疏水荧光性能的透明竹材。如图1E所示:可以观察到酸、碱、水、红茶、牛奶等各种液体滴落在超疏水荧光透明竹材表面呈现球状液滴,证明了荧光透明竹材的超疏水性能。

      图  1  不同竹材样品的外观

      Figure 1.  Appearance of different bamboo samples

    • 图2A和2B所示:竹材节间主要由基本组织(薄壁细胞)与维管束构成,维管束不规则分布在基本组织中。维管束中的竹纤维细胞是厚壁细胞,起到机械支持作用,为增强相;基本组织是薄壁细胞,包围着维管束,为基体相。横切面上,维管束呈现“四瓣梅花状”[20]图2C所示:刨切竹单板的薄壁细胞出现了褶皱,这是因为在刨切竹单板制备过程中,要经历高温软化、展平、刨切等步骤,这些过程会使竹材的成分发生轻微降解,同时产生一定的内应力,导致竹材的细胞结构和成分发生变化,且细胞腔中淀粉颗粒消失不见。图2D是经过环氧树脂浸渍且原位固化后,所制备荧光透明竹材的微观结构形貌,竹材孔隙结构以及细胞间隙都被环氧树脂填充,并且竹材细胞和环氧树脂结合非常紧密,这也是荧光透明竹材具有高透光率的关键。

      图  2  竹材(A, B)、刨切竹单板(C)和荧光透明竹材(D)的扫描电镜图

      Figure 2.  Scanning electron micrographs of bamboo (A, B), sliced bamboo veneer (C) and fluorescent transparent bamboo (D)

    • 图3A所示:刨切竹单板中纤维素相对含量为47.6%,半纤维素相对含量为22.5%,木质素相对含量为29.9%,脱木素处理后,刨切竹单板的三大素相对含量均发生了改变,其中纤维素相对含量增加到77.6%,半纤维素相对含量减少为16.3%,而木质素相对含量为6.1%。表明刨切竹单板在经过脱木素处理后,半纤维素和木质素的相对含量逐渐降低,其中木质素尤为明显,而纤维素的相对含量提高了近30%。如图3B所示:刨切竹单板的密度为0.62 g·cm−3,荧光透明竹材的密度提升了近2倍,达1.19 g·cm−3,这表明脱木素竹材在环氧树脂真空浸渍处理后,竹材孔隙结构中的空气被排除,环氧树脂取代了空气进入竹材孔隙内,使竹材变成透明竹材。

      图  3  不同竹材样品的成分相对含量和密度

      Figure 3.  Component content and density of different bamboo samples

      图4可见:对于刨切竹单板,在波长1 730和1 237 cm−1处是竹材半纤维素的特征峰,在1 596、1 508、和1 456 cm−1处归属于木质素特征峰[2122],脱木素竹材中这些特征峰消失或减少,说明竹材中木质素和半纤维素成分部分被去除。此外,与刨切竹单板的红外光谱相比,脱木素竹材在1 200 cm−1处出现了新的特征峰,而在1 031 cm−1处的峰强度发生了变化,说明有醚键产生[23],证实了PTGE与脱木素竹材纤维素的交联。此外,从荧光透明竹材的红外曲线可以看出,甲基、亚甲基的对称伸缩振动2 964,2 923 cm−1;甲基、亚甲基的不对称伸缩振动2 869 cm−1;亚甲基的变形振动1 607 cm−1,苯环(C—O—C) 1 181 cm−1;苯环(C—H) 3 034、826 cm−1;苯环(C=C) 1 508、1 607 cm−1,这些环氧特征值的出现[24],证明了环氧树脂在透明竹材中的成功复合。超疏水荧光透明竹材与荧光透明竹材的FTIR相比,超疏水荧光透明竹材在1 202 cm−1处出现了新的特征峰,归属于C—F基团[25];在1 063、823 cm−1处的特征峰归属于Si—O—Si的特征峰[26],表明超疏水涂层成功附着在荧光透明竹材表面。

      图  4  刨切竹单板、脱木素竹材、荧光透明竹材和超疏水荧光透明竹材的红外光谱图

      Figure 4.  Infrared spectra of sliced bamboo veneer, delignified bamboo, fluorescent transparent bamboo, and superhydrophobic fluorescent transparent bamboo

    • 图5A中红线表明:在波长为400~450 nm内,荧光透明竹材样品的光透过率随着波长的增加而逐渐提高,从70%提高到了80%。而在波长为450~800 nm内,透明竹材的波长稳定在了80%,说明制备的荧光透明竹材具有高透光性。雾度是透明竹材透明性能的另一个重要指标,制备的荧光透明竹材雾度如图5B蓝线所示。在波长为400~800 nm内,其随着波长的增加而逐渐减小,但是基本保持在80%以上。当超疏水粒子喷涂到荧光透明竹材表面后,相比于荧光透明竹材,超疏水荧光透明竹材的透光率有所降低,而雾度比荧光透明竹材更高,说明超疏水涂层对光线有轻微的阻挡作用,光线在超疏水涂层处具有更高的光散射性能。透明竹材的高雾度可以扩大光的照射范围,光线穿过透明竹材时,能使光线变得柔和,提供更均匀、舒适的照明环境和更大的照明面积[27]

      图  5  荧光透明竹材(A)和超疏水荧光透明竹材(B)的透光率和雾度

      Figure 5.  Transmittance and haze of fluorescent transparent bamboo (A) and superhydrophobic fluorescent transparent bamboo (B)

      图6可见:用一束绿色激光照射荧光透明竹材样品时,由于荧光透明竹材的内部微观结构(竹纤维素纤维高度排列)和环氧树脂与竹纤维的界面效应,光会发生散射现象,在荧光透明竹材上表现出各向异性。荧光透明竹材和超疏水透明竹材都呈现出各向异性的光散射行为,x轴方向上的散射光角度比y轴更大。此外,超疏水透明竹材由于疏水涂层对光的散射作用,在y轴方向上散射光角度比荧光透明竹材略大,说明超疏水透明竹材的各向异性光散射性能略微变弱。

      图  6  荧光透明竹材(A)和超疏水荧光透明竹材(B)的散射光强度分布图

      Figure 6.  Scattered light intensity distribution of fluorescent transparent bamboo (A) and superhydrophobic fluorescent transparent bamboo (B)

    • 图7A所示:刨切竹单板以及脱木素竹材的横向抗拉强度很低,均小于0.5 MPa,尤其是脱木素竹材,横向抗拉强度几乎为零,而经过柔性树脂填充的超疏水荧光透明竹材,其横向抗拉强度达3.2 MPa,应变为8%。而竹材的纵向抗拉强度情况却有很大不同,如图7B所示:刨切竹单板的纵向抗拉强度为123.3 MPa,应变为7%;脱木素竹材的纵向抗拉强度为42.2 MPa,应变为2%。超疏水荧光透明竹材的纵向抗拉强度则低于刨切竹单板,为68.1 MPa,应变为6%。与刨切竹单板相比,超疏水荧光透明竹材的横向拉伸性能得到了改善,纵向拉伸性能则有所下降。这是因为竹材在脱木素过程中,木质素成分被脱除,竹材的原始结构被破坏,即使填充环氧树脂,超疏水荧光透明竹材的纵向拉伸强度依然低于刨切竹单板。而在横向上,由于竹材缺乏横向细胞组织,其横向强度差,脱木素竹材在经过环氧树脂浸渍以及原位固化后,使竹纤维紧密黏结在一起,提供横向强度,因此,超疏水荧光透明竹材的横向拉伸强度高于刨切竹单板的横向拉伸强度。

      图  7  刨切竹单板、脱木素竹材和超疏水荧光透明竹材应力应变曲线图

      Figure 7.  Stress-strain diagrams of sliced bamboo veneer, delignified bamboo and superhydrophobic fluorescent transparent bamboo

    • 图8A所示:玻璃的导热系数最高,为0.952 6 W·m−1·K−1,远高于荧光透明竹材以及超疏水荧光透明竹材的导热系数,而荧光透明竹材的导热系数略高于超疏水荧光透明竹材的导热系数,两者分别为0.342 5和0.302 3 W·m−1·K−1。导热系数的差异表明,当使用超疏水荧光透明竹材代替玻璃时,超疏水荧光透明竹材具有更好的隔热性能。为了表征透明竹材的导热性能,搭建了以玻璃、荧光透明竹材以及超疏水荧光透明竹材为盖板的房屋模型,利用红外灯光源模拟太阳光源,表征模型房屋内的温度随光照射时间的变化情况,结果如图8B所示。在相同的升温时间(光照时间) 300 s后,玻璃盖板房屋模型内部温度达75 ℃,而以荧光透明竹材以及超疏水荧光透明竹材的温度则分别为68和60 ℃。而在降温过程中(关闭光源),玻璃房屋的降温速度最快,荧光超疏水透明竹材的降温速度最慢,表明超疏水荧光透明竹材具有更加优异的隔热性能。

      图  8  刨切竹单板、荧光透明竹材以及超疏水荧光透明竹材导热系数和温度-时间曲线图

      Figure 8.  Thermal conductivity and temperature-time curves of sliced bamboo veneer, fluorescent transparent bamboo and superhydrophobic fluorescent transparent bamboo

    • 图9A所示:刨切竹单板的水接触角仅为36.0°,表现为亲水特性。这是因为刨切竹单板表面光滑,且含有大量羟基、羧基和其他亲水基团,容易吸附极性水分子。如图9B所示:因脱木素竹材中的孔隙结构被环氧树脂填充,荧光透明竹材的水接触角提高到了80.8°。众所周知,微纳米粗糙结构与低表面能发挥物质协同作用,共同决定了材料表面的超疏水性能。使用全氟烷基三甲氧基硅烷降低了纳米二氧化硅的表面能,从而制备出超疏水性二氧化硅,将超疏水二氧化硅喷涂到荧光透明竹材表面,最终获得超疏水荧光透明竹材。如图9C和9D所示:超疏水荧光透明竹材的水接触为151.2°,滚动角为3.5°,达到了超疏水性。如图9E所示:超疏水荧光透明竹材表面的结构形态变得很粗糙,具有类似荷叶结构的微纳米结构粒状突起。

      图  9  不同竹材表面的水润湿性以及超疏水荧光透明竹材表面电镜图

      Figure 9.  Water wettability of different bamboo sample surfaces, and SEM image of superhydrophobic fluorescent transparent bamboo

      超疏水荧光透明竹材表面分别经过手指摩擦,置于低温环境(−30 ℃,2 h)和高温环境(100 ℃,2 h)共3个循环,以及置于紫外灯光(365 nm,20 W)下6 h后,测量3种处理后超疏水荧光透明竹材的接触角。结果如图10所示:其接触角均在150°左右,表明竹材表面超疏水的耐久性良好。

      图  10  严苛环境测试下超疏水荧光透明竹材的水接触角

      Figure 10.  Surface water contant angle of superhydrophobic fluorescent transparent bamboo after harsh environment test

      图11所示:3种样品倾斜放置,亚甲基蓝染色水溶液滴在木屑污染的竹单板表面时,竹单板表面上的亚甲基蓝溶液滴和木屑混合并黏附在竹单板表面上。当亚甲基蓝溶液滴在木屑污染的荧光透明竹材表面时,荧光透明竹材表面的亚甲基蓝溶液滴和木屑混合并黏附在其表面上。而超疏水荧光透明竹材试件上,亚甲基蓝溶液滚下并带走表面的木屑,形成干燥洁净的表面。

      图  11  竹单板(A)、荧光透明竹材(B)、超疏水荧光透明竹材(C)的自清洁性能

      Figure 11.  Self-cleaning performance of bamboo veneer (A), fluorescent transparent bamboo (B), superhydrophobic fluorescent transparent bamboo (C)

    • 本研究以刨切竹单板为原料,经过预交联的脱木素方法可实现大幅面透明竹材的制备。环氧树脂浸渍体系均匀掺杂荧光微胶囊后,透明竹材在紫外灯光下呈现出均匀且通透的蓝色荧光,可扩宽透明竹材在发光领域的应用。荧光透明竹材表面涂覆薄层超疏水涂层后,透明竹材的透光率稍有降低,雾度稍增加,但对于光学性能的影响较低。同时,荧光透明木材被赋予超疏水性能后,具有自清洁性,可有效降低灰尘和水分对于透明竹材光学等性能的影响。导热系数进一步降低,使得超疏水荧光透明竹材可应用于智能窗户,可有效实现对室内温度的调控,起到节能作用。

      超疏水荧光透明竹材集高透光性、高雾度、光散射性、良好的机械强度、优异的热绝缘性能、荧光特性和超疏水性等优异性能于一体,在节能建筑、照明设计等领域具有极大应用潜力,将拓展透明竹材的应用范围,并可确保其具有长期稳定的使用效果。超疏水荧光透明竹材的实际应用仍需解决其更大幅面制备以及疏水层耐磨性问题。

参考文献 (27)

目录

    /

    返回文章
    返回