-
透明木材因其独特的光、热、力学属性,在智能透光建筑、光电子器件、家居材料等方面有着巨大的应用前景[1−3]。通过在树脂中引入功能基团或纳米材料,一系列功能化透明木材,如荧光透明木材、紫外/红外屏蔽透明木材、隔热透明木材等,相继被开发出来,进一步扩宽了透明木材的应用领域[4−6]。然而,由于木材稀缺和国家的环保政策,寻找低成本高质量的替代原料具有现实意义,而竹子以其快速生长和良好性能成为潜在的替代品[7−8]。但是,由于竹材较高密度和组织结构的差异,竹材在制成透明材料时面临着渗透和保持结构完整性的挑战[9−11]。WANG等[12]使用质量浓度为1%的氢氧化钠溶液预处理竹子,成功制备出透光率为80%的透明竹材。WANG等[13]利用碱性过氧化氢体系对竹材中木质素进行改性处理,制备出结构更为完整且力学性能更强的透明竹材。但是,目前所报道的大多数透明竹材是以原竹竹筒进行剖分、去青去黄、刨平而得到的窄长竹块为原材料[14−15],其宽度一般不超过20 mm,因此存在幅面尺寸太小导致应用受限的问题。针对此问题,WANG等[16]以刨切竹单板为原料(刨切竹单板是由原竹经过高温软化、展平和刨切制得,此过程会轻微破坏和降解竹材的结构和成分,使其脱木素过程难度加大),提出利用丙三醇三缩水甘油醚(PTGE)预交联竹材后再脱木素的策略,成功制备出更大幅面(135 mm × 135 mm × 1 mm)的透明竹材,推进了透明竹材的大幅面化应用。尽管大尺寸透明竹材已被成功制备,但其功能性和应用场景有待进一步丰富和挖掘。因此,本研究鉴于透明木材的功能化应用,通过对刨切竹单板依次进行脱木素处理、掺杂荧光微胶囊环氧树脂的真空浸渍处理、超疏水处理,制备出具有荧光、超疏水双功能透明竹材,对所制备透明竹材的微观结构、化学成分、光学性能、力学性能、热学性能以及超疏水性能等进行了表征与研究,以期为竹基功能化材料的发展和应用以及竹材的高值化利用提供科学依据。
Preparation and properties of fluorescent and superhydrophobic bifunctional transparent bamboo material
-
摘要:
目的 制备具有荧光和超疏水功能的透明竹材,并对其进行性能研究与评价,为竹材的功能化应用提供参考。 方法 通过对竹材进行脱木素处理、掺杂荧光微胶囊环氧树脂的真空浸渍处理、超疏水处理等步骤,制备出具有荧光和超疏水性能的透明竹材,并对其各项性能进行表征。 结果 制备的透明竹材具有高透明度、高雾度、光散射性能、热绝缘性能、荧光性能和超疏水性能等优良特性。超疏水荧光透明竹材在波长400~800 nm内的光透过率为80%,雾度基本保持在80%以上,相比较透明竹材透光率略微下降,但雾度有了一定的提升,具有良好的光散射性;其纵向抗拉强度为123.3 MPa,横向拉伸强度相比较刨切竹单板有了明显的提升,达3.2 MPa;能够在365 nm紫外光下发出蓝色荧光。与玻璃和荧光透明竹材相比,超疏水荧光透明竹材具有更低的导热系数,为0.302 3 W·m−1·K−1。该材料具备超疏水性能,水在其表面的接触角为151.2°,滚动角为3.5°。 结论 本研究制备的超疏水荧光透明竹材融合了高透光性、高雾度、光散射性、良好的机械强度、优异的热绝缘性能、荧光特性和超疏水性等优异性能于一体。图11参27 Abstract:Objective Transparent bamboo with fluorescent and superhydrophobic functions were prepared, and their properties were studied and evaluated, in order to provide a reference for the functionalized application of bamboo-based materials. Method Transparent bamboo with fluorescence and superhydrophobic properties were prepared by delignification, vacuum impregnation of doped fluorescent microcapsule epoxy resin, superhydrophobic treatment and other steps, and its properties were measured. Result The prepared transparent bamboo has excellent properties including high transparency, high haze, light scattering properties, thermal insulation properties, fluorescence properties, and superhydrophobic properties. The light transmittance of superhydrophobic fluorescent transparent bamboo in the wavelength range of 400 to 800 nm is 80%, and the haze is basically maintained above 80%. Compared with transparent bamboo, the light transmittance of superhydrophobic fluorescent transparent bamboo decreases slightly, but the haze has been improved to a certain extent, and it has good light scattering. Its longitudinal tensile strength is about 123.3 MPa, and the transverse tensile strength has been significantly improved compared with the sliced bamboo veneer, reaching 3.2 MPa. It can emit blue fluorescence under 365 nm ultraviolet light. Compared with glass and fluorescent transparent bamboo, superhydrophobic fluorescent transparent bamboo has a lower thermal conductivity of 0.3023 W·m−1·K−1. The contact angle of water on its surface is 151.2° and the rolling angle is 3.5°.Conclusion The prepared superhydrophobic fluorescent transparent bamboo integrates excellent properties: high light transmittance, high haze, light scattering, good mechanical strength, excellent thermal insulation performance, fluorescence characteristics and superhydrophobicity. [Ch, 11 fig. 27 ref.] -
Key words:
- transparent bamboo /
- delignification /
- fluorescent property /
- superhydrophobicity /
- thermal insulation
-
-
[1] 林涛, 张聪, 殷学风, 等. 透明木基功能化复合材料的应用研究进展[J]. 中国造纸, 2022, 41(5): 80−87. LIN Tao, ZHANG Cong, YIN Xuefeng, et al. Advances in the application of transparent wood-based functional composites [J]. China Pulp & Paper, 2022, 41(5): 80−87. [2] FINK S. Transparent wood: a new approach in the functional study of wood structure [J]. Holzforschung, 1992, 46(5): 403−408. [3] ZHU Mingwei, SONG Jianwei, LI Tian, et al. Highly anisotropic, highly transparent wood composites[J/OL]. Advanced Materials, 2016, 28 (35): 7653[2024-03-30]. DOI: 10.1002/adma.201600427. [4] ZHU Mingwei, LI Tian, DAVIS C, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells [J]. Nano Energy, 2016, 26: 332−339. [5] FU Qiliang, YAN Min, JUNGSTEDT E, et al. Transparent plywood as a load-bearing and luminescent biocomposite [J]. Composites Science and Technology, 2018, 8(164): 296−303. [6] MI Ruiyu, LI Tian, DALGO D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows[J/OL]. Advanced Functional Materials, 2020, 30 (1): 1907511[2024-03-30]. DOI: 10.1002/adfm.201907511. [7] 闫实, 杨正勇, 周晓剑, 等. 竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响[J]. 浙江农林大学学报, 2024, 41(4): 861−869. YAN Shi, YANG Zhengyong, ZHOU Xiaojian, et al. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana [J]. Journal of Zhejiang A&F University, 2024, 41(4): 861−869. [8] NKEUWA W N, ZHANG Jialin, SEMPLE K E, et al. Bamboo-based composites: a review on fundamentals and processes of bamboo bonding[J/OL]. Composites Part B: Engineering, 2022, 235 , 109776[2024-03-30]. DOI: 10.1016/j.compositesb.2022.109776. [9] YUAN Tiancheng, ZHANG Tao, HUANG Yaqian, et al. Study on bamboo longitudinal flattening technology[J/OL]. Polymers, 2022, 14 (4): 816[2024-03-30]. DOI: 10.3390/polym14040816. [10] 王戈, 陈复明, 程海涛, 等. 中国竹产业的特色优势与创新发展[J]. 世界竹藤通讯, 2020, 18 (6): 6−13, 29. WANG Ge, CHEN Fuming, CHENG Haitao, et al. Special advantage and innovative development of bamboo industry in China[J]. World Bamboo and Rattan, 2020, 18 (6): 6−13, 29. [11] WANG Zihao, TONG Jiewei, KUAI Bingbin, et al. Preparation and performance of fluorescent transparent bamboo[J/OL]. 2022, 186 : 115222[2024-03-30]. DOI: 10.1016/j.indcrop.2022.115222. [12] WANG Xuan, SHAN Shuya, SHI S Q, et al. Optically transparent bamboo with high strength and low thermal conductivity [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1662−1669. [13] WANG Youyong, GUO Fangliang, LI Yuanqing, et al. High overall performance transparent bamboo composite via a lignin-modification strategy[J/OL]. Composites Part B: Engineering, 2022, 235 : 109798[2024-03-30]. DOI: 10.1016/j.compositesb.2022.109798. [14] 苏嘉慧. 透明竹材的制备及其功能化研究[D]. 长沙: 中南林业科技大学, 2023. SU Jiahui. Preparation of Transparent Bamboo and Its Functionalization Research[D]. Changsha: Central South University of Forestry and Technology, 2023. [15] QIU Xiangsheng, WANG Zihao, ZHANG Yaoli, et al. Preparation and performance on fluorescent magnetic transparent bamboo[J/OL]. Industrial Crops and Products, 2024, 208 : 117881[2024-03-30]. DOI: 10.1016/j.indcrop.2023.117881. [16] WANG Kaili, PENG Haozhe, GU Qiyu, et al. Scalable, large-size, and flexible transparent bamboo[J/OL]. Chemical Engineering Journal, 2023, 451 : 138349[2024-03-30]. DOI: 10.1016/j.foodhyd.2018.03.054. [17] CHEN Bo, LEISTE U H, FOURNEY W L, et al. Hardened wood as a renewable alternative to steel and plastic [J]. Matter, 2021, 4(12): 3941−3952. [18] LOU Zhichao, WANG Qiuyi, SUN Wei, et al. Bamboo flattening technique: a literature and patent review [J]. European Journal of Wood and Wood Products, 2021, 79: 1035−1048. [19] YUAN Tiancheng, HAN Xin, WU Yifei, et al. A new approach for fabricating crack-free, flattened bamboo board and the study of its macro-/micro-properties [J]. European Journal of Wood and Wood Products, 2021, 79: 1531−1540. [20] 李红晨, 何盛, 张仲凤, 等. 竹材显微构造与孔隙结构研究进展[J]. 竹子学报, 2019, 38 (3): 52−58, 77. LI Hongchen, HE Sheng, ZHANG Zhongfeng, et al. Research progress of microstructure and porous structure of bamboo[J]. Journal of Bamboo Research. 2019, 38 (3): 52−58, 77. [21] WANG Kaili, LIU Xiaorong, TAN Yi, et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation [J]. Chemical Engineering Journal, 2019, 371: 769−780. [22] GUAN Hao, CHENG Zhiyong, WANG Xiaoqing. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents [J]. ACS Nano, 2018, 12(10): 10365−10373. [23] CHENG Shichao, HUANG Anmin, WANG Shennan, et al. Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood [J]. BioResources, 2016, 11(2): 4006−4016. [24] HUANG Xu, ZHANG Weidong. Preparation of cellulose sulphate and evaluation of its properties[J] Journal of Fiber Bioengineering and Informatics, 2010, 3 (1): 32−39. [25] WANG Kaili, LIU Xiaorong, TAN Yi, et al. Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings [J]. Chemical Engineering Journal, 2019, 359: 626−640. [26] ELLERBROCK R, STEIN M, SCHALLER J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR[J/OL]. Scientific Reports, 2022, 12 : 11708[2024-03-30]. DOI: 10.1038/s41598-022-15882-4. [27] ZHANG Tao, ZHENG Miao, LI Hongji, et al. Photochromic transparent bamboo composite with excellent optical and thermal management for smart window applications[J/OL]. Industrial Crops and Products. 2023; 205 : 117532[2024-03-30]. DOI: 10.1016/j.indcrop.2023.117532. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240296