-
景观生态风险评价是区域生态风险评价的主要内容[1],它对建立生态风险预警机制,降低生态风险概率,以及促进流域景观格局优化具有重要意义[2]。目前,生态系统评价主要以区域生态系统为主,主要涉及范围包括自然因素、人为干扰及流域等方面[3],张月等[4]、吴莉等[5]和潘竟虎等[6]对区域景观生态风险的研究表明:海岸带景观以低和较低等级生态风险区为主,与传统的区域生态风险评价相比,景观生态风险评价不仅关注生态环境整体的风险评价,也注重生态风险对整体景观格局破碎度、脆弱性以及多样性的影响。张学斌等[7]、巩杰等[8]和黄木易等[9]等对流域景观生态风险进行分析,结果表明:低生态风险向流域上游不断迁移,高生态风险逐渐向流域下游延伸,生态风险呈现增高趋势。也有部分学者分别对普者黑湖面积变化及旅游活动对水质的影响进行研究,表明湖泊面积缩减主要受人类活动影响,且旅游开发是造成总磷和总氮超标的主要原因[10]。以上研究结果在研究区域上缺乏对岩溶湖泊流域景观生态风险的分析并且从研究内容上缺乏对景观格局干扰指数与生态风险的关系分析及相应管理对策。普者黑湖流域地处滇东南岩溶高原的西北部,属于喀斯特湖泊湿地生态系统,是生态和环境变化敏感的区域之一,是湿地生态退化敏感区的典型代表[11]。近年来,在当地旅游业发展及生态系统自身脆弱性影响之下,普者黑湖流域景观格局及生态风险时空发生较大变化,生态环境遭到严重破坏,研究和解决普者黑湖流域生态环境问题刻不容缓。笔者以1990-2015年研究区的遥感影像数据为基础,从景观格局角度出发,运用景观格局指数及空间插值法对该流域景观格局和生态风险时空演变进行分析,从而揭示景观生态风险时空演变规律,以期为普者黑湖流域开发利用过程提供理论依据和技术参考。
-
本研究以卫星传感器TM(1990年,1995年,2000年,2005年和2010年)和陆地成像仪OLI(2015年)6期10月中旬遥感影像为数据源,在Erdas 19.0软件支持下,结合野外地面控制点调查和地形资料,对6期遥感影像进行几何校正、图形配准和拼接处理,并根据研究区范围大小进行裁剪,以Arc GIS 10.2和Fragstas 3.4为数据处理平台,空间分辨率统一为30 m,所选用的投影为WGS-1984-UTM-Zone-49N。在此基础上,根据普者黑的土地资源特征和景观变化差异以及影像数据的特点,基于光谱特征及地物纹理特征等信息,参考GB/T 21010-2007《土地利用现状分类》对6期影像进行手工分类和解译,将普者黑湖流域景观划分为林地、农地、湿地、建筑用地、园地、未利用地等6种类型。
-
生态风险指数空间化可以解释生态风险空间特征及内在形成机制,对探究景观格局结构特征具有重要意义[11]。本研究基于前人[12]研究经验及风险方格划分方法,采用等间距系统采样法,将研究区按12 km × 12 km大小划分为83个风险方格,一个风险方格代表一个风险小区,以每个风险小区的综合生态风险指数作为其风险值。
-
景观生态风险指数是区域生态安全状况的一个评价指数,可以反映流域内潜在的综合生态损失相对大小[7]。本研究以破碎度指数、分离度指数和优势度指数为自变量,建立生态风险指数计算模型。景观生态风险指数可以表示为:
$${I_{{\rm{ER}}}} = \sum\limits_{i = 1}^m {\frac{{{A_{ki}}}}{{{A_k}}}} {L_i}。$$ (1) 式(1)中:IER是生态风险指数,m为景观组分类型的数量,Aki为k个风险小区i类景观组分的面积,Ak为第k个风险小区总面积,Li是第i类风险小区的生态损失度,可由下式给出:
$${L_i} = 10 \times {E_i} \times {F_i}。$$ (2) 式(2)中:Ei为景观干扰度指数,Fi为景观脆弱度指数。同时各参数的计算公式及生态学意义如表 1。
指数名称 意义 计算方法 景观干扰度指数(Ei) 表示遭遇干扰时各类型景观所受到的生态损失的差别, 其自然属性损失的程度, 是某一景观类型的景观结构指数和脆弱度指数的综合 Ei=aCi+bNi+cDi 景观破碎度指数(Ci) 指由于受到自然或人为因素干扰使景观由单一、均质和连续的整体趋向于复杂、异质或不连续的斑块镶嵌过程, 同时也是生物多样性丧失的重要原因之一 Ci=ni/Ai 景观分离度指数(Ni) 指某一景观类型中不同斑块数个体分布的分离度 ${N_i} = \frac{A}{{2{A_i}}}\sqrt {\frac{{{n_i}}}{A}} $ 景观优势度指数(Di) 反映斑块在景观中占有的地位及其对景观格局形成和变化的影响 Di=(Ri+Mi)/4+Li/2 景观脆弱度指数(Fi) 表示不同生态系统的易损失性, 生态系统的脆弱性与其在景观自然演替过程中所处的阶段有关 由专家咨询法且归一化获得 说明:a为破碎度权重,b为分离度权重,c为优势度权重,且a+b+c=1。根据分析权衡,并结合前人[8-9]研究结果,得出脆弱度指数最为重要,其次为分离度指数和优势度指数,以上3种指数分别赋以0.5, 0.3和0.2的权值。ni为景观类型i的斑块数,Ai为景观类型i的总面积,A为景观总面积,Ri=斑块i出现的样方数/总样方数,Mi=斑块i的数目/斑块总数,Li-斑块i的面积/样方的总面积。 -
在流域各生态风险网格单元IER的范围[8-9]基础上采用下限排除法,对风险小区的生态风险指数进行自然断点区间间隔为0.079的等距划分为5个等级:0.002~<0.080为低生态风险,0.080~<0.160为较低生态风险,0.160~<0.239为中生态风险,0.239~<0.318为较高生态风险,≥0.318为高生态风险。
-
流域生态风险指数作为一种空间变量,可以描述和识别景观格局的空间结构,对空间局部进行最优化插值。基于Arc GIS地统计学中的空间分析法,采用统计学中半方差方法对景观生态风险空间进行分析,从而进行理论半变异函数拟合。在此基础上,利用克里金插值法进行流域生态风险空间分析。具体计算公式:
$$\gamma \left( h \right) = \frac{1}{{2N\left( h \right)}}\sum\limits_{i = 1}^{N\left( h \right)} {{{\left[ {Z\left( {{x_i}} \right) - Z\left( {{x_i} + h} \right)} \right]}^2}} 。$$ (3) 式(3)中:γ(h)为变异函数;Z(xi)和Z(xi+h)分别为景观生态风险指数在空间位置xi和xi+h处的值;N(h)为样本对数;h为空间距离。
-
景观干扰度表示遭遇干扰时各类型景观所受到的生态损失程度,由景观破碎度指数、分离度指数和优势度指数计算得出。1990-2015年间,普者黑湖流域建筑用地、农地景观类型面积在不断增加,林地、湿地和未利用地景观类型面积在不断减少,不同土地利用类型的景观干扰演变特征差异较大,即农地和林地的干扰度较高,最大干扰度指数分别达到0.379 6和0.373 5,其次是园地、建筑用地和湿地最大干扰度指数分别为0.260 1,0.229 1和0.229 0,未利用地干扰度最小,其最大干扰指数仅为0.218 0;在各种土地利用类型变化中,农地干扰度波动较小,变化范围在0.375 8~0.379 6,建筑用地干扰度指数从0.267 4下降到0.229 7,变化率为-14.10%,波动最大。具体如表 2所示。
表 2 不同参与者对城市绿地树种选择影响因素的平均权重评价
Table 2. Weight evaluation of factors influencing the selection of tree species in urban green space by different participants
土地类型 指数名称 1990-2015年景观结构指数值 1990 1995 2000 2005 2010 2015 农地 破碎度Ci 0.054 4 0.052 0 0.050 9 0.045 9 0.042 8 0.055 9 分离度Ni 0.937 4 0.939 8 0.936 5 0.930 7 0.936 5 0.940 3 优势度Di 0.373 5 0.374 2 0.373 4 0.380 3 0.377 2 0.380 3 干扰度Ei 0.375 8 0.376 6 0.375 5 0.377 6 0.377 2 0.379 6 林地 破碎度Ci 0.058 7 0.056 6 0.066 8 0.063 0 0.065 2 0.063 0 分离度Ni 0.888 7 0.893 9 0.883 6 0.883 7 0.883 6 0.883 7 优势度Di 0.339 2 0.338 3 0.346 2 0.355 7 0.353 4 0.355 7 干扰度Ei 0.365 0 0.364 9 0.369 9 0.373 5 0.373 0 0.373 5 建筑用地 破碎度Ci 0.165 7 0.143 1 0.163 1 0.089 1 0.079 3 0.089 1 分离度Ni 0.882 5 0.844 6 0.853 7 0.857 1 0.853 7 0.859 8 优势度Di 0.082 4 0.083 0 0.097 4 0.061 9 0.090 3 0.091 9 干扰度Ei 0.267 4 0.253 4 0.268 4 0.229 1 0.224 7 0.229 7 湿地 破碎度Ci 0.025 4 0.025 9 0.027 4 0.039 4 0.035 2 0.039 4 分离度Ni 0.852 9 0.824 9 0.879 3 0.867 5 0.879 3 0.889 5 优势度Di 0.092 1 0.090 8 0.089 9 0.083 8 0.090 9 0.083 8 干扰度Ei 0.224 3 0.218 1 0.229 0 0.227 2 0.231 8 0.231 6 园地 破碎度Ci 0.198 6 0.183 4 0.191 9 0.201 2 0.208 6 0.201 2 分离度Ni 0.8146 0.884 7 0.825 0 0.816 6 0.825 0 0.806 0 优势度Di 0.057 9 0.056 3 0.055 8 0.059 1 0.062 6 0.059 1 干扰度Ei 0.251 4 0.260 1 0.250 5 0.253 2 0.258 9 0.251 1 未利用地 破碎度Ci 0.006 8 0.006 7 0.006 0 0.013 2 0.016 0 0.013 2 分离度Ni 0.927 9 0.927 1 0.931 0 0.938 5 0.931 0 0.891 9 优势度Di 0.060 1 0.051 9 0.044 5 0.052 7 0.044 0 0.052 7 干扰度Ei 0.217 7 0.213 4 0.210 2 0.218 0 0.213 0 0.208 7 由表 2可知:普者黑湖流域景观干扰度演变特征:农地分离度和优势度分别从0.937 4和0.373 5上升到0.940 3和0.380 3,破碎度上升,景观干扰度增加,其作为研究区内的主要景观类型,且农地面积占研究区总面积的3/5,对景观格局的变化产生了重要影响;随着城镇化进程的推进,建筑用地景观破碎度、分离度和优势度均呈现先下降后上升的趋势。此外,由于受自然、社会和经济等人为因素的影响,加上建筑用地景观格局变化的机制相对复杂,破碎度变化最为激烈,变化率达到46.23%,干扰度指数显著增加;湿地破碎度和分离度在不断增加,优势度由0.092 1在缓慢减小到0.083 8,景观类型在区域上趋于集中分布,作为生态敏感性较强区域,湿地交错带的干扰度整体上在增加且达到0.227 2;而林地受人类活动影响较小,分离度范围仅介于0.883 7~0.888 7,但(林地)其在生态系统中具有重要作用[13-17],景观破碎化程度的加剧将会对流域生态系统的过程、功能及其所提供的生态服务功能产生显著的影响。另外,园地景观所占面积较少,仅占流域总面积的0.74%,景观干扰度指数变化不明显,受干扰性较小。
-
景观生态损失度指数(Li)可以反映土地利用变化对生态环境造成的潜在生态损失和风险,其变化过程对生态环境的干扰和影响将体现在景观格局结构和功能变化上[18-20]。20 a来,普者黑湖流域不同土地利用景观损失度变化显著,农地和未利用地损失度较大,依次达到0.542 2和0.551 4,湿地、建筑用地和林地次之,园地损失度最小,仅为0.119 7,其中建筑用地损失度指数为0.437 5~0.509 4,变化率达到14.11%,变化趋势显著(P<0.05),对生态环境造成的潜在风险较大(图 1)。
由图 1可知:建筑用地和未利用地景观损失度指数总体呈现减少趋势,湿地景观损失度则逐渐增加,当地住房建设逐步集中连片发展使得建筑用地损失度从0.509 4减小到0.437 5,景观生态风险趋于下降,但由于近年来当地大力发展旅游业导致生态系统受到破坏,湿地和农地景观损失度分别达到0.551 4和0.512 2,景观干扰程度增强,且湿地抗干扰性较弱,湿地和农地损失度逐渐增加趋势需要引起高度关注。景观损失度演化特点表现为农地作为研究区内所占比例较大的景观类型,景观损失度较大,但其变化幅度较小为0.99%,对生态环境造成的潜在风险依然较大。由于森林覆盖率上升及国家实施退耕还林政策,生态系统得到改善,林地景观损失度为0.347 6~0.355 7,趋于稳定状态。2000年以前建筑用地损失度较严重,从0.509 4上升到0.521 2,2005年后相应房屋建设措施的制定,景观损失度逐渐下降到0.437 5。湿地损失度变化与区域社会经济发展紧密相关,旅游人口的增加会加剧流域生态风险,为了保护湿地生态功能,2009年普者黑湖流域下游修建湿地公园,与1990-2010年这20 a间湿地损失度变化率3.37%相比,2010-2015年湿地损失度变化率大幅度减少,仅为0.11%。整体上,土地利用受到了政策驱动下的强烈人为活动干扰,普者黑湖流域景观生态潜在风险有所缓解。
-
根据式(1)计算出1990-2015年普者黑湖流域划分的各风险小区景观生态风险指数(IER),如图 2所示:1990年生态风险指数值为0.002 8~0.314 2,1995年生态风险指数值介于0.001 9~0.321 5,2000年生态风险指数值介于0.001 8~0.324 2,2005年生态风险指数值介于0.002 1~0.336 6,2010年生态风险指数值介于0.002 5~0.339 6,2015年生态风险指数值介于0.002 7~0.351 4。从景观类型来看,农地和林地生态风险最大,园地生态风险最小;从景观生态风险最小值和最大值来看,2015年较1990年生态风险指数最小值在下降,最大值趋于上升,其中增加幅度较大,从1990年的0.314 2上升为2015年的0.351 4,增长11.84%,显示出较为明显的增长趋势。
1990-2015年普者黑湖流域生态风险空间分布差异较大,主要体现在流域湖泊水域及水库周边,普者黑湖流域生态风险演变趋势与当地区域特征和社会经济发展基本符合[19-21],流域生态风险时空分布及差异如图 3所示。
图 3 普者黑湖流域生态风险空间分布图
Figure 3. Distribution map of landscape ecological risk level of the Puzhehei river basin
从图 3可以看出:在空间上,研究区生态风险空间分布规律在一定程度上体现了当地土地利用的特点,1990年和1995年流域生态风险主要集中在西南部,其中1990年流域生态风险面积分布较散乱,2005年生态风险有所改善,2010年和2015年流域生态风险差异变化不大。流域生态风险分布可分为3个阶段来描述:1990-2000年为第1阶段,该阶段普者黑湖流域生态风险主要集中在日者乡和八道哨乡,这些区域主要以耕地为主,人口较集中,生态风险高;2000-2005年为第2个阶段,流域生态风险面积分布较散乱,在此期间经济发展较领先,人口密度增大,村庄和水域区域生态风险较高,2004年丘北县实施退耕还林政策,开始大力造林,流域生态风险有所降低;第3阶段是2005-2015年,流域生态风险差异变化不大,2008年丘北县实施退塘还湖、退房还湖以及退村还湖工程,湖泊流域生态风险得到缓减,2009年在普者黑湖流域下游湿地公园的修建,游客大量增加,该区域生态风险较高。
如表 2所示:从时间变化上来看,1990-2000年普者黑湖流域主要表现为较低生态风险等级,所占面积比例为32.13%~43.99%,低生态风险面积由3 436.41 hm2减少到2 362.57 hm2,高生态风险面积由3 066.63 hm2增加到3 286.32 hm2;2000-2005年流域生态风险逐渐改善,高生态风险面积比例从9.91%急剧下降到0.95%,低生态风险面积比例由7.12%上升到15.29%,该时间段以较低生态风险等级为主;2005-2015年生态风险等级发生了较大变化,高生态风险面积和低生态风险面积分别增加了1 542.04 hm2和1 691.45 hm2,流域生态风险等级主要处于中生态风险等级。
表 3 普者黑湖流域生态风险等级面积统计
Table 3. The areas of ecological risk grade of the Puzhehei river basin
风险等级 1990 1995 2000 2005 2010 2015 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 低生态风险 3 436.41 10.36 1 575.45 4.75 2 362.57 7.12 5 071.97 15.29 4 538.34 13.68 6 763.42 20.39 较低生态风险 10 656.76 32.13 12 839.04 38.71 14 589.66 43.99 12 444.00 37.52 9 917.62 29.9 6 162.09 18.58 中生态风险 11 180.97 33.71 10 312.06 31.09 9 403.04 28.35 8 747.07 26.37 10 559.85 31.84 11 632.42 35.07 较高生态风险 4 828.06 14.56 5 307.08 16.00 3 527.24 10.63 6 592.09 19.87 6 370.18 19.21 6 755.13 20.37 高生态风险 3 066.63 9.25 3 135.21 9.45 3 286.32 9.91 313.73 0.95 1 782.84 5.38 1 855.77 5.59
Temporal and spatial evolution of landscape patterns and ecological risk in the Puzhehei Lake basin
-
摘要: 为探析湖泊流域景观格局及生态风险时空演变规律,改善流域生态环境以及降低流域生态风险,以普者黑湖流域为研究对象,并以6期(1990年,1995年,2000年,2005年,2010年和2015年)遥感影像为基础,基于景观干扰度指数和景观损失度指数构建景观生态风险指数,借助ArcGIS地统计学中的分析方法,对普者黑湖流域景观格局及生态风险时空演变进行分析。结果表明:①1990-2015年普者黑流域景观结构发生了较大变化,农地和林地的干扰度较高,建筑用地、园地和湿地的干扰度次之,未利用地的干扰度较小,干扰度指数仅为0.208 7~0.218 0,其中农地干扰度波动较小,其变化范围为0.375 8~0.379 6,建筑用地的干扰度指数波动较大,变化率为-14.10%。②20 a来,普者黑流域不同土地利用景观损失度变化显著,其中农地和未利用地损失度较大,依次达到0.542 2和0.551 4,湿地、建筑用地和林地次之,园地损失度最小,损失度指数仅为0.119 7。③1990-2015年研究区生态风险空间分布差异较大,1990-2005年较低生态风险所占比例最大,而2005-2015年期间生态风险主要表现为中生态风险等级,生态风险在缓慢增加;流域生态风险时空分布与土地利用强度及人类活动关系密切,加强流域土地综合治理和人类活动调控,促进流域社会、经济与生态保护协同作用,实现区域可持续发展。Abstract: To analyze temporal and spatial evolution for ecological risk and landscape patterns in a lake basin so as to further improve the ecological environment, Puzhehei Lake basin in Yunnan Province was studied over(1990, 1995, 2000, 2005, 2010, and 2015). Analysis included using the spatial analysis function of ArcGIS based on the landscape disturbance index and the landscape loss index to constructed a landscape ecological risk index. Results showed that:(1) For landscape patterns from 1990 to 2015, the degree of disturbance for agricultural land and woodlands was the most intense, while that of building land, gardens, and wetlands was slightly weaker, and that of unused land was the weakest with the interference degree index ranged from 0.208 7 to 0.218 0. In addition, the variation range of disturbance index for agricultural land was quite narrow (from 0.375 8 to 0.379 6), whereas that for construction land fluctuated largely with a changing rate of -14.10%. (2) For twenty years (from 2005 to 2015), the degree of landscape loss for different land-use varied markedly. The index of landscape loss for farmland and unused land was the largest with the values of 0.542 2 and 0.551 4, respectively, whereas that for wetland, construction land, and forest land take the second place, and that for garden land was the smallest (0.119 7). (3) From 1990 to 2015, the spatial distribution of ecological risk changed largely, and it showed a low level of ecological risk between 1990 and 2005 whereas a middle level from 2005 to 2015. In addition, the ecological risk was slowly increasing in the range of research period. The spatial and temporal distribution of ecological risk was closely related to the intensity of land use and human activities; therefore, regional sustainable development could be realized by strengthening the integrated management of land and human activities and by promoting a synergistic effect among social, economic, and ecological protection activities.
-
Key words:
- landscape ecology /
- Puzhehei /
- lake basin /
- landscape disturbance /
- landscape loss /
- ecological risk
-
指数名称 意义 计算方法 景观干扰度指数(Ei) 表示遭遇干扰时各类型景观所受到的生态损失的差别, 其自然属性损失的程度, 是某一景观类型的景观结构指数和脆弱度指数的综合 Ei=aCi+bNi+cDi 景观破碎度指数(Ci) 指由于受到自然或人为因素干扰使景观由单一、均质和连续的整体趋向于复杂、异质或不连续的斑块镶嵌过程, 同时也是生物多样性丧失的重要原因之一 Ci=ni/Ai 景观分离度指数(Ni) 指某一景观类型中不同斑块数个体分布的分离度 ${N_i} = \frac{A}{{2{A_i}}}\sqrt {\frac{{{n_i}}}{A}} $ 景观优势度指数(Di) 反映斑块在景观中占有的地位及其对景观格局形成和变化的影响 Di=(Ri+Mi)/4+Li/2 景观脆弱度指数(Fi) 表示不同生态系统的易损失性, 生态系统的脆弱性与其在景观自然演替过程中所处的阶段有关 由专家咨询法且归一化获得 说明:a为破碎度权重,b为分离度权重,c为优势度权重,且a+b+c=1。根据分析权衡,并结合前人[8-9]研究结果,得出脆弱度指数最为重要,其次为分离度指数和优势度指数,以上3种指数分别赋以0.5, 0.3和0.2的权值。ni为景观类型i的斑块数,Ai为景观类型i的总面积,A为景观总面积,Ri=斑块i出现的样方数/总样方数,Mi=斑块i的数目/斑块总数,Li-斑块i的面积/样方的总面积。 表 2 不同参与者对城市绿地树种选择影响因素的平均权重评价
Table 2. Weight evaluation of factors influencing the selection of tree species in urban green space by different participants
土地类型 指数名称 1990-2015年景观结构指数值 1990 1995 2000 2005 2010 2015 农地 破碎度Ci 0.054 4 0.052 0 0.050 9 0.045 9 0.042 8 0.055 9 分离度Ni 0.937 4 0.939 8 0.936 5 0.930 7 0.936 5 0.940 3 优势度Di 0.373 5 0.374 2 0.373 4 0.380 3 0.377 2 0.380 3 干扰度Ei 0.375 8 0.376 6 0.375 5 0.377 6 0.377 2 0.379 6 林地 破碎度Ci 0.058 7 0.056 6 0.066 8 0.063 0 0.065 2 0.063 0 分离度Ni 0.888 7 0.893 9 0.883 6 0.883 7 0.883 6 0.883 7 优势度Di 0.339 2 0.338 3 0.346 2 0.355 7 0.353 4 0.355 7 干扰度Ei 0.365 0 0.364 9 0.369 9 0.373 5 0.373 0 0.373 5 建筑用地 破碎度Ci 0.165 7 0.143 1 0.163 1 0.089 1 0.079 3 0.089 1 分离度Ni 0.882 5 0.844 6 0.853 7 0.857 1 0.853 7 0.859 8 优势度Di 0.082 4 0.083 0 0.097 4 0.061 9 0.090 3 0.091 9 干扰度Ei 0.267 4 0.253 4 0.268 4 0.229 1 0.224 7 0.229 7 湿地 破碎度Ci 0.025 4 0.025 9 0.027 4 0.039 4 0.035 2 0.039 4 分离度Ni 0.852 9 0.824 9 0.879 3 0.867 5 0.879 3 0.889 5 优势度Di 0.092 1 0.090 8 0.089 9 0.083 8 0.090 9 0.083 8 干扰度Ei 0.224 3 0.218 1 0.229 0 0.227 2 0.231 8 0.231 6 园地 破碎度Ci 0.198 6 0.183 4 0.191 9 0.201 2 0.208 6 0.201 2 分离度Ni 0.8146 0.884 7 0.825 0 0.816 6 0.825 0 0.806 0 优势度Di 0.057 9 0.056 3 0.055 8 0.059 1 0.062 6 0.059 1 干扰度Ei 0.251 4 0.260 1 0.250 5 0.253 2 0.258 9 0.251 1 未利用地 破碎度Ci 0.006 8 0.006 7 0.006 0 0.013 2 0.016 0 0.013 2 分离度Ni 0.927 9 0.927 1 0.931 0 0.938 5 0.931 0 0.891 9 优势度Di 0.060 1 0.051 9 0.044 5 0.052 7 0.044 0 0.052 7 干扰度Ei 0.217 7 0.213 4 0.210 2 0.218 0 0.213 0 0.208 7 表 3 普者黑湖流域生态风险等级面积统计
Table 3. The areas of ecological risk grade of the Puzhehei river basin
风险等级 1990 1995 2000 2005 2010 2015 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 面积/hm2 比例/% 低生态风险 3 436.41 10.36 1 575.45 4.75 2 362.57 7.12 5 071.97 15.29 4 538.34 13.68 6 763.42 20.39 较低生态风险 10 656.76 32.13 12 839.04 38.71 14 589.66 43.99 12 444.00 37.52 9 917.62 29.9 6 162.09 18.58 中生态风险 11 180.97 33.71 10 312.06 31.09 9 403.04 28.35 8 747.07 26.37 10 559.85 31.84 11 632.42 35.07 较高生态风险 4 828.06 14.56 5 307.08 16.00 3 527.24 10.63 6 592.09 19.87 6 370.18 19.21 6 755.13 20.37 高生态风险 3 066.63 9.25 3 135.21 9.45 3 286.32 9.91 313.73 0.95 1 782.84 5.38 1 855.77 5.59 -
[1] 高永年, 高俊峰, 许妍.太湖流域水生态功能区土地利用变化的景观生态风险效应[J].自然资源学报, 2010, 25(7):1088-1096. GAO Yongnian, GAO Junfeng, XU Yan. Response of landscape ecological risk to land use change in level aquatic eco-functional regions in Taihu Lake Watershed[J]. J Nat Resour, 2010, 25(5):1088-1096. [2] WU Jiang. Landscape sustainability science:ecosystem services and human well-being in changing landscapes[J]. Landscape Ecol, 2013, 28(6):999-1023. [3] 刘引鸽.基于土地利用的陕西省生态风险分析[J].水土保持通报, 2011, 31(3):180-184. LIU Yinge. Ecological risk analysis based on land use in Shaanxi Province[J]. Bull Soil Water Conserv, 2011, 31(3):180-184. [4] 张月, 张飞, 周梅, 等.干旱区内陆艾比湖区域景观生态风险评价及时空分异[J].应用生态学报, 2016, 27(1):233-242. ZHANG Yue, ZHANG Fei, ZHOU Mei, et al. Landscape ecological risk assessment and its spatio-temporal variations in Ebinur Lake region of inland arid area[J]. Chin J Appl Ecol, 2016, 27(1):233-242. [5] 吴莉, 侯西勇, 邸向红.山东省沿海区域景观生态风险评价[J].生态学杂志, 2014, 33(1):214-220. WU Li, HOU Xiyong, DI Xianghong. Assessment of regional ecological risk in coastal zone of Shandong Province[J]. Chin J Ecol, 2014, 33(1):214-220. [6] 潘竟虎, 刘晓.疏勒河流域景观生态风险评价与生态安全格局优化构建[J].生态学杂志, 2016, 35(3):791-799. PAN Jinghu, LIU Xiao. Landscape ecological risk assessment and landscape security pattern optimization in Shule River Basin[J]. Chin J Ecol, 2016, 35(3):791-799. [7] 张学斌, 石培基, 罗君, 等.基于景观格局的干旱内陆河流域生态风险分析:以石羊河流域为例[J].自然资源学报, 2014, 29(3):410-419. ZHANG Xuebin, SHI Peiji, LUO Jun, et al. The ecological risk assessment of arid inland river basin at the landscape scale:a case study on Shiyang River Basin[J]. J Nat Resour, 2014, 29(3):410-417. [8] 巩杰, 谢余初, 赵彩霞, 等.甘肃白龙江流域景观生态风险评价及其时空分异[J].中国环境科学, 2014, 34(8):2153-2160. GONG Jie, XIE Yuchu, ZHAO Caixia, et al. Landscape ecological risk assessment and its spatiotemporal variation of the Bailongjiang watershed, Gansu[J]. China Environ Sci, 2014, 34(8):2153-2160. [9] 黄木易, 何翔.巢湖流域土地景观格局变化及生态风险驱动力研究[J].长江流域资源与环境, 2016, 25(5):743-750. HUANG Muyi, HE Xiang. Study on landscape pattern changes and driving forces of ecological risk in Chaohu lake basin[J]. Resour Environ Yangtza Basin, 2016, 25(5):743-750. [10] 王妍, 刘云根, 梁启斌, 等. 1977-2014年枯水期普者黑湖面积的变化[J].湿地科学, 2016, 14(4):471-476. WANG Yan, LIU Yungen, LIANG Qibin, et al. Variation of Puzhehei lake area in dry season from 1977 to 2014[J]. Wetland Sci, 2016, 14(4):471-476. [11] 王世杰, 张信宝, 白晓永.中国南方喀斯特地貌分区纲要[J].山地学报, 2015, 33(6):641-648. WANG Shijie, ZHANG Xinbao, BAI Xiaoyong. An outline of karst geomorphology zoning in the karst areas of Southern China[J]. J Mt Sci, 2015, 33(6):641-648. [12] 凡非得, 王克林, 宣勇, 等.西南喀斯特区域生态环境敏感性评价及其空间分布[J].长江流域资源与环境, 2011, 20(11):1394-1399. FAN Feide, WANG Kelin, XUAN Yong, et al. Eco-environmental sensitivity and its spatial distribution in karst regions, Southwest China[J]. Resour Environ Yangtza Basin, 2011, 20(11):1394-1399. [13] 黄木易, 何翔.近20年来巢湖流域景观生态风险评估与时空演变机制[J].湖泊科学, 2016, 28(4):785-793. HUANG Muyi, HE Xiang. Landscape ecological risk assessment and its mechanism in Chaohu Basin during the past almost 20 years[J]. J Lake Sci, 2016, 28(4):785-793. [14] 冯源嵩, 杨庆媛, 邱从毫.南明河流域水质对景观格局演变的响应[J].环境科学研究, 2015, 28(12):1852-1861. FENG Yuansong, YANG Qingyuan, QIU Conghao. A study of influence of landscape pattern evolution on river water quality in the Nanming River Basin[J]. Res Environ Sci, 2015, 28(12):1852-1861. [15] FORBES V E, CALOW P. Developing predictive systems models to address complexity and relevance for ecological risk assessment[J]. Integr Environ Assess Manage, 2013, 9(3):e75-e80. [16] MALEKMOHAMMADI B, BLOUCHI L R. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system[J]. Ecol Indic, 2014, 41(1):133-144. [17] 李卫平, 陈阿辉, 于玲红, 等.呼伦湖主要入湖河流克鲁伦河丰水期污染物通量(2010-2014)[J].湖泊科学, 2016, 28(2):281-286. LI Weiping, CHEN Ahui, YU Linghong, et al. Pollutant influx from the main river (Kherlen River) of Lake Hulun in wet seasons, 2010-2014[J]. J Lake Sci, 2016, 28(2):281-286. [18] 郭红, 龚文峰, 董隽, 等.基于RS和GIS的嫩江下游土地沙漠化景观格局变化特征分析[J].生态与农村环境学报, 2009, 25(3):99-103. GUO Hong, GONG Wenfeng, DONG Jun, et al. RS-and-GIS-based analysis of variation of landscape of land desertification in the lower reaches of Nenjiang River[J]. J Ecol Rural Environ, 2009, 25(3):99-103. [19] 段翰晨, 王涛, 薛娴, 等.科尔沁沙地沙漠化时空演变及其景观格局:以内蒙古自治区奈曼旗为例[J].地理学报, 2012, 67(7):917-928. DUAN Hanchen, WANG Tao, XUE Xian, et al. Spatial-temporal evolution of aeolian desertification and landscape pattern in Horqin sandy land:a case study of Naiman Banner in Inner Mongolia[J]. Acta Geogr Sin, 2012, 67(7):917-928. [20] 王娟, 崔保山, 刘杰, 等.云南澜沧江流域土地利用及其变化对景观生态风险的影响[J].环境科学学报, 2008, 28(2):269-277. WANG Juan, CUI Baoshan, LIU Jie, et al. The effect of land use and its change on ecological risk in the Lancang River Watershed of Yunnan Province at the landscape scale[J]. Acta Sci Circumst, 2008, 28(2):269-277. [21] LI Liqing, SHAN Baoqing, YIN Chenqing. Stormwater runoff pollution loads from an urban catchment with rainy climate in China[J]. Front Envion Sci Eng, 2012, 6(5):672-677. [22] 彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望[J]. 2015, 70(4): 664-677. PENG Jian, DANG Weixiong, LIU Yanxu, et al. Review on landscape ecological risk assessment[J]. Acta Geogr Sin, 2015, 70(4):664-677. [23] 谢余初, 巩杰, 赵彩霞.甘肃白龙江流域水土流失的景观生态风险评价[J].生态学杂志, 2014, 33(3):702-708. XIE Yuchu, GONG Jie, ZHAO Caixia. Evaluation of landscape ecological risk of soil and water erosion in the Bailongjiang watershed in Southern Gansu, China[J]. Chin J Ecol, 2014, 33(3):702-708. [24] 王一喆, 闫振广, 张亚辉, 等.七大流域氨氮水生生物水质基准与生态风险评估初探[J].环境科学研究, 2016, 29(1):77-83. WANG Yizhe, YAN Zhenguang, ZHANG Yahui, et al. Preliminary aquatic life criteria development and ecological risk assessment of ammonia in seven major basins in China[J]. Res Environ Sci, 2016, 29(1):77-83. [25] 张雅洲, 谢小平.基于RS和GIS的南四湖生态风险评价[J].生态学报, 2015, 35(5):1371-1377. ZHANG Yazhou, XIE Xiaoping. Regional ecological risk assessment in Nansi Lake based on RS and GIS[J]. Acta Ecol Sin, 2015, 35(5):1371-1377. [26] 胡和兵, 刘红玉, 郝敬锋, 等.南京市九乡河流域景观格局空间分异对河流水质的影响[J].环境科学, 2012, 33(3):794-801. HU Hebing, LIU Hongyu, HAO Jingfeng, et al. Influence of spatial difference on water quality in Jiuxiang River Watershed, Nanjing[J]. Environ Sci, 2012, 33(3):794-801. [27] 黎显平, 冯仲科, 游先祥, 等.县域城市扩张遥感动态监测及驱动力分析[J].浙江农林大学学报, 2016, 33(5):798-806. LI Xianping, FENG Zhongke, YOU Xianxiang, et al. Remote sensing dynamic monitoring and driving force analysis county-cities expansion[J]. J Zhejiang A & F Univ, 2016, 33(5):798-806. [28] 王梦犀, 唐芳林, 马国强, 等.退塘还湖在湿地保护中的探索与思考:以云南丘北普者黑湿地保护工程为例[J].湿地科学与管理, 2015, 11(1):32-35. WANG Mengxi, TANG Fanglin, MA Guoqiang, et al. Exploration and thinking of returning pond to lake in wetland protection:a case study of Qiubei Puzhehei Wetland Project in Yunnan[J]. Wetland Sci, 2015, 11(1):32-35. [29] 张伟, 陈蜀蓉, 侯平.浦阳江流域疏浚前后底泥重金属污染及其潜在生态风险评价[J].浙江农林大学学报, 2016, 33(1):33-41. ZHANG Wei, CHEN Shurong, HOU Ping. Heavy metal contamination and potential ecological risk for sediments in the Puyang River Basin prior to and post dredging[J]. J Zhejiang A & F Univ, 2016, 33(1):33-41. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.06.018