留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木种子园子代性状相关性研究

付顺华 董汝湘 吴隆高 冯建民 刘伟宏 华朝晖 孙鸿有

上官方京, 赵明水, 张博纳, 等. 亚热带植物水力性状与木质部解剖结构的关系[J]. 浙江农林大学学报, 2022, 39(2): 252-261. DOI: 10.11833/j.issn.2095-0756.20210813
引用本文: 付顺华, 董汝湘, 吴隆高, 等. 杉木种子园子代性状相关性研究[J]. 浙江农林大学学报, 2007, 24(3): 272-278.
SHANGGUAN Fangjing, ZHAO Mingshui, ZHANG Bona, et al. Relationship between hydraulic properties and xylem anatomical structure of subtropical plants[J]. Journal of Zhejiang A&F University, 2022, 39(2): 252-261. DOI: 10.11833/j.issn.2095-0756.20210813
Citation: FUShun-hua, DONG Ru-xiang, WULong-gao, et al. Correlations in progeny trials of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2007, 24(3): 272-278.

杉木种子园子代性状相关性研究

基金项目: 

浙江省自然科学基金资助项目(393058);浙江省科学技术重点项目(991102339)

详细信息
    作者简介: 付顺华,副教授,硕士,从事植物遗传育种和种质资源研究。
    通信作者: 孙鸿有,教授,从事林木遗传育种研究。
  • 中图分类号:  S718.46

Correlations in progeny trials of Cunninghamia lanceolata

Funds: 

浙江省自然科学基金资助项目(393058);浙江省科学技术重点项目(991102339)

  • 摘要: 为进一步了解杉木Cunninghamia lanceolata种子园子代遗传变异规律,提高杉木群体良种选育效率,以浙江省17个杉木种子园子代为研究材料,于1998- 1999年,在临安市横畈林场采用10区组、3~ 4株小区的完全随机区组设计,营建2片子代试验林。自造林后第2年起,连续6 a调查测定树高、胸径、材积、冠幅和侧枝性状等,在数理统计分析的基础上,研究了种子园子代性状之间的表型相关、遗传相关以及年-年之间的生长相关和秩次相关等。结果表明,种子园子代树高、胸径和材积之间呈极紧密相关,相关系数rp和rg达到或近于1.0,通过胸径对材积进行间接选择,选准率100%。冠幅、盘间距与生长性状之间分别呈中度相关和轻度-中度相关,盘侧枝数与生长性状之间在遗传上没有相关关系,每米侧枝数则有负相关关系。不同年龄之间的年-年生长相关,随着年龄的增长而增大,其生长秩次变化在2~ 3年生时已逐渐稳定, 5~ 6年生时基本稳定,rs高达0.96~ 0.99。在杉木种子园子代测定中,早期选择可从造林后第2年生长期结束时开始,但其选择率必须比第2次选择增加1倍。在此前提下,如以6年生选择作为第2次选择,选准率达100%,即在6年生选择时能入选的植株,在此情况下将无一漏选。表7参30
  • 近年来,全球气候的持续变化加剧了干旱对森林的威胁[1]。以往研究表明:水力安全阈值(导水率损失50%时的水势与最小水势差)与年均降水量无关,这意味着干旱引发的森林衰退存在全球趋同现象[2]。在严重干旱后的数年内,植物普遍存在生长缓慢和恢复不完全的遗留效应,植物生长强弱根据水力安全阈值而异[2-3],生长在湿润地区的植物受遗留效应的影响,恢复能力较弱,难以在未来更为频繁的干旱威胁下正常生长,从而导致湿润区生态系统的永久损伤,并进一步造成森林碳汇的普遍退化[4]。通过对湿润区不同水分环境植物的研究,有助于理解水分有效性对湿润区植物生存策略的影响。

    水力失效是干旱期间植物生产力下降和死亡的主要原因[5]。水分供需矛盾的加剧迫使更多空气进入木质部管道,由此产生的栓塞阻碍了植物的水分运输,最终导致水力失效。植物的输水效率常通过植物茎的比导率(Ks)来衡量[6],湿润生境下的植物倾向于最大化输水效率而非增加木质部对栓塞的抵抗力以满足生长需求[7]。栓塞抗性(植物导水率损失50%的水势,P50)常用来表征植物应对干旱的能力[6]。研究表明:植物的栓塞抗性与干旱胁迫强度呈正相关[2, 8]。当水势降至P50以下时,木质部栓塞加速,水力运输功能明显受阻。通过对水力性状的研究,有助于描述不同植物水力策略的范围,进而深入理解植物的驱动因素[9]

    裸子植物和被子植物的木质部结构差异较大[10-11],管胞在运输和支撑方面发挥作用,导管则仅具有运输功能。依赖纤维提供木材强度[12-13],厚度跨度比及纹孔形态作为管壁的重要特征,与栓塞抗性密切相关[14]。输水效率由管腔面积及管道密度决定。根据Hagen-Poiseuill定律[15],木质部管腔面积分数的减少可以通过增大管道尺寸弥补。相比由管胞构成的裸子植物木质部,被子植物复杂的木质部结构可独立改变导管结构以优化运输,为机械强度或储存功能提供更大的木质部空间[16]

    环境水分有效性对植物的水力策略具有选择性,从而驱动植物群落的分布[17]。本研究通过比较7种裸子植物和7种被子植物在不同生境下的栓塞抗性、输水效率和解剖结构的性状差异,探究植物水力性状与木质部解剖结构的关系,以期为研究湿润区亚热带植物在不同水分条件下的水力适应策略提供参考。

    研究区位于浙江省杭州市临安区,该区地处中亚热带向北亚热带过渡区域,四季分明,区内年平均气温为8.8~14.8 ℃,年降水量为1 390~1 870 mm,无霜期为209~235 d,相对湿度为76%~81%。在研究区内选择自然和人工生境进行植物样本采集(表1)。自然生境位于西天目山景区,除自然降水外无额外灌溉。植被类型以常绿-落叶阔叶混交林为主,除研究树种外(表2),其他常见树种有北美香柏Thuja occidentalis、短尾柯Lithocarpus brevicaudatus、榧树Torreya grandis和榉树Zelkova serrata等。人工生境为浙江农林大学植物园,相比自然生境土壤水分有效性高,人工灌溉充分。除研究树种外(表2),其他常见树种有枫香Liquidambar formosana、桂花Osmanthus fragrans、冬青Ilex chinensis、垂柳Salix babylonica和竹柏Podocarpus nagi等。

    表 1  自然和人工生境的基本特征
    Table 1  Basic characteristics for study sites in natural and artificial habitats
    生境经纬度海拔/m坡向坡度/(°)pH生长季土壤含水量/%
    自然生境30°26′N, 119°73′E400~450西南9~124.85±0.1629.53±1.21
    人工生境30°15′N, 119°43′E51~74西南15~205.23±0.1235.98±1.22
      说明:pH和生长季土壤含水量数值为平均值±标准误(n=3)
    下载: 导出CSV 
    | 显示表格
    表 2  7种裸子植物和7种被子植物基本概况
    Table 2  Basic overview of 7 species of gymnosperms and 7 species of angiospermae
    植物植物生长习性生活型
    裸子植物 杉科 Taxodiaceae 柳杉 Cryptomeria japonica 落叶 乔木
    松科 Pinaceae 金钱松 Pseudolarix amabilis 落叶 乔木
    杉科 Taxodiaceae 落羽杉 Taxodium distichum 落叶 乔木
    杉科 Taxodiaceae 杉木 Cunninghamia lanceolata 常绿 乔木
    松科 Pinaceae 雪松 Cedrus deodara 常绿 乔木
    柏科 Cupressaceae 日本扁柏 Chamaecyparis obtusa 常绿 乔木
    杉科 Taxodiaceae 北美红杉 Sequoia sempervirens 常绿 乔木
    被子植物 槭树科 Aceraceae 三角槭 Acer buergerianum 落叶 乔木
    大戟科 Euphorbiaceae 重阳木 Bischofia polycarpa 落叶 乔木
    胡桃科 Juglandacea 青钱柳 Cyclocarya paliurus 落叶 乔木
    壳斗科 Fagaceae 青冈 Cyclobalanopsis glauca 常绿 乔木
    木犀科 Oleaceae 女贞 Ligustrum lucidum 常绿 乔木
    木兰科 Magnoliaceae 广玉兰 Magnolia grandiflora 常绿 乔木
    樟科 Lauraceae 樟树 Cinnamomum bodinieri 常绿 乔木
    下载: 导出CSV 
    | 显示表格

    2021年4—6月,在不同生境下选取生长状况良好的7种裸子植物和7种被子植物作为目标物种(表2)。选择同一生境下立地条件基本一致,且胸径、树高、树龄、冠幅等相近的同一植物15~21株。在天气晴朗的8:00—11:00采集枝条,所选枝条均位于树体南部外层和树冠中部。每株随机截取3~5个枝条,所剪枝条基部直径为6~8 mm,长为15~30 cm。剪取后迅速放入装有水的黑色收纳箱中(防止水分散失和外界空气等进入被切开的导管内),立即带回实验室,进行水力功能性状和结构性状的测定。

    2.2.1   导水率与栓塞抗性

    采回样品在水中暗适应30~60 min后,在水下再次剪短样品,并修平切口。裸子植物剪取枝段平均长度为134.23 mm,平均直径为4.95 mm,被子植物剪取枝段平均长度为160.04 mm,平均直径为5.47 mm。本研究采用空气注入法构建枝段脆弱性曲线,具体如下:将枝段放入压力腔,并将枝段近轴端连接到木质部导水率与栓塞测量系统XYL’EM-Plus (Bronkhorst, Montigny-les-Cormeilles, 法国)。使用测量溶液20 mmol·L−1 氯化钾+1 mmol·L−1 氯化钙[18],在高压(120 kPa)下反复冲刷枝段10 min至最大导水率不再变化,以确保潜在栓塞被去除。在低压(6 kPa)下测量枝段的最大导水率(Kmax,kg·m·s−1·MPa−1)[19]。在确定Kmax后,对枝段施加压力2 min,用测量Kmax的方法测量相应的导水率(Kh,kg·m·s−1·MPa−1)。该过程以0.2~0.3 MPa的增量重复进行(取决于植物),直到导水率损失(PLC)至少达到90%[20]。采用XylWin 3.2软件(Bronkhorst, Montigny-les-Cormeilles, 法国)对其导水数据进行分析。比导率(Ks,kg·s−1·m−1·MPa−1)作为输水效率指标,通过Kmax除以无髓和树皮的基部边材横截面积得到[19]。导水率损失百分比计算如下:PLC=(1−Kh/Kmax)×100%[21]。导水率损失50%时的水势(P50)作为本研究的栓塞抗性指标。

    2.2.2   木质部解剖结构

    从测定导水率的枝段上截取0.5 cm长小段样品,固定软化后,采用石蜡切片法制成永久切片,所用样品的横切面用Leica DM 3000显微镜在50和400倍镜下摄像,所有样品的纵切面在400倍镜下摄像。用Image J图像处理软件分析照片,测量管胞壁厚度(μm)及导管壁厚度(μm),并计算管胞水力直径(μm)、导管水力直径(μm)、管胞密度(个·mm−2)、导管密度(个·mm−2)、厚度跨度比。根据文献[22]计算管胞水力直径和导管水力直径。管胞密度和导管密度分别通过横截面管胞数量和导管数量除以横截面面积得到。管胞壁和导管壁厚度跨度比具体测量方法可参考相关文献[14, 23]。

    2.2.3   木质部密度

    从测定导水率的枝段上截取3根3~5 cm的小枝段,用于木质部密度(WD, g·cm−3)测量。参考文献[24]方法:用刀片除去枝段样品树皮,利用阿基米德原理确定样品的新鲜体积(V,cm3);测得体积后,将样品置于75 ℃烘箱烘48 h,测得干质量(W,g),则WD=W/V

    2.2.4   数据分析

    图表制作与统计分析利用R软件(version 3.5.3)。同一植物在不同生境下各水力性状和解剖结构性状的差异,在除去异常值后,在种内进行t检验。植物枝水力性状与解剖结构性状间的关系采用Pearson相关性分析。文中所有数值为平均值±标准误。

    在植物输水效率方面,自然生境下6种被子植物的Ks显著大于人工生境(P<0.05,图1A),且被子植物Ks的均值显著大于人工生境(P<0.05,图1B)。在栓塞抗性方面,自然生境下7种被子植物的P50均显著小于人工生境(P<0.05,图1C),且被子植物P50的均值显著小于人工生境(P<0.05,图1D)。

    图 1  自然与人工生境下7种被子植物的水力功能性状
    Figure 1  Hydraulic functional characteristics of 7 species of angiosperms in natural and artificial habitats

    在植物输水效率方面,自然生境下5种裸子植物的Ks显著大于人工生境(P<0.05,图2A),但裸子植物Ks的均值在不同生境间差异不显著(P>0.05,图2B)。在栓塞抗性方面,自然生境下6种裸子植物的P50显著小于人工生境(P<0.05,图2C),且裸子植物P50的均值显著小于人工生境(P<0.05,图2D)。

    图 2  自然与人工生境下7种裸子植物的水力功能性状
    Figure 2  Hydraulic functional characteristics of 7 species of gymnosperms in natural and artificial habitats

    对14种被子植物和裸子植物的输水效率和栓塞抗性比较发现:自然生境植物的Ks均值显著大于人工生境(P<0.05,图3A),自然生境植物的P50显著小于人工生境(P<0.05,图3B)。

    图 3  不同生境下14种植物的水力功能性状
    Figure 3  Hydraulic functional characteristics of 14 studied plants in different habitats

    从被子植物的解剖结构可以看出:自然生境下5种被子植物的水力直径显著大于人工生境(P<0.05,图4A);5种被子植物的导管壁厚度显著小于人工生境(P<0.05,图4B);5种被子植物的厚度跨度比显著小于人工生境(P<0.05,图4C);樟树、青钱柳、女贞的导管密度显著小于人工生境,其余4种被子植物则相反(P<0.05,图4D);不同生境下,三角槭、青钱柳、女贞的木质部密度无显著差异,重阳木、樟树、广玉兰的木质部密度显著小于人工生境,青冈的木质部密度显著大于人工生境(P<0.05,图4E)。

    图 4  自然与人工生境下7种被子植物的木质部解剖结构特征
    Figure 4  Characteristics of xylem anatomical structure of 7 species of angiosperms in natural and artificial habitats

    从裸子植物的解剖结构可以看出:自然生境雪松、落羽杉、北美红杉的水力直径显著小于人工生境,柳杉、杉木、金钱松的水力直径显著大于人工生境(P<0.05,图5A);柳杉、杉木、北美红杉的管胞壁厚度显著大于人工生境,日本扁柏、金钱松、落羽杉的管胞壁厚度显著小于人工生境(P<0.05,图5B);柳杉、杉木、北美红杉的厚度跨度比显著大于人工生境,日本扁柏、金钱松、落羽杉的厚度跨度比显著小于人工生境(P<0.05,图5C);雪松、柳杉、日本扁柏的导管密度显著大于人工生境,杉木、金钱柳、北美红杉的导管密度显著小于人工生境(P<0.05,图5D);雪松、金钱松的木质部密度均显著大于人工生境,杉木、日本扁柏、落羽杉的木质部密度均显著小于人工生境(P<0.05,图5E)。

    图 5  自然与人工生境下7种裸子植物的木质部解剖结构特征
    Figure 5  Characteristics of xylem anatomical structure of 7 species of gymnosperms in natural and artificial habitats

    被子植物水力功能性状与木质部解剖结构性状相关性分析表明(图6A图6B):自然生境下,导管密度、厚度跨度比与KsP50均呈正相关,其中导管密度与KsP50相关极显著(P<0.01)。水力直径、导管壁厚度、木质部密度与KsP50均呈负相关,其中水力直径与KsP50相关极显著(P<0.01);人工生境下,水力直径导管壁厚度与KsP50均呈正相关关系,且相关极显著(P<0.01),厚度跨度比导管密度、木质部密度与KsP50均呈负相关,除厚度跨度比外,其他指标间相关性均极显著(P<0.01)。此外,被子植物的水力直径与KsP50在自然生境均为负相关,在人工生境则均为正相关,导管密度与KsP50在自然生境均为正相关,在人工生境则均为负相关。

    图 6  被子植物和裸子植物水力功能性状与解剖结构性状的相关性
    Figure 6  Correlation analysis between hydraulic function and anatomical structure traits of angiosperms and gymnosperms.

    裸子植物水力功能性状与木质部解剖结构性状相关性分析表明(图6C图6D):自然生境下,水力直径与Ks呈显著正相关(P<0.01),与P50呈显著负相关(P<0.01)。管胞密度与Ks呈显著负相关(P<0.01),与P50则呈显著正相关(P<0.01);人工生境下,水力直径与Ks正相关,与P50负相关,且与KsP50相关性均极显著(P<0.01),其余性状与Ks均呈负相关(P<0.05),与P50均正相关,其中厚度跨度比、导管密度、木质部密度与P50相关显著(P<0.05)。此外,裸子植物水力直径、管胞密度在不同生境下均与KsP50保持一致相关性,其中水力直径与Ks呈显著正相关(P<0.05),与P50呈显著负相关(P<0.05)。管胞密度与Ks呈极显著负相关(P<0.01),与P50呈极显著正相关(P<0.01)。

    以往研究表明:相比于干燥环境,水分充足环境下的同一植物的Ks通常较高[2, 7]。本研究中,除被子植物青钱柳及裸子植物落羽杉、北美红杉外,自然生境中植物的Ks显著大于人工生境,表明自然生境的植物拥有更高的输水效率,这与上述研究结果一致。MAHERALI等[25]指出:相比于高山环境,西黄松Pinus ponderosa在沙漠环境的Ks较高;MAHERALI等[26]研究表明:落叶被子植物Ks随生境降水量的降低而增加,因此植物通过增加输水效率以适应相对干旱环境的生存策略可能较为普遍。Hagen-Poiseuill定律表明:更高的输水效率需要较大的导管直径以满足功能需求[15],然而本研究植物较大的水力直径并未与更高的输水效率一一对应,与上述定律存在一定的偏差[27]

    植物的栓塞抗性受环境控制的假设已被证实[20, 28]。通常认为,植物的栓塞抗性随栖息地干旱程度的加剧而增加[2, 8]。本研究中除裸子植物落羽杉外,植物的栓塞抗性在自然生境显著较低,表明人工生境植物的栓塞抗性更强,这与HAJEK等[29]研究结果一致。不同生境同一植物的栓塞抗性差异显著[2],这与先前报道植物的栓塞抗性可塑性较低不符[30-31],生境干旱水平对植物栓塞抗性的预测亦存在偏差[32],栓塞抗性可能与生境水分差异无关[33]。通常植物栓塞抗性的强弱与木质部机械强度息息相关,厚度跨度比可独立于导管直径而变化,因此相比于木质部密度,厚度跨度比对植物栓塞抗性的预测效果更好[14, 23]。本研究结果与上述观点一致,厚度跨度比能更好指示栓塞抗性在不同生境的强弱。

    水分条件的差异促使植物采取不同的水力策略。本研究中,自然生境下的植物通过提高输水效率以满足蒸发需求的加剧[25-26],减轻对栓塞抗性的依赖[34]。表明栓塞抗性并非唯一的抗旱手段,植物亦可通过有效的性状组合应对干旱胁迫[33, 35],尽管这将迫使植物更接近其自身的功能极限[2]。落羽杉、北美红杉均为杉科植物,两者在应对持续水分胁迫后脱落酸(ABA)含量较低[36]。先前研究表明[37]:当植物处于轻度水分胁迫且脱落酸水平较低时,导水效率会相应提升,这可能意味着湿润区人工生境同样面临着干旱威胁。

    人工生境被子植物的水力直径、导管密度与KsP50间存在显著相关性,这可能是纤维对木质部机械强度的驱动所造成[38],纤维与导管的功能差异可能导致输水效率与机械支持解隅[39],使植物在提升输水效率的同时最大化木质部安全投资。裸子植物木质部多达90%由管胞构成,管胞具有水力运输和机械支持的功能[12, 16],本研究中裸子植物的水力直径、管胞密度在不同生境下的相关性均与KsP50保持一致,可能与裸子植物的稳定组织结构有关。其中管胞水力直径与Ks的关系符合Hagen-Poiseuill定律[15],且更宽的管胞往往更长,管胞的输水效率随管胞直径和长度的增加而增加[40]。此外,不同生境下裸子植物的厚度跨度比与管胞水力直径呈显著负相关,与管胞壁厚度呈显著正相关,表明裸子植物是通过缩小管胞直径而非管胞壁厚度以实现机械强度的增加[41]。本研究中裸子植物的管胞密度均与不同生境Ks呈显著负相关,与P50呈显著正相关,这与上述观点一致。拥有较小管胞直径、较大管胞密度的裸子植物,其栓塞抗性可能更强[28]。具有较高机械强度的植物其栓塞抗性通常较强[14]。本研究中自然生境下植物的P50变异范围较小,这可能导致P50变异与解剖特征无关[31]。此外,被子植物木材结构属性在一定程度决定了P50的变异[42],针对木质部不同组织结构的投资亦会对P50的变异产生影响[14, 35],这些因素在一定程度上解释了人工生境下被子植物的厚度跨度比与P50的负相关关系。本研究中除自然生境被子植物外,不同物种、生境下的水力直径均与Ks呈显著正相关。尽管植物平均导管直径和导管密度存在显著差异,但导管横截面积差异可能较小[38],自然生境下被子植物导管腔面积分数的差异可能导致输水效率并未与水力直径相对应[43]

    湿润区裸子植物和被子植物在同一生境的水分利用策略相似,自然生境水分有效性较低,植物通过提高输水效率以避免水势的下降,从而降低潜在栓塞风险。裸子植物与被子植物木质部结构与功能的差异可能是同一生境下植物水分策略存在差异的主要原因,导致不同水分环境对植物的驱动差异。植物性状对植物水分策略具有一定指示作用,厚度跨度比在本研究中能较好预测植物栓塞抗性在不同生境的强弱,对植物性状更为深入的研究将有助于提升对植物群落分布的理解。

  • [1] 徐振飞, 过晟鹏, 钱旺, 包苗清, 林二培, 黄华宏, 童再康.  3种杉木种子活力测定方法比较 . 浙江农林大学学报, 2020, 37(6): 1230-1234. doi: 10.11833/j.issn.2095-0756.20190615
    [2] 尚秀华, 张沛健, 谢耀坚, 罗建中, 李超, 吴志华.  50个赤桉家系抗风性与生长、材性性状的相关性 . 浙江农林大学学报, 2017, 34(6): 1029-1037. doi: 10.11833/j.issn.2095-0756.2017.06.009
    [3] 张伟红, 王润辉, 郑会全, 晏姝, 韦如萍, 胡德活, 植毓永, 罗平峰, 黄小平, 吴雄光, 何汉波.  乐昌含笑优树多点子代测定及优良家系选择 . 浙江农林大学学报, 2015, 32(5): 763-769. doi: 10.11833/j.issn.2095-0756.2015.05.016
    [4] 黄德龙.  福建柏优树子代测定及初步选择 . 浙江农林大学学报, 2009, 26(3): 449-454.
    [5] 郑勇平, 孙鸿有, 冯建民, 张建章, 冯建国, 吴隆高.  杉木优良无性系龙15与闽33双系种子园遗传改良效应分析 . 浙江农林大学学报, 2009, 26(2): 201-208.
    [6] 黄华宏, 童再康, 朱玉球, 高燕会, 许长寿, 何福基.  矮化杉木蛋白质组的差异凝胶电泳分析 . 浙江农林大学学报, 2006, 23(3): 265-269.
    [7] 骆文坚, 金国庆, 徐高福, 丰炳财, 冯建民, 罗小华.  柏木无性系种子园遗传增益及优良家系评选 . 浙江农林大学学报, 2006, 23(3): 259-264.
    [8] 刘永红, 樊军锋, 杨培华, 韩创举.  油松单亲子代苗期生长性状遗传分析 . 浙江农林大学学报, 2005, 22(5): 513-517.
    [9] 孙鸿有, 郑勇平, 翁春媚, 罗小华, 涂武泰, 蔡克孝.  杉木种子园种子品质性状变异及遗传参数 . 浙江农林大学学报, 2005, 22(1): 61-65.
    [10] 何祯祥, 施季森, 尹增芳, 陈孝丑, 余荣卓.  杉木生长性状相关联遗传标记的检测 . 浙江农林大学学报, 2000, 17(4): 350-354.
    [11] 陈奕良, 倪荣新, 陈敏红, 王赵民, 庞品珍.  庆元杉木种子园疏伐效果试验 . 浙江农林大学学报, 2000, 17(1): 5-8.
    [12] 王赵民, 张建忠, 倪荣新, 陈奕良, 吴隆高, 王伟安, 陈锡连.  杉木种子园产量和品质的影响因子分析 . 浙江农林大学学报, 1998, 15(1): 13-21.
    [13] 孙鸿有, 傅秋华, 程育民, 王宇熙, 丰晓阳.  杉木良种种子品质遗传改良初步研究 . 浙江农林大学学报, 1997, 14(2): 120-126.
    [14] 梁一池.  杉木第1代改良种子园无性系多性状综合选择 . 浙江农林大学学报, 1997, 14(4): 333-338.
    [15] 徐一忠, 来振良, 丰炳财, 张士海, 邵阳.  杉木种子园不同无性系和不同着生方位球果对病虫害的抗性 . 浙江农林大学学报, 1997, 14(1): 35-40.
    [16] 管康林, 黄坚钦, 何福基.  杉木种子园球果的出籽率和饱粒率 . 浙江农林大学学报, 1997, 14(2): 127-133.
    [17] 管康林, 管宇.  杉木种子园产量构成分析 . 浙江农林大学学报, 1997, 14(3): 213-219.
    [18] 管康林, 严逸伦, 郑炳松.  杉木花芽分化过程中含氮化合物和内源激素的作用* . 浙江农林大学学报, 1996, 13(3): 248-254.
    [19] 何福基, 吴明安, 倪荣新, 谢正成, 张建忠.  杉木种子园郁闭度对种子产量的影晌 . 浙江农林大学学报, 1995, 12(3): 311-315.
    [20] 童再康, 范义荣, 王学平, 杨家强.  黄山松生长早晚期相关与早期选择 . 浙江农林大学学报, 1993, 10(2): 133-138.
  • 期刊类型引用(2)

    1. 徐永杰,徐雅雯,王代全,王其竹,付亚男,方立军,黄发新. 高接换种对核桃枝条和根系生理特征的影响. 中国农学通报. 2024(13): 55-59 . 百度学术
    2. 吴青松,刘英卉,李硕,李盼盼,张友民. 乌苏里鼠李茎叶的解剖结构及其生态适应性. 植物研究. 2023(03): 461-469 . 百度学术

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/id/1275

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2007/3/272

计量
  • 文章访问数:  1160
  • HTML全文浏览量:  177
  • PDF下载量:  171
  • 被引次数: 8
出版历程
  • 收稿日期:  2006-10-08
  • 修回日期:  2007-03-02
  • 刊出日期:  2007-06-20

杉木种子园子代性状相关性研究

    基金项目:

    浙江省自然科学基金资助项目(393058);浙江省科学技术重点项目(991102339)

    作者简介:

    付顺华,副教授,硕士,从事植物遗传育种和种质资源研究。

    通信作者: 孙鸿有,教授,从事林木遗传育种研究。
  • 中图分类号: S718.46

摘要: 为进一步了解杉木Cunninghamia lanceolata种子园子代遗传变异规律,提高杉木群体良种选育效率,以浙江省17个杉木种子园子代为研究材料,于1998- 1999年,在临安市横畈林场采用10区组、3~ 4株小区的完全随机区组设计,营建2片子代试验林。自造林后第2年起,连续6 a调查测定树高、胸径、材积、冠幅和侧枝性状等,在数理统计分析的基础上,研究了种子园子代性状之间的表型相关、遗传相关以及年-年之间的生长相关和秩次相关等。结果表明,种子园子代树高、胸径和材积之间呈极紧密相关,相关系数rp和rg达到或近于1.0,通过胸径对材积进行间接选择,选准率100%。冠幅、盘间距与生长性状之间分别呈中度相关和轻度-中度相关,盘侧枝数与生长性状之间在遗传上没有相关关系,每米侧枝数则有负相关关系。不同年龄之间的年-年生长相关,随着年龄的增长而增大,其生长秩次变化在2~ 3年生时已逐渐稳定, 5~ 6年生时基本稳定,rs高达0.96~ 0.99。在杉木种子园子代测定中,早期选择可从造林后第2年生长期结束时开始,但其选择率必须比第2次选择增加1倍。在此前提下,如以6年生选择作为第2次选择,选准率达100%,即在6年生选择时能入选的植株,在此情况下将无一漏选。表7参30

English Abstract

上官方京, 赵明水, 张博纳, 等. 亚热带植物水力性状与木质部解剖结构的关系[J]. 浙江农林大学学报, 2022, 39(2): 252-261. DOI: 10.11833/j.issn.2095-0756.20210813
引用本文: 付顺华, 董汝湘, 吴隆高, 等. 杉木种子园子代性状相关性研究[J]. 浙江农林大学学报, 2007, 24(3): 272-278.
SHANGGUAN Fangjing, ZHAO Mingshui, ZHANG Bona, et al. Relationship between hydraulic properties and xylem anatomical structure of subtropical plants[J]. Journal of Zhejiang A&F University, 2022, 39(2): 252-261. DOI: 10.11833/j.issn.2095-0756.20210813
Citation: FUShun-hua, DONG Ru-xiang, WULong-gao, et al. Correlations in progeny trials of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2007, 24(3): 272-278.

目录

/

返回文章
返回