-
酸雨对生态系统的危害已成为举世瞩目的重大环境问题[1],而中国成为继欧洲和北美之后的第三大酸雨区[2]。研究发现,酸雨是造成森林衰退的直接原因。酸雨能够抑制植物种子萌发与幼苗生长[3-5]。Park等[6]研究发现模拟酸雨对鼠耳芥Arabidopsis thaliana种子萌发与根芽生长具有显著的抑制作用; 水稻Oryza sativa,小麦Triticum aestivum和油菜Brassica chinensis var. oleifera等3种植物对酸雨胁迫强度与胁迫时间的耐受性存在显著差异[7-8]。Ahmed等[9]研究发现,赤桉Eucalyptus camaldulensis凋落物对黄豆树Albizia procera和银合欢Leucaena glauca种子萌发与幼苗生长均有抑制作用;罗侠等[10]研究认为,天山云杉Picea schrenkiana凋落物提取液对自身种子萌发和幼苗生长具有自毒作用,并且与提取液浓度呈正相关。有关酸雨和凋落物复合作用对种子萌发与幼苗生长影响的报道甚少。柳杉Cryptomeria fortunei为常绿针叶乔木,属国家一级保护树种,浙江省临安市天目山国家级自然保护区是世界上最大的柳杉种群聚集地,而临安市在2006年和2007年的酸雨发生率分别高达85%和95%[11-12]。自20世纪90年代初期以来,天目山的柳杉种群逐渐呈现出衰退的迹象。针对天目山柳杉林的研究主要集中在柳杉的病虫害防治[13-14]和蓄积量[15-16]等方面,尚缺乏酸雨与柳杉凋落物复合作用对柳杉天然更新影响方面的研究。因此,我们以柳杉为供试树种,模拟酸雨、柳杉凋落物水浸提液和pH 4.0酸雨浸提液对柳杉种子萌发和幼苗生长的影响,并采用气相色谱-质谱(GC-MS)技术分析鉴定了浸提液的化合物成分,为阐明天目山柳杉天然更新困难和退化原因提供理论依据。
-
通过GC-MS分析,在凋落物水浸提液和凋落物酸雨浸提液(pH 4.0)中均发现了醇类、酚类、烷烯类、酯类、酮类和醛类等化合物(图 1,表 1)。水浸提液中鉴定出42种化合物,其中醇类化合物19种,占总量的36.2%;酚类化合物5种,占总量的19.8%;烷烯类化合物共7种,占总量的15.7%;酯类化合物共3种,占总量的13.4%;酮类化合物5种,占总量的6.3%;醛类化合物3种,占总量的2.4%。酸雨浸提液中鉴定出48种化合物,其中新提取化合物包括4种酮类化合物和2个醇类,占了总量的2.6 %。凋落物酸雨浸提液的总离子流比凋落物水浸提液的强。
图 1 柳杉凋落物浸提液的总离子流图
Figure 1. Total ion current of extract ingredients from litters of Cryptomeria fortunei
表 1 柳杉凋落物水浸提液和酸雨浸提液成分分析
Table 1. Chemical components of aquatic and acid extracts from litter of Cryptomeria fortunei
序号 t/min 化合物 分子式 相对含量% 水浸提液 酸浸提液 1 5.76 苯酚phenol C6H6O 2.74 1 0.11 2.68 ± 0.12 2 6.30 苯甲醇 benzyl alcohol C7H8O 2.21 ± 0.18 2.34 ± 0.16 3 6.65 2-壬烯-1-醇 2-nonyn-1-ol C9H16O 0.72 1 0.01 0.73 ± 0.07 4 6.79 愈创木酚guajol C7H8O2 2.57 ± 0.03 2.50 ± 0.34 5 7.48 香芹酮carvone C10Hl6O 1.55 ± 0.15 1.68 ± 0.09 6 7.56 脱氢芳樟醇hotrienol C10Hl6O 0.70 ± 0.08 0.76 ± 0.14 7 7.61 邻苯二酚 pyrocatechol C6H6O2 1.56 ± 0.06 1.13 ± 0.07 8 8.20 马鞭埽酮verbenone C10Hl4O 0.89 ± 0.04 0.92 ± 0.14 9 8.50 香茅酵 citronellal C10Hl8O 0.46 ± 0.05 0.50 ± 0.09 10 8.65 2-甲氧基-4-乙埽基苯酚4-vinylguaiacol C9H0O2 0.80 ± 0.06 0.91 ± 0.04 11 8.71 乙基梓檬醒ethyl citral C11H18O 0.50 ± 0.02 0.42 ± 0.02 12 8.87 1,8-松油二醇 terpin C10H20O2 0.48 ± 0.01 0.51 ± 0.21 13 9.07 薇埽乙二醇醚DHS activator C10H18O2 1.24 ± 0.11 1.15 ± 0.11 14 9.18 1,4-桉叶素 1,4-cineole C10H18O 2.66 ± 0.21 2.76 ± 0.27 15 9.27 顺式氧化胡薄荷酮cis-pulegone oxide C10Hl6O2 0.75 ± 0.03 0.79 ± 0.19 16 9.55 二氢香芹醇 dihydrocarveol C10H18O 0.90 ± 0.06 0.99 ± 0.14 17 9.60 4-松油醇 4-terpineol C10H18O 1.68 ± 0.12 1.72 ± 0.14 18 9.75 丙烯醇 allethrolone C9H12O2 - 0.41 ± 0.04 19 9.98 十二烷二酸 dodecanedioic acid C14H31N 1.17 ± 0.13 0.63 ± 0.32 20 10.08 异广藿香院isopatchoulane C15H26 0.59 ± 0.06 0.69 ± 0.07 21 10.57 环氧化马兜铃埽aristolene epoxide C15H24O 1.09 ± 0.11 0.99 ± 0.12 22 10.65 榄香醇elemol C15H26O - 0.41 % 0.09 23 11.26 二氢-α-紫罗兰酮 dihydro-α-ionone C13H22O 0.95 ± 0.03 1.11 ± 0.32 24 11.44 檀香醇santalol C15H24O 0.62 ± 0.02 0.46 ± 0.11 25 11.70 柠檬烯-6-醇特戍酸酷limonen-6-ol,pivalate C15H24O2 1.63 ± 0.11 1.49 ± 0.22 26 11.81 甲酸松油酷terpinyl formate C11H18O2 2.14 ± 0.13 1.91 ± 0.12 27 11.91 蓝桉醇globulol C15H26O 1.30 ± 0.14 0.90 ± 0.11 28 12.17 柏木埽醇cedrenol C15H24O 0.78 ± 0.02 - 29 12.29 长叶醒 longifolenaldehyde C15H24O 1.47 ± 0.13 1.37 ± 0.12 30 12.60 新郁金二酮 neocurdione C15H24O2 - 0.41 ± 0.03 31 12.84 落叶松醇larixol C20H34O2 6.48 ± 1.01 6.30 ± 1.08 32 12.99 3-(十二烯基)二氢-2,5-呋喃二酮 dodecenyl succinic anhydride C16H26O3 - 0.44 ± 0.03 33 13.15 异戊酸香叶酿geranyl isovalerate C15H26O2 1.28 ± 0.32 1.27 ± 0.25 34 13.25 表蓝桉醇epiglobulol C15H26O 1.19 ± 0.41 1.01 ± 0.75 35 13.39 二乙酸-2-甲基间苯二酚 2-methylresorcinol,diacetate C11H12O4 12.16 ± 1.56 12.00 ±1.63 36 13.58 1-胺甲基金刚院 1 -adamantanemethylamine C11H19N 9.92 ± 1.21 9.65 ± 1.12 37 13.71 β-按叶醇β-eudesmol C15H26O 6.95 ± 1.01 6.10 ± 1.04 38 13.78 喇叭埽醇 ledene alcohol C15H24O 1.78 ± 0.58 1.63 ± 0.73 39 13.84 柏木埽醇 8-cedren-13-ol C15H24O 1.46 ± 0.76 1.11 ± 0.65 40 14.10 愈创木烯guaiene C15H24 0.57 ± 0.45 0.54 ± 0.05 41 14.19 紫堇酮 corymbolone C15H24O2 - 0.40 ± 0.04 42 14.24 斯巴醇 spathulenol C15H24O 0.64 ± 0.09 0.62 ± 0.21 43 14.32 异长叶烯 isolongifolene C15H24 2.91 ± 0.81 2.80 ± 0.19 44 14.52 桉油烯醇spathulenol C15H24O 7.40 ± 0.79 7.94 ± 0.98 45 15.12 邻苯二甲酸二丁酯 dibutyl phthalate C16H22O4 10.51 ± 2.01 12.07 ±1.97 46 15.33 丁香烧 clovane C15H26 1.18 ± 0.61 0.98 ± 0.21 47 15.56 氧化石竹烯 epoxycaryophyllene C15H24O 0.47 ± 0.13 0.48 ± 0.18 48 15.70 水菖蒲酮shyobunone C15H24O - 0.50 ± 0.04 49 15.76 韦得醇widdrol C15H26O 0.94 ± 0.07 0.87 ± 0.05 说明:“-”表示未检测到物质。 -
酸雨、凋落物水浸提液和凋落物酸雨浸提液对柳杉种子萌发的影响具有明显差异(图 2)。pH 5.6和 pH 4.0酸雨对柳杉种子萌发无显著影响,pH 3.0酸雨处理显著降低柳杉种子发芽率(P<0.05),与对照相比降低了6.9%;5 g·L-1凋落物水浸提液处理显著降低柳杉种子发芽率(P<0.05),比对照降低了15.6%,且随着浸提液质量浓度的增大对柳杉种子发芽率的抑制作用加强;5 g·L-1酸雨浸提液处理极显著降低柳杉种子发芽率(P<0.01),与对照相比降低了26.3%;pH 5.6酸雨处理对柳杉种子发芽势无显著影响,pH 4.0酸雨处理显著降低柳杉种子发芽势(P<0.05),与对照相比降低了16.8%。5 g·L-1凋落物水浸提液和凋落物酸雨浸提液处理均显著降低柳杉种子发芽势(P<0.05),分别比对照降低了17.8%和25.2%,且随着浸提液质量浓度的增大对柳杉种子发芽势的抑制作用加强。
-
pH 5.6和 pH 4.0酸雨处理对柳杉幼苗芽生长无显著影响,pH 3.0显著抑制柳杉幼苗芽生长(P<0.05),与对照相比降低了10.2%(图 3);5 g·L-1凋落物水浸提液处理显著抑制柳杉幼苗芽生长(P<0.05),与对照相比降低了13.7%;5 g·L-1酸雨浸提液处理极显著抑制柳杉幼苗芽生长(P<0.01),与对照相比降低了17.1%。pH 5.6酸雨处理对柳杉幼苗根生长影响不显著,pH 4.0和pH 3.0酸雨处理显著抑制柳杉幼苗根生长(P<0.05),分别比对照降低了15.9%和18.8%。5 g·L-1凋落物水浸提液和凋落物酸雨浸提液处理均显著抑制柳杉幼苗根生长(P<0.05),分别比对照降低了22.7%和31.9%,并且随着浸提液质量浓度的增大对柳杉芽和根生长的抑制作用加强。
-
酸雨、凋落物水浸提液和凋落物酸雨浸提液均显著降低柳杉幼苗生物量(图 4)。pH 5.6酸雨处理显著降低柳杉幼苗生物量(P<0.05),与对照相比降低了9.0%,且随着pH值的降低抑制强度增大;5 g·L-1凋落物水浸提液和凋落物酸雨浸提液处理均极显著降低柳杉幼苗生物量(P<0.01),分别比对照降低了27.4%和37.8%,且随着浸提液质量浓度的增大对柳杉幼苗生物量的抑制作用加强。酸雨处理对柳杉幼苗的根芽比无显著影响。50 g·L-1凋落物水浸提液和凋落物酸雨浸提液处理均显著抑制柳杉幼苗根芽比(P<0.05),分别比对照减少了0.14和0.23,且随着浸提液质量浓度增大对柳杉根芽比的抑制作用加强。
Combined effects of acid rain and litter on seed germination and seedling growth of Cryptomeria fortunei
-
摘要: 采用培养皿法研究了不同pH值模拟酸雨、柳杉Cryptomeria fortunei凋落物水浸提液和酸雨浸提液对柳杉种子萌发和幼苗生长的影响,并采用气相色谱-质谱(GC-MS)联用技术对柳杉凋落物水浸提液和酸雨浸提液的化学成分进行了分析。结果表明:①酸雨和凋落物水浸提液处理均降低柳杉种子发芽率和发芽势,凋落物酸雨浸提液处理柳杉种子发芽率和发芽势与对照差异显著(P<0.05),说明酸雨增强了凋落物对柳杉种子萌发的抑制作用。②酸雨处理抑制柳杉幼苗根生长和根芽比,而pH 3.0处理芽生长和生物量则显著减小(P<0.05);50 g·L-1凋落物水浸提液处理对柳杉幼苗芽和根的生长,以及生物量和根芽比具有显著的抑制作用(P<0.05),凋落物酸雨浸提液处理抑制作用呈极显著差异(P<0.01)。③GC-MS分析显示,柳杉凋落物水浸提液和酸雨浸提液的主要成分是醇类、酚类、烷烯类和酯类等化合物,占总量的86.1%,凋落物酸雨浸提液中鉴定出新的化合物包括4种酮类化合物和2个醇类,占总量的2.6%。Abstract: In order to understand the combined effects of acid rain and litter on the growth of Cryptomeria fortunei,we studied the effects of the acid rain, aquatic extract and acid rain extracts from litter on the seed germination and seedling growth of C. fortunei by using petri dishes culture method,and analyzed the chemical components of the extracts using GC-MS. Results showed that:(1) Both simulated acid rain and aquatic extracts reduced the seed germination rate and germination potential of C. fortunei. Under the effects of acid rain extracts the seed germination rate and germination potential were significantly different from the controlled ones (P<0.05). It is indicated that acid rain enhanced the inhibition effect of allelochemicals from C. fortunei litter on its seed germination. (2) Acid rain declined the ratios of root to bud and root growth of C. fortunei. And acid rain(pH 3.0) significantly reduced the bud growth and biomass(P<0.05). At 50 g·L-1 the aquatic extracts significantly declined the root and bud growth,biomass and the ratios of root to bud(P<0.05). The growth indicators are significantly different from effects of acid rain extracts with the controlled ones(P<0.01). (3) 42 secondary metabolic compounds were identified in the aquatic litter extract of C. fortunei. The major compounds of the aquatic litter extracts and acid rain litter extracts were alcohols,phenolics,betweenanenes and esters, which all together accounted for 86.1% of the total. And in acid rain extracts,of which the newly released compounds including 4 ketones and two alcohols, accounted for 2.6% of the total.
-
Key words:
- forest ecology /
- Cryptomeria fortunei /
- litter /
- acid rain /
- allelochemicals /
- seed germination /
- seedling growth
-
表 1 柳杉凋落物水浸提液和酸雨浸提液成分分析
Table 1. Chemical components of aquatic and acid extracts from litter of Cryptomeria fortunei
序号 t/min 化合物 分子式 相对含量% 水浸提液 酸浸提液 1 5.76 苯酚phenol C6H6O 2.74 1 0.11 2.68 ± 0.12 2 6.30 苯甲醇 benzyl alcohol C7H8O 2.21 ± 0.18 2.34 ± 0.16 3 6.65 2-壬烯-1-醇 2-nonyn-1-ol C9H16O 0.72 1 0.01 0.73 ± 0.07 4 6.79 愈创木酚guajol C7H8O2 2.57 ± 0.03 2.50 ± 0.34 5 7.48 香芹酮carvone C10Hl6O 1.55 ± 0.15 1.68 ± 0.09 6 7.56 脱氢芳樟醇hotrienol C10Hl6O 0.70 ± 0.08 0.76 ± 0.14 7 7.61 邻苯二酚 pyrocatechol C6H6O2 1.56 ± 0.06 1.13 ± 0.07 8 8.20 马鞭埽酮verbenone C10Hl4O 0.89 ± 0.04 0.92 ± 0.14 9 8.50 香茅酵 citronellal C10Hl8O 0.46 ± 0.05 0.50 ± 0.09 10 8.65 2-甲氧基-4-乙埽基苯酚4-vinylguaiacol C9H0O2 0.80 ± 0.06 0.91 ± 0.04 11 8.71 乙基梓檬醒ethyl citral C11H18O 0.50 ± 0.02 0.42 ± 0.02 12 8.87 1,8-松油二醇 terpin C10H20O2 0.48 ± 0.01 0.51 ± 0.21 13 9.07 薇埽乙二醇醚DHS activator C10H18O2 1.24 ± 0.11 1.15 ± 0.11 14 9.18 1,4-桉叶素 1,4-cineole C10H18O 2.66 ± 0.21 2.76 ± 0.27 15 9.27 顺式氧化胡薄荷酮cis-pulegone oxide C10Hl6O2 0.75 ± 0.03 0.79 ± 0.19 16 9.55 二氢香芹醇 dihydrocarveol C10H18O 0.90 ± 0.06 0.99 ± 0.14 17 9.60 4-松油醇 4-terpineol C10H18O 1.68 ± 0.12 1.72 ± 0.14 18 9.75 丙烯醇 allethrolone C9H12O2 - 0.41 ± 0.04 19 9.98 十二烷二酸 dodecanedioic acid C14H31N 1.17 ± 0.13 0.63 ± 0.32 20 10.08 异广藿香院isopatchoulane C15H26 0.59 ± 0.06 0.69 ± 0.07 21 10.57 环氧化马兜铃埽aristolene epoxide C15H24O 1.09 ± 0.11 0.99 ± 0.12 22 10.65 榄香醇elemol C15H26O - 0.41 % 0.09 23 11.26 二氢-α-紫罗兰酮 dihydro-α-ionone C13H22O 0.95 ± 0.03 1.11 ± 0.32 24 11.44 檀香醇santalol C15H24O 0.62 ± 0.02 0.46 ± 0.11 25 11.70 柠檬烯-6-醇特戍酸酷limonen-6-ol,pivalate C15H24O2 1.63 ± 0.11 1.49 ± 0.22 26 11.81 甲酸松油酷terpinyl formate C11H18O2 2.14 ± 0.13 1.91 ± 0.12 27 11.91 蓝桉醇globulol C15H26O 1.30 ± 0.14 0.90 ± 0.11 28 12.17 柏木埽醇cedrenol C15H24O 0.78 ± 0.02 - 29 12.29 长叶醒 longifolenaldehyde C15H24O 1.47 ± 0.13 1.37 ± 0.12 30 12.60 新郁金二酮 neocurdione C15H24O2 - 0.41 ± 0.03 31 12.84 落叶松醇larixol C20H34O2 6.48 ± 1.01 6.30 ± 1.08 32 12.99 3-(十二烯基)二氢-2,5-呋喃二酮 dodecenyl succinic anhydride C16H26O3 - 0.44 ± 0.03 33 13.15 异戊酸香叶酿geranyl isovalerate C15H26O2 1.28 ± 0.32 1.27 ± 0.25 34 13.25 表蓝桉醇epiglobulol C15H26O 1.19 ± 0.41 1.01 ± 0.75 35 13.39 二乙酸-2-甲基间苯二酚 2-methylresorcinol,diacetate C11H12O4 12.16 ± 1.56 12.00 ±1.63 36 13.58 1-胺甲基金刚院 1 -adamantanemethylamine C11H19N 9.92 ± 1.21 9.65 ± 1.12 37 13.71 β-按叶醇β-eudesmol C15H26O 6.95 ± 1.01 6.10 ± 1.04 38 13.78 喇叭埽醇 ledene alcohol C15H24O 1.78 ± 0.58 1.63 ± 0.73 39 13.84 柏木埽醇 8-cedren-13-ol C15H24O 1.46 ± 0.76 1.11 ± 0.65 40 14.10 愈创木烯guaiene C15H24 0.57 ± 0.45 0.54 ± 0.05 41 14.19 紫堇酮 corymbolone C15H24O2 - 0.40 ± 0.04 42 14.24 斯巴醇 spathulenol C15H24O 0.64 ± 0.09 0.62 ± 0.21 43 14.32 异长叶烯 isolongifolene C15H24 2.91 ± 0.81 2.80 ± 0.19 44 14.52 桉油烯醇spathulenol C15H24O 7.40 ± 0.79 7.94 ± 0.98 45 15.12 邻苯二甲酸二丁酯 dibutyl phthalate C16H22O4 10.51 ± 2.01 12.07 ±1.97 46 15.33 丁香烧 clovane C15H26 1.18 ± 0.61 0.98 ± 0.21 47 15.56 氧化石竹烯 epoxycaryophyllene C15H24O 0.47 ± 0.13 0.48 ± 0.18 48 15.70 水菖蒲酮shyobunone C15H24O - 0.50 ± 0.04 49 15.76 韦得醇widdrol C15H26O 0.94 ± 0.07 0.87 ± 0.05 说明:“-”表示未检测到物质。 -
[1] MENZA F C, SEIP H M. Acid rain in Europe and the United States:an update[J]. Environ Sci Policy,2004,7(4):253-265. [2] CURNUTT J L. Host-area specific climatic-matching:similarity breeds exotics[J]. Biol Conserv,2000,94(3):341-351. [3] 李荣生,胡哲生,时忠杰. 模拟酸雨对蕹菜种子发芽的影响[J]. 农业环境保护,2001,20(5):355-356. LI Rongsheng,HU Zhesheng,SHI Zhongjie. Effect of simulated acid rain on germination of seed of Ipomoea aquatic Forsk[J]. J Agro-Environ Sci,2001,20(5):355-356. [4] 彭彩霞,彭长连,林桂珠,等. 模拟酸雨对农作物种子萌发和幼苗生长的影响[J]. 热带亚热带植物学报,2003,11(4):400-404. PENG Caixia, PENG Changlian,LIN Guizhu,et al. Effects of simulated acid rain on seed germination and seedling growth of three crops[J]. J Trop Subtrop Bot,2003,11(4):400-404. [5] 聂呈荣,陈思果,温玉辉,等. 模拟酸雨对花生种子萌芽及幼苗生长的影响[J]. 中国油料作物学报,2003,25(1):34-36. NIE Chengrong,CHEN Siguo,WEN Yuhui,et al. Effect of acid rain on seed germination and seedling growth of peanut[J]. Chin J Oil Crop Sci,2003,25(1):34-36. [6] FAN Houbao,WANG Yihong. Effects of simulated acid rain on germination,foliar damage,chlorophyll contents and seeding growth of five hardwood species growing in China[J]. For Ecol Manage,2000,126(3):321-329. [7] 黎华寿,聂呈荣,胡永刚. 模拟酸雨对杂交稻常规稻野生稻影响的研究[J]. 农业环境科学学报,2004,23(2):284-287. LI Huashou,NIE Chengrong,HU Yonggang. Effects of simulated acid rain on hybrid,common and wild rice varieties[J]. J Agro-Environ Sci,2004,23(2):284-287. [8] 周青,曾庆玲,黄晓华,等. 3类抗性种子萌发对酸雨胁迫响应[J]. 生态学报,2004,24(9):2029-2036. ZHOU Qing,ZENG Qingling,HUANG Xiaohua,et al. Effects of acid rain on seed germination of various acid-fast plant[J]. Acta Ecol Sin,2004,24(9):2029-2036. [9] AHMED R,HOQUE A T M R,HOSSAIN M K. Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops[J]. J For Res,2008,19(5):19-24. [10] 罗侠,潘存德,黄闽敏,等. 天山云杉凋落物提取液对种子萌发和幼苗生长的自毒作用[J]. 新疆农业科学,2006,43(1):1-5. LUO Xia,PAN Cunde,HUANG Minmin,et al. Autotoxicity of Picea schrenkiana litter aqueous extracts on seed germination and seedling growth[J]. Xinjiang Agric Sci,2006,43(1):1-5. [11] 张明如,俞益武,赵明水,等. 天目山国家级自然保护区柳杉群落空气负离子浓度日变化征[J]. 浙江林学院学报,2009,26(5):701-707. ZHANG Mingru,YU Yiwu, ZHAO Mingshui,et al. Diurnal changes in the negative ion concentration of the air for two Cryptomeria fortunei communities of National Nature Reserve of Mount Tianmu[J]. J Zhejiang For Coll,2009, 26(5):701-707. [12] 牛彧文,顾骏强,康丽莉. 浙江省酸雨污染特征研究[C]//中国气象学会. 中国气象学会2008年年会大气环境监测、预报与污染物控制分会场论文集. 北京:中国气象学会,2008:572-575. [13] 龚小峰,朱云峰,刘亮,等. 柳杉瘿瘤病病原菌鉴定[J]. 浙江农林大学学报,2011,28(2):339-342. GONG Xiaofeng,ZHU Yunfeng,LIU Liang,et al. Causal agent of Cryptomeria fortunei gall disease[J]. J Zhejiang A & F Univ,2011,28(2):339-342. [14] 蔡国贵. 柳杉毛虫高毒力白僵菌Bbd3菌株的筛选及应用[J]. 南京林业大学学报:自然科学版,2006,30(1):105-108. CAI Guogui. Screening and application study of Beauveria bassiana Bbd3 strain with high virulence to Dendrolimus-houi lajonquiere[J]. J Nanjing For Univ Nat Sci Ed,2006,30(1):105-108. [15] LU Baowang,MATSUI T,MATSUSHITA Y I,et al. Effect of pretreatment with acetic acid aqueous solution on carbonization of Sugi (Cryptomeria japonica D. Don) wood[J]. Chem Ind For Prod,2003,54(2):33-36. [16] 李晓玲,小林功,黑田尚宏,等. 日本柳杉髓心方材高频真空干燥试验[J]. 北京林业大学学报,2005,27(增刊):42-46. LI Xiaoling,ISAO Kobayashi,KURODA N,et al. Radio frequency/vacuum drying tests on Japanese Sugi[J]. J Beijing For Univ,2005,27(supp):42-46. [17] WILLIAMSON G B,RICHARDSON D. Bioassays for allelopathy:measuring treatment responses with independent controls[J]. J Chem Ecol,1988,14(1):181-187. [18] 樊后保,黄玉梓,李燕燕. 模拟酸雨对杉木种子萌发和幼苗生长的影响[J]. 江西农业大学学报,2005,27(6):875-879. FAN Houbao,HUANG Yuzi,LI Yanyan. Effects of smiulated acid rain on seed germination and seedling growth of Cunninghamia lanceolata[J]. Acta Agric Univ Jiangxi,2005,27(6):875-879. [19] ZHANG Rumin,ZUO Zhaojiang,GAO Peijun,et al. Allelopathic effects of VOCs of Artemisia frigida Willd. on the regeneration of pasture grasses in Inner mongolia[J]. J Arid Environ,2012,87(20):212-218. [20] 王瑞龙,翁洁,宋圆圆,等. 模拟酸雨对外来入侵植物三叶鬼针草生长及化感作用的影响[J]. 生态环境学报,2010,19(12):2845-2849. WANG Ruilong,WENG Jie,SONG Yuanyuan,et al. Effects of simulated acid rain on seedling growth and allelopathic potential of invasive alien species Bidens pilosa L.[J]. Ecol Environ Sci,2010,19(12):2845-2849. [21] 缪丽华,王媛,高岩,等. 再力花地下部水浸提液对几种水生植物幼苗的化感作用[J]. 生态学报,2012,32(14):4488-4495. MIAO Lihua,WANG Yuan,GAO Yan,et al. The allelopathy of aquatic rhizome and root extract of Thalia dealbata to seedling of several aquatic plants[J]. Acta Ecol Sin,2012,32(14):4488-4495. [22] 俞飞,侯平,宋琦,等. 柳杉凋落物自毒作用研究[J]. 浙江林学院学报,2010,27(4):494-500. YU Fei,HOU Ping,SONG Qi,et al. Autotoxicity of Cryptomeria fortunei litter[J]. J Zhejiang For Coll,2010,27(4):494-500. [23] 王丽红,黄晓华,周青. 水稻、小麦油菜种子萌发POD与CAT对酸雨胁迫的响应[J]. 环境科学,2005,26(6):123-125. WANG Lihong, HUANG Xiaohua,ZHOU Qing. Response of POD and CAT during seeds of rice, wheat and rape germination on acid rain stress[J]. Environ Sci,2005,26(6):123-125. [24] 陶丽华,杨国栋,周青. 不同水稻品种种子萌发对酸雨胁迫的响应[J]. 农业环境科学学报,2006,25(3):566-569. TAO Lihua,YANG Guodong,ZHOU Qing. Responses of seed germination of different varieties of rice to the acid rain stress[J]. J Agro-Environ Sci,2006,25(3):566-569. [25] 王明道,陈红歌,刘新育,等. 地黄对芝麻的化感作用及其化感物质的分离鉴定[J]. 植物生态学报,2009,33(6):1191-1198. WANG Mingdao,CHEN Hongge,LIU Xinyu,et al. Isolation and identification of allelochemicals from Rehmannia glutinosa that affect Sesamum indicum[J]. Chin J Plant Ecol,2009,33(6):1191-1198. [26] FUJII Y,SHIBUYA T,NAKATANI K,et al. Assessment method for allelopathic effect from leaf litter leachates[J]. Weed BiolManage,2004,4(1):19-23. [27] 万开元,陈防,陶勇,等. 杨树对莴苣的化感作用[J]. 东北林业大学学报,2009,37(1):21-22. WAN Kaiyuan,CHEN Fang,TAO Yong,et al. Allelopathy of Populus sp. to Lactuca sativa[J]. J Northeast For Univ,2009,37(1):21-22. [28] 张汝民,王玉芝,侯平,等. 几种牧草幼苗对冷蒿茎叶水浸提液化感作用的生理响应[J]. 生态学报,2010,30(8):2197-2204. ZHANG Rumin,WANG Yuzhi,HOU Ping,et al. Physiological responses to allelopathy of aquatic stem and leaf extract of Artemisia frigida in seedling of several pasture plants[J]. Acta Ecol Sin,2010,30(8):2197-2204. [29] 廖周瑜,彭少麟. 酸雨对外来植物入侵的影响[J]. 生态环境,2007,16(2):639-643. LIAO Zhouyu, PENG Shaolin. Effects of acid rain on the invasion of non-native plants[J]. Ecol Environ,2007,16(2):639-643. [30] KUBANEK J,HAY M E,BROWN P J,et al. Lignoid chemical defenses in the fresh water macrophyte Saururus cernuus[J]. Chemoecology,2001,11(1):1-8. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.01.001