留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浙江省城市发展质量时空差异性及影响因素

张燕飞 周晓光 吴亚琪

杨宁馨, 毛方杰, 杜华强, 等. 浙江省丽水市森林碳汇时空演变及对极端降水的响应[J]. 浙江农林大学学报, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
引用本文: 张燕飞, 周晓光, 吴亚琪. 浙江省城市发展质量时空差异性及影响因素[J]. 浙江农林大学学报, 2023, 40(4): 892-900. DOI: 10.11833/j.issn.2095-0756.20220623
YANG Ningxin, MAO Fangjie, DU Huaqiang, et al. Spatiotemporal evolution of forest carbon sink in Lishui City and its response to extreme precipitation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
Citation: ZHANG Yanfei, ZHOU Xiaoguang, WU Yaqi. Spatiotemporal differences and influencing factors of urban development quality in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2023, 40(4): 892-900. DOI: 10.11833/j.issn.2095-0756.20220623

浙江省城市发展质量时空差异性及影响因素

DOI: 10.11833/j.issn.2095-0756.20220623
基金项目: 国家自然科学基金资助项目(41871216);浙江省哲学社会科学规划课题(20NDQN300YB)
详细信息
    作者简介: 张燕飞(ORCID: 0000-0001-5069-3392),讲师,从事城乡规划研究。E-mail: 112736299@qq.com
    通信作者: 吴亚琪(ORCID: 0009-0007-4069-1060),讲师,从事城乡规划研究。E-mail: wuyaqi@zafu.edu.cn
  • 中图分类号: TU984.2

Spatiotemporal differences and influencing factors of urban development quality in Zhejiang Province

  • 摘要:   目的  探索和评价浙江省城市发展质量时空差异性,分析影响因素,为城市发展提供科学依据。  方法  从社会功能、经济发展、生态环境和文化特质4个维度,采用熵权-优劣解距离法(TOPSIS)模型评价浙江省城市发展质量差异,运用障碍度模型探索影响城市发展质量的主要障碍因子。  结果  从时序变化来看,浙江省城市发展质量总体水平稳步提升,且城市间排序相对稳定,但城市间的差异性呈扩大趋势;从空间变化上来看,浙江省城市发展逐步形成了以杭州市和宁波市为中心的环杭州湾高质量城市群格局;从子系统评价结果来看,各城市在社会功能、经济发展、生态环境及文化特质等方面发展质量不均衡,其中,经济发展子系统不均衡现象最明显。对影响浙江省城市发展的障碍度分析发现:不同城市的障碍因子在子系统层面和指标层层面的高值区及变化趋势都存在差异性,但文化特质和经济发展都是制约各城市高质量发展的主要子系统,而生态环境子系统对城市发展质量影响最小。  结论  浙江省城市发展质量总体呈上升趋势,各城市具有不同的发展优劣势,体现了发展不平衡现状;障碍因子存在明显差异,需要制定差异化发展策略。图2表3参26
  • 森林生态系统是陆地生态系统的主体,在减缓全球变暖方面具有不可替代的作用[1]。净生态系统生产力(net ecosystem productivity, NEP)作为净初级生产力和异养呼吸的差值,是表征生态系统碳收支的重要指标,被广泛应用于定量描述森林生态系统碳源/汇的能力。然而,大气温室气体浓度的增加使大气持水能力不断增强,显著增加了暴雨发生的频率和强度[23],已成为影响森林NEP最大的因子之一[4]。中国位于北半球中高纬度地区,跨越不同的气候带,不同地区气候条件、植被生长异质[5],使得中国极端降水及森林碳汇具有明显的区域特征,并且NEP对极端降水的响应也不同。因此,开展区域碳源/汇分布及其对极端降水响应研究,对气候灾害预防和生态保护具有重要意义。

    准确估算极端降水时空格局是研究森林NEP响应极端降水的前提。相对阈值法是评判极端降水的常用方法,充分考虑了降水的地区间差异和季节因素[6],具有极端性弱、噪声低、显著性强等优点,可以更客观地分析极端降水的气候特征和变化趋势[7]。遥感观测协同生态过程模型不仅能估算森林NEP时空动态,更能帮助分析NEP对气候的响应机制,在区域NEP时空动态研究中具有显著优势[8]。InTEC模型是CHEN等[9]开发的融入森林年龄及干扰影响的生态系统模型,能更准确地模拟长期森林碳循环动态变化,在省域[10]和全国[11]尺度均得到了广泛应用。结构方程模型综合了方差、回归、路径和因子等统计分析方法,能模拟多因子的内在逻辑关系,综合评估因果联系和潜变量关系,已被广泛应用于生态学领域[12]。本研究以浙江省丽水市为研究区域,通过百分位阈值法分析1979—2079年极端降水时空演变特征,采用InTEC模型模拟不同情景下丽水市森林NEP时空格局,并构建结构方程定量分析丽水市森林NEP对极端降水的响应。研究结果将为丽水森林生态系统响应与适应全球气候变化提供理论支持,为维持和提升其植被碳汇功能提供依据。

    丽水市位于浙江省西南部(27°25′~28°57′N,118°41′~120°26′E),森林面积为142.14 万hm2,森林覆盖率达82.27%,蓄积量为0.96 亿m 3,森林类型主要为亚热带针叶林、阔叶林和竹林等。林地的净初级生产力年总量与浙江省平均相比,所占比例较高[13]。丽水市地势西南高东北低,西南部以中山为主,东部以低山为主,中间有中山以及河谷盆地。全市主要气候类型为亚热带湿润季风气候,光照充足、四季分明、雨量丰沛。年均降水量为1 598.9 mm,多集中在3—9月,6月最多,是降水较为丰富的地区,也是极端气候事件多发的地区[14]

    本研究利用百分位法描述极端降水时空特征,将月尺度的降水量从小到大排序,取其第95百分位值作为极端降水量阈值(mm·月−1)[15]。如果某月降水量超过这一阈值,则称该月发生了极端降水事件,累积该月降水量即为年极端降水量(mm·a−1),并定义该年发生极端降水月数为极端降水频度(次·a−1)。最后,将极端降水量除以极端降水频度为极端降水强度(I)。

    本研究使用InTEC模型模拟丽水市1979—2079年森林生态系统NEP,主要包括气象、土壤、森林年龄、参考年净初级生产力、氮沉降、二氧化碳(CO2)浓度及森林分布信息等时空分布数据。

    1.3.1   气象数据

    1979—2015年丽水市气象数据来源于中国气象局国家气象中心丽水市地面日值气象数据(https://data.cma.cn),包括最高气温、最低气温、降水量、太阳辐射及相对湿度。通过反距离加权插值法获得空间分辨率为1 km的日尺度栅格气象数据,然后通过累计获得月尺度气象数据。2016—2079年气象数据则采用第5次国际耦合比较计划(Coupled Model Intercomparison Project Phase 5, CMIP5)的3种气候情景RCP 2.6、RCP 4.5和RCP 8.5获得,并通过最近邻法重采样到1 km分辨率。

    1.3.2   森林分布数据

    利用最大似然法从Landsat5 TM数据中提取2004年丽水市针叶林、阔叶林、竹林等30 m分辨率森林分布信息。为了保持数据空间分辨率的一致性,采用局部平均法获取1 km森林丰度信息。具体步骤见文献[16]。

    1.3.3   土壤数据

    土壤数据包括土壤粉粒百分比、砂粒百分比、黏粒百分比、土壤深度、土壤有效持水力、土壤容重以及土壤萎蔫点。其中前3个数据来源于联合国粮食和农业组织及国际应用分析学会共同开发的全球土壤数据库(HWSD 1.2,https://iiasa.acat/Research/LUC/luc07/External-World-soil-database)。土壤容重使用Saxton改进的Brooks-Corey模型,结合土壤粉粒、砂粒、黏粒百分比来计算,土壤萎蔫点也根据粉粒、砂粒、黏粒百分比计算所得[17]

    1.3.4   森林年龄数据

    根据浙江省森林资源清查小班数据提供的森林年龄信息,在对2004年浙江省森林资源样地清查年龄信息统计的基础上,利用克里金插值法得到2004年浙江省丽水市1 km分辨率的森林年龄空间分布数据。

    1.3.5   CO2浓度数据

    1979—1999年的CO2浓度数据来源于全球监测地球系统研究实验室(https://www.esrl.noaa.gov/gmd/ccgg/trends);2000—2079年RCP 2.6、RCP 4.5和RCP 8.5等3种情景下模拟的CO2浓度数据来自典型浓度路径(representative concentration pathways,RCPs)数据库(https://tntcat.iiasa.ac.at/RcpDb),使用线性插值将10 a尺度的CO2浓度数据插值成年尺度。

    1.3.6   氮沉降数据

    氮沉降数据来源于全球格点大气总估计的无机氮、氮氢化合物和氮氧化物沉降量。1860、1993和2050年的氮沉降数据利用全球三维化传输模型(TM 3)模拟得到(https://doi.org/10.3334/ORNLDAAC/830)。本研究采用线性插值得到丽水市1979—2079年1 km空间分辨率的氮沉降数据。

    1.3.7   参考年净初级生力

    本研究将2004年作为参考年校正初始的净初级生力值,使用BEPS模型模拟丽水市1 km分辨率净初级生力。具体模拟过程参考文献[18]。

    本研究利用最小二乘法计算线性回归模型的斜率来分析变量的时空演变特征(θ)。计算公式为:

    $$ \theta = \frac{{n\displaystyle \sum\limits_{i = 1}^n {{x_i}{y_i} - \displaystyle \sum\limits_{i = 1}^n {{x_i}\displaystyle \sum\limits_{i = 1}^n {{y_i}} } } }}{{n\displaystyle \sum\limits_{i = 1}^n {{x_i}^2 - {{\left(\displaystyle \sum\limits_{i = 1}^n {{x_i}} \right)}^2}} }} 。 $$ (1)

    式(1)中:n为年的总数;xi为年($ i $=1,2,…,50);yi为第i年的变量值。θ>0表示上升趋势,<0表示下降趋势。

    偏最小二乘(partial least square, PLS)通径分析是结构方程模型估计方法,可用以分析多变量之间的线性统计关系,可以有效解决多变量复共线问题,适用于变量多重相关或样本容量较小的情况,能克服变量数据分布复杂和变量之间相关的问题[12]。本研究采用该方法定量分析气候因子对NEP影响的相对重要程度及NEP驱动因子的直接作用和间接作用,在SmartPLS 3.3.9软件中进行。

    通过百分位阈值法计算月尺度的极端降水和阈值的空间分布结果,以及极端降水强度的空间分布结果如图1所示。总体上,未来丽水市极端降水量及强度除RCP 2.6情景外,其他2种情景下均呈上升趋势,并且RCP 4.5情景下2个指标上升趋势面积达90%以上,但上升趋势不显著。丽水市历史极端降水阈值为(313.32±18.77) mm·月−1,随着辐射胁迫增加极端降水阈值逐步增加,最大达(364.28±11.87) mm·月−1,在空间上呈现由西南向东北递减的趋势。2016年之前丽水市所有地区极端降水量及强度均呈上升趋势,极端降水量平均值为481.73 mm·a−1。RCP 8.5情景下未来变化最明显,极端降水量均值达638.19 mm·a−1,比历史的年均极端降水量增加了156.46 mm·a−1,强度是历史的1.28倍。

    图 1  历史(1979—2015年)及不同气候情景下未来(2016—2079年)丽水市极端降水的空间分布
    Figure 1  Spatial distribution of extreme precipitation in Lishui City under historical (1979-2015) and future (2016-2079) climate scenarios

    1979—2079年丽水市年极端降水累计次数的年际变化如图2所示。总体上,历史和未来极端降水增加趋势相近,分别为0.55与0.60,历史年极端降水次数增加量为20次·a−1,未来气候情景下年极端降水次数随辐射胁迫的增加而增加,至2079年累计发生次数分别较2016年增加33、35和36次·a−1,分别比历史次数增加了165%、175%、180%。

    图 2  历史(1979—2019年)及不同气候情景下未来(2019—2079年)丽水市年极端降水累计次数的年际变化
    Figure 2  Interannual changes of the cumulative number of extreme precipitation in Lishui City under historical (1979-2019) and different climate scenarios (2019-2079)

    1979—2079年丽水市森林NEP的年际变化如图3所示。由图3A可见:1979—2015年丽水市森林NEP整体呈显著增长趋势。1979—1988年表现为碳源,1986年NEP值历史最低,为−439.24 g·m−2·a−1,1989年开始从碳源转为碳汇,累计NEP增至2015年的6.8 Pg。由图3B~C可见:3种情景下2016—2079年丽水市森林NEP碳汇量呈下降趋势,RCP 8.5气候情景对比最不明显,RCP 2.6和RCP 4.5情景下森林碳汇从2064年开始已经表现为碳源。碳汇累积量在2064年之前一直处于增加状态,之后除了RCP 8.5情景继续增加外,其他2种情景已经停止增加甚至有下降的现象。3种情景下的NEP累积量相对于2015年分别增加了8.51、9.32、10.97 Pg。总体来说,1979—2079年间丽水市森林NEP呈先增加再减少的趋势,并且在RCP 8.5情景下减少最慢。

    图 3  历史(1979—2015年)及不同气候情景下未来(2016—2079年)丽水市森林NEP的年际变化
    Figure 3  Historical (1979-2015) and future (2016-2079) interannual changes of forest NEP in Lishui City under different climate scenarios

    图4为1979—2079年丽水市NEP以及时空演变特征的空间分布结果。从历史来看,1988—1996年碳汇能力增强,NEP<0的区域减少到9.74%,2015年时NEP>0的区域已达100%,丽水所有区域在历史上森林碳汇上升趋势都比较高。3种气候情景下,2016—2031年丽水市整体表现为碳汇,超过50%的区域为300<NEP<500 g·m−2·a−1,主要分布在北部区域;2032—2047年森林全市碳汇能力下降,超过80%的区域为100<NEP<300 g·m−2·a−1;2048—2063年森林碳汇能力持续下降,RCP 2.6下降最明显,主要在西部区域;2064—2079年,依旧持续下降。RCP 8.5气候情景77.01%的区域集中在0<NEP<100 g·m−2·a−1,RCP 2.6和RCP 4.5情景下NEP<0的区域增加到66.49%和65.46%,积累量有下降的现象,且下降趋势高值区主要分布在东部和北部。

    图 4  1979—2015基准年以及不同气候情景下2016—2079年丽水市NEP的空间分布和时空演变特征
    Figure 4  Spatial distribution of NEP and linear trend in Lishui City during 1979-2015 base year and 2016-2079 under different climate scenarios

    分析图5可知:1979—2079年丽水市气候因子对NEP的通径系数绝对值最大的均为降水,可见降水是森林生态系统NEP变化的重要驱动因子。由图5A得出:气候变化对NEP变化的直接影响为0.64,对极端降水的直接影响为0.30,气候变化通过影响极端降水进而影响NEP的间接影响为0.11 (0.30×0.37=0.11),极端降水对NEP的直接影响为0.37,因此1979—2015年丽水市极端降水对NEP产生积极影响。由图5B可知:在RCP 2.6情景下,2016—2079年丽水市气候变化对NEP变化的直接影响为0.66,对极端降水的直接影响为0.62,气候变化通过影响极端降水进而影响NEP的间接影响为0.01 (0.62×0.02=0.01),极端降水对NEP的直接影响不显著。由图5C可知:在RCP 4.5情景下,2016—2079年丽水市气候变化对NEP变化的直接影响为0.93,对极端降水的直接影响为0.53,气候变化通过极端降水对NEP产生的间接影响为0.20 (0.53×0.37=0.20),极端降水对NEP的直接影响为0.37,并且对NEP产生消极影响。由图5D可知:在RCP 8.5情景下,2016—2079年丽水市气候变化对NEP变化的直接影响为0.93,对极端降水的直接影响为0.62,气候变化通过影响极端降水进而影响NEP的间接影响为0.07 (0.62×0.12=0.07),极端降水对NEP的直接影响为0.12,对NEP变化产生消极影响。

    图 5  历史(1979—2015年)及不同气候情景下未来(2016—2079年)下极端降水对NEP的影响
    Figure 5  Effects of extreme precipitation on NEP under historical (1979-2015) and different climate scenarios (2016-2079)

    本研究通过百分位阈值法研究了浙江省丽水市近百年的极端降水状况,结果表明:1979—2015年丽水市极端降水事件呈上升趋势,在丽水市东南部地区的上升趋势较大。RCP 2.6情景下,2016—2079年极端降水大部分呈下降趋势,RCP 4.5及RCP 8.5情景下,极端降水主要呈上升趋势,RCP 4.5情景相对于RCP 8.5情景的极端降水量、频数及强度增加更为明显。这与前人研究结果一致[19]。人类活动的加剧及地形影响,使浙江省温室气体增加,气温上升从而导致极端降水事件更容易发生[23]。极端降水在浙江西部及南部等地上升趋势较大的原因主要是由于南部及西部地区多丘陵山地,湿润气流遇到山脉等阻挡时被迫抬升,气温降低,容易形成地形雨。丽水位于浙江省西南部,全市多山地,比浙江的中部盆地和东北部冲积平原更容易发生极端降水事件,因此丽水市未来应加强洪涝灾害的预防。

    长江流域及以南地区极端降水增多主要是由极端降水频数增加导致的[20]。本研究采用偏最小二乘法分析得知:1979—2079年极端降水频数对极端降水事件的通径系数大于极端降水强度对极端降水事件的通径系数,说明丽水市极端降水量的增加亦主要受极端降水频数的影响。另外,本研究是以年尺度分析极端降水事件变化。极端降水与季节有较强的相关性,并且极端降水的开始时间及持续时间都将直接或间接影响[7]丽水市气候的变化,因此,未来应将这些指标纳入丽水市极端降水变化特征的研究。

    本研究发现:1979—2015年期间,丽水市森林NEP从1989年由碳源逐渐转为碳汇,这主要是由于1989年前人为干扰严重,导致森林质量下降,1989年以后,随着退耕还林政策的实施,全省森林质量得到改善,森林面积、年龄逐渐增加,使得碳汇能力增强[21]。2016—2079年3种气候情景下,丽水市森林碳汇均呈下降趋势,主要是受到森林年龄继续增加及气候变化的影响[10],其中随着未来极端降水事件的增加,森林NEP也呈下降趋势。

    本研究通过InTEC模型模拟丽水市森林NEP的时空分布,虽然总体上精度较好,但仍然存在一些误差。首先,森林年龄对InTEC模型的模拟结果影响较大[10]。丽水市森林多属异龄林,森林资源清查的年龄数据为森林平均年龄,与森林实际情况有差别,通过空间插值后的数据也会存在误差。其次,本研究采用的3种气候情景的气象数据空间分辨率较低,通过线性插值生成的1 km分辨率气象数据对森林碳通量和极端降水空间解析不够细致,导致结果存在误差,但对长时间(百年尺度)碳通量演变和极端降水变化趋势仍具有一定参考价值。另外,本研究假设丽水市森林区域未来保持不变,然而实际上随着社会经济的发展,森林区域会发生改变,给模型模拟结果带来不确定性。因此,未来应进一步提高丽水森林空间分布、土壤、地形、气象等数据分辨率,更精确地模拟丽水市森林碳通量时空格局。

    偏最小二乘通径模型分析结果表明:降水是影响NEP变化的重要因子。1979—2015年极端降水对NEP产生了积极影响。这与WANG等[5]的研究结果一致,可能得益于植被对降水有一定程度的适应和抵抗能力,当极端降水超过阈值时,会对生态系统造成消极影响[4]。一方面可能导致植被根系严重缺氧、呼吸减慢,最终引起植被死亡;另一方面极端降水频次和强度会加剧土壤侵蚀,导致地表水土流失,造成颗粒和有机碳从陆地生态系统流向河流生态系统,从而改变生态系统碳源汇的大小和空间分布。可见,气候变化强度的增加对生态系统消极影响的也会变得严重[22]。虽然偏最小二乘通径分析因子间存在直接和间接影响,但受模型算法限制无法得到超过生态系统抵抗力和恢复力的阈值,未来可以通过极端降水和气候综合敏感性分析、多情景模拟比较,进一步揭示极端降水对NEP影响的阈值,阐明极端降水影响森林NEP的关键。

    浙江省丽水市历史、RCP 4.5及RCP 8.5情景下极端降水量、频数及强度均呈增加趋势,RCP 2.6呈下降趋势。极端降水事件上升趋势较高的地区主要位于丽水市南部和东南部地区。

    1979—2015年丽水市森林NEP以18.44 g·m−2·a−1的速度增加,在1989年由碳源转变为碳汇。2016—2079年,3种气候情景下丽水市森林NEP均呈下降趋势,但碳汇总量呈上升趋势,说明在未来气候情景下,丽水市森林生态系统依然具有较高的碳汇潜力。

    降水是影响NEP变化的重要驱动因子。虽然历史模拟显示极端降水对丽水NEP的影响为0.37,但未来气候变化情景下,除RCP 2.6情景不显著外,其余2种情景均对NEP产生显著消极影响,说明随着气候变化强度加剧,极端降水将对丽水市森林生态系统碳汇能力产生负面作用,应当积极采取森林经营措施,提高森林对极端气候事件抵抗力,使森林更好地服务实现“双碳”目标。

  • 图  1  浙江省城市发展质量子系统障碍度

    Figure  1  Obstacle degree of urban development quality subsystem in Zhejiang Province

    图  2  浙江省城市发展质量指标层的障碍度

    Figure  2  Obstacle degree of urban development quality index layer in Zhejiang Province

    表  1  城市发展质量评价指标体系

    Table  1.   Evaluation index system of urban development quality

    目标系统准则层指标层
    城市发展质量 社会功能 道路交通 人均道路面积C1/(m2·人−1)
    每万人拥有公共交通数量C2/(辆·万人−1)
    城市服务 养老保险参保率C3/%
    教育支出公共预算占比C4/%
    每万人卫生技术人员C5/(人·万人−1)
    经济发展 产业发展 规模以上工业总产值C6/亿元
    第三产业就业比例C7/%
    第三产业占比C8/%
    经济水平 人均GDP C9/(元·人−1)
    人均社会消费品零售总额C10/(元·人−1)
    人均可支配收入C11/(元·人−1)
    生态环境 环境效果 水质达标率C12/%
    空气质量优良率C13/%
    城市绿地 人均公园绿地面积C14/(m2·人−1)
    建成区绿化覆盖率C15/%
    文化特质 文化遗产 历史文化名镇(村)数量C16/个
    非物质文化遗产保护C17/个
    文旅融合 旅游收入C18/亿元
    旅游人数C19/人次
      说明:所有指标均为正指标。
    下载: 导出CSV

    表  2  浙江省城市发展质量综合评价结果

    Table  2.   Comprehensive evaluation results of urban development quality in Zhejiang Province

    城市2010年2015年2019年
    贴近度排序贴近度排序贴近度排序
    杭州0.76510.75610.8191
    宁波0.66120.67820.7892
    温州0.38940.36960.3394
    嘉兴0.32060.38440.4473
    湖州0.16680.22280.2329
    绍兴0.42430.48630.3375
    金华0.36650.37350.2906
    衢州0.107110.147100.15310
    舟山0.138100.145110.09811
    台州0.24370.23170.2587
    丽水0.15890.20890.2558
    下载: 导出CSV

    表  3  浙江省城市发展质量子系统评价值

    Table  3.   Evaluation value of urban development quality subsystem in Zhejiang Province

    年份系统各城市子系统评价值标准差
    杭州宁波温州嘉兴湖州绍兴金华衢州舟山台州丽水
    2010社会功能0.6590.6940.5130.5260.5210.3320.3400.3750.4640.3730.2580.121
    经济发展0.9760.9200.3460.4520.2350.5640.2720.0350.2530.2750.0440.289
    生态环境0.7990.3690.2640.2090.7470.7970.6550.7920.6800.5250.7750.216
    文化特质0.6970.4550.4370.2040.1270.2580.4430.1200.0880.2440.2220.185
    2015社会功能0.6970.7530.3160.3800.3930.3630.2820.2610.4260.2940.1800.163
    经济发展0.9030.9140.3390.5280.3320.6340.3410.1590.2540.2850.1620.254
    生态环境0.7250.3750.1950.2230.8390.3470.7810.8370.5640.3710.7960.241
    文化特质0.7070.4260.4760.2380.1920.2810.4680.1900.1370.3010.3150.167
    2019社会功能0.6420.6300.3660.3390.3550.4870.4170.4080.5350.3490.1670.109
    经济发展0.8210.8870.2690.5430.2490.3750.2070.0650.1770.2450.0570.264
    生态环境0.5370.3370.6310.2430.7460.7650.6360.8100.6280.3070.6370.192
    文化特质0.8600.5640.4780.2330.2520.2800.4520.2270.0950.3160.4040.209
    下载: 导出CSV
  • [1] 鲍悦华, 陈强. 基于城市功能的城市发展质量指标体系构建[J]. 同济大学学报(自然科学版), 2011, 39(5): 778 − 784.

    BAO Yuehua, CHEN Qiang. Indicator system of quality of urban development from perspective of urban functions [J]. Journal of Tongji University (Natural Science), 2011, 39(5): 778 − 784.
    [2] 徐丽婷, 姚士谋, 陈爽, 等. 高质量发展下的生态城市评价——以长江三角洲城市群为例[J]. 地理科学, 2019, 39(8): 1228 − 1237.

    XU Liting, YAO Shimou, CHEN Shuang, et al. Evaluation of eco-city under the concept of high-quality development: a case study of the Yangtze River Delta urban agglomeration [J]. Scientia Geographica Sinica, 2019, 39(8): 1228 − 1237.
    [3] 余达锦, 李锦, 林海城. 高质量发展背景下城市品质评价研究——以江西为例[J]. 生态经济, 2020, 36(11): 82 − 87.

    XU Dajin, LI Jin, LIN Haicheng. Evaluation of urban quality in the background of high-quality development: a case study of Jiangxi [J]. Ecological Economy, 2020, 36(11): 82 − 87.
    [4] 王伟, 王成金. 东北地区高质量发展评价及其空间特征[J]. 地理科学, 2020, 40(11): 1795 − 1802.

    WANG Wei, WANG Chengjin. Evaluation and spatial differentiation of high-quality development in northeast China [J]. Scientia Geographica Sinica, 2020, 40(11): 1795 − 1802.
    [5] 朱洪祥, 雷刚, 吴先华, 等. 多维视角下低碳生态城市指标体系构建——以东营市为例[J]. 现代城市研究, 2012(12): 87 − 93.

    ZHU Hongxiang, LEI Gang, WU Xianhua, et al. Indicator system of low-carbon eco-city construction from multi-dimensional perspectives: a case study of Dongying City [J]. Modern Urban Research, 2012(12): 87 − 93.
    [6] 任家锋, 马卫春, 任程程. 合肥市城市发展质量空间计量分析[J]. 测绘通报, 2018(10): 126 − 130.

    REN Jiafeng, MA Weichun, REN Chengcheng. Quantitative analysis of urban development quality in Hefei City [J]. Bulletin of Surveying and Mapping, 2018(10): 126 − 130.
    [7] GARAU C, PAVAN V M. Evaluating urban quality: indicators and assessment tools for smart sustainable cities [J]. Sustainability, 2018, 10(3): 575 − 592.
    [8] 陈小卉, 郑文含. 基于绿色发展的城市发展质量评价研究——以江苏为例[J]. 城市规划学刊, 2017(3): 70 − 77.

    CHEN Xiaohui, ZHENG Wenhan. A study on the evaluation of urban green development quality: the case of Jiangsu Province [J]. Urban Planning Forum, 2017(3): 70 − 77.
    [9] 李磊, 张贵祥. 京津冀城市群内城市发展质量[J]. 经济地理, 2015, 35(5): 8, 61 − 64.

    LI Lei, ZHANG Guixiang. The city development quality of Beijing-Tianjin-Hebei urban agglomeration [J]. Economic Geography, 2015, 35(5): 8, 61 − 64.
    [10] 梁志霞, 毕胜. 基于城市功能的城市发展质量及其影响因素研究——以京津冀城市群为例[J]. 经济问题, 2020(1): 103 − 111.

    LIANG Zhixia, BI Sheng. Study on the quality of urban development and its influencing factors based on urban function: take Beijing-Tianjin-Hebei urban agglomeration as an example [J]. On Economic Problems, 2020(1): 103 − 111.
    [11] 王雪微, 范大龙. 长三角城市群城市发展质量测度及时空演变格局[J]. 人文地理, 2020(6): 85 − 94, 148.

    WANG Xuewei, FAN Dalong. Urban development quality measurement and spatiotemporal evolution pattern of the Yangtze River delta urban agglomeration [J]. Human Geography, 2020(6): 85 − 94, 148.
    [12] 刘鹏飞, 孙斌栋. 中国城市生产、生活、生态空间质量水平格局与相关因素分析[J]. 地理研究, 2020, 39(1): 3 − 24.

    LIU Pengfei, SUN Bindong. The spatial pattern of urban production-living-ecological space quality and its related factors in China [J]. Geographical Research, 2020, 39(1): 3 − 24.
    [13] 李帅, 魏虹, 倪细炉, 等. 基于层次分析法和熵权法的宁夏城市人居环境质量评价[J]. 应用生态学报, 2014, 25(9): 2700 − 2708.

    LI Shuai, WEI Hong, NI Xilu, et al. Evaluation of urban human settlement quality in Ningxia based on AHP and the entropy method [J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2700 − 2708.
    [14] 张国兴, 苏钊贤. 黄河流域中心城市高质量发展评价体系构建与测度[J]. 生态经济, 2020, 36(7): 37 − 43.

    ZHANG Guoxing, SU Zhaoxian. Construction and measurement of high quality development evaluation system for the central cities in the Yellow River basin [J]. Ecological Economy, 2020, 36(7): 37 − 43.
    [15] 张宇, 曹卫东, 梁双波, 等. 中部地区资源型城市质量与规模时空差异演化研究——以山西省为例[J]. 自然资源学报, 2018, 33(2): 233 − 245.

    ZHANG Yu, CAO Weidong, LIANG Shuangbo, et al. Research on spatial and temporal evolution of quality and scale of resource based cities in central region of China: a case study of Shanxi Province [J]. Journal of Natural Resources, 2018, 33(2): 233 − 245.
    [16] 朱珠, 张琳, 叶晓雯, 等. 基于TOPSIS方法的土地利用综合效益评价[J]. 经济地理, 2012, 32(10): 139 − 144.

    ZHU Zhu, ZHANG Lin, YE Xiaowen, et al. Evaluation of comprehensive land use efficiency based on TOPSIS [J]. Economic Geography, 2012, 32(10): 139 − 144.
    [17] 雷勋平, QIU Robin, 刘晨. 土地集约利用与城镇化协调发展评价及障碍因子诊断[J]. 农业机械学报, 2020, 51(6): 138 − 151.

    LEI Xunping, QIU Robin, LIU Chen. Evaluation of coordinated development between land intensive use and urbanization and diagnosis of obstacle factors [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 138 − 151.
    [18] 徐维祥, 张凌燕, 刘程军, 等. 城市功能与区域创新耦合协调的空间联系研究——以长江经济带107个城市为实证[J]. 地理科学, 2017, 37(11): 1659 − 1667.

    XU Weixiang, ZHANG Lingyan, LIU Chengjun, et al. The coupling coordination of urban function and regional innovation: a case study of 107 cities in the Yangtze River Economic Belt [J]. Scientia Geographica Sinica, 2017, 37(11): 1659 − 1667.
    [19] 李灿, 张凤荣, 朱泰峰, 等. 基于熵权TOPSIS模型的土地利用绩效评价及关联分析[J]. 农业工程学报, 2013, 29(5): 217 − 227.

    LI Can, ZHANG Fengrong, ZHU Taifeng, et al. Evaluation and correlation analysis of land use performance based on entropy-weight TOPSIS method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5): 217 − 227.
    [20] TSAUR R C. Decision risk analysis for an interval TOPSIS method [J]. Applied Mathematics &Computation, 2011, 218(8): 4295 − 4304.
    [21] MALEKI S, HATAMI D, JADIDOLESLAM M. An analysis on prioritizing tourism capacities of rural regions of Izeh city using TOPSIS model, Iran [J]. International Journal of Modern Engineering Research, 2012, 2(5): 3538 − 3543.
    [22] 岳文泽, 章佳民, 刘勇, 等. 多源空间数据整合视角下的城市开发强度研究[J]. 生态学报, 2019, 39(21): 7914 − 7926.

    YUE Wenze, ZHANG Jiamin, LIU Yong, et al. Measuring urban development intensity based on the integration of muti-source spatial data [J]. Acta Ecologica Sinica, 2019, 39(21): 7914 − 7926.
    [23] NAZMFAR H, CHHARBORJ A E, ALAVI S, et al. Spatial analysis of the healthy city indicators in urban settlements (case study: Ardabil Province) [J]. Journal of Environmental Science and Technology, 2019, 20(5): 265 − 282.
    [24] 鲁春阳, 文枫, 杨庆媛, 等. 基于改进TOPSIS法的城市土地利用绩效评价及障碍因子诊断: 以重庆市为例[J]. 资源科学, 2011, 33(3): 535 − 541.

    LU Chunyang, WEN Feng, YANG Qinyuan, et al. An evaluation of urban land use performance based on the improved TOPSIS method and diagnosis of its obstacle indicators: a case study of Chongqing [J]. Resources Science, 2011, 33(3): 535 − 541.
    [25] 信桂新, 杨朝现, 杨庆媛, 等. 用熵权法和改进TOPSIS模型评价高标准基本农田建设后效应[J]. 农业工程学报, 2017, 33(1): 238 − 249.

    XIN Guixin, YANG Chaoxian, YANG Qinyuan, et al. Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 238 − 249.
    [26] 唐业喜, 李智辉, 周盛芳, 等. 武陵山片区中心城市竞争力时空演变及影响因素分析——基于熵权TOPSIS模型和GIS[J]. 西北师范大学学报 (自然科学版), 2020, 56(3): 102 − 109.

    TANG Yexi, LI Zihui, ZHOU Shengfang, et al. Spatio-temporal evolution of the competitiveness of central cities in Wuling Mountain area and analysis of its influencing factors: based on TOPSIS model of entropy weight and GIS [J]. Journal of Northwest Normal University (Natural Science), 2020, 56(3): 102 − 109.
  • [1] 张建国, 徐晛.  浙江省森林公园空间布局与旅游发展研究 . 浙江农林大学学报, 2022, 39(5): 1124-1132. doi: 10.11833/j.issn.2095-0756.20210252
    [2] 李伟克, 张晨, 谷兴翰, 牛树奎, 殷继艳, 刘晓东.  北京西山侧柏林可燃物调控措施的影响评价 . 浙江农林大学学报, 2020, 37(3): 472-479. doi: 10.11833/j.issn.2095-0756.20190343
    [3] 唐慧超, 洪泉, 徐斌.  浙江青山湖国家森林公园环湖绿道1期景观绩效评价 . 浙江农林大学学报, 2020, 37(6): 1177-1185. doi: 10.11833/j.issn.2095-0756.20200167
    [4] 金婉, 沈月琴, 赵兴泉, 毛必田.  浙江省农村集体资产股份合作制改革农民满意度及其影响因素 . 浙江农林大学学报, 2017, 34(1): 170-177. doi: 10.11833/j.issn.2095-0756.2017.01.023
    [5] 翁智雄, 沈月琴, 吕秋菊, 赵胜君, 马银芳.  浙江省公众碳足迹的调查与分析 . 浙江农林大学学报, 2012, 29(2): 265-271. doi: 10.11833/j.issn.2095-0756.2012.02.017
    [6] 俞静芳, 余树全, 张超, 李土生.  应用CASA模型估算浙江省植被净初级生产力 . 浙江农林大学学报, 2012, 29(4): 473-481. doi: 10.11833/j.issn.2095-0756.2012.04.001
    [7] 沈年华, 李传磊, 王小德.  浙江省丹霞地貌岩生植被类型 . 浙江农林大学学报, 2011, 28(4): 614-618. doi: 10.11833/j.issn.2095-0756.2011.04.015
    [8] 汪荣.  福建滨海水鸟栖息地主成分分析与评价 . 浙江农林大学学报, 2011, 28(3): 472-478. doi: 10.11833/j.issn.2095-0756.2011.03.020
    [9] 张方钢, 张洋, 韦福民, 陈子林.  浙江省种子植物新记录 . 浙江农林大学学报, 2009, 26(1): 145-146.
    [10] 张志杰, 伊力塔, 韩海荣, 袁位高.  浙江省森林承载力评价研究 . 浙江农林大学学报, 2009, 26(3): 368-374.
    [11] 楼崇, 祝国民.  浙江省竹林生态区划研究 . 浙江农林大学学报, 2007, 24(6): 741-746.
    [12] 伍士林, 陶宝山, 陈秀媚.  浙江省林地市场的现状分析 . 浙江农林大学学报, 2005, 22(3): 318-321.
    [13] 余国信, 蔡良良, 余启国, 张盛剿.  浙江省淳安县生态公益林管护模式分析及相关问题 . 浙江农林大学学报, 2005, 22(2): 151-156.
    [14] 郭仁鉴, 陈法荣, 朱铨.  淳安县林业可持续发展能力的评价和分析 . 浙江农林大学学报, 2001, 18(4): 337-344.
    [15] 朱曦, 陈勤娟, 王政懂.  浙江省鹭类营巢地调查 . 浙江农林大学学报, 2000, 17(2): 185-190.
    [16] 马良进, 俞彩珠, 应庭龙, 王祖良, 钟志华.  浙江省板栗疫病调查研究 . 浙江农林大学学报, 2000, 17(1): 63-66.
    [17] 黄跃进, 唐锦春, 孙柄楠.  基于GIS 的农用土地适宜性评价模型的建立 . 浙江农林大学学报, 1999, 16(4): 406-410.
    [18] 黎章矩, 王伟, 叶胜荣.  浙江省经济林发展的历史、现状和前景 . 浙江农林大学学报, 1996, 13(4): 473-480.
    [19] 斯金平, 严建民, 潘心平, 刘饶, 梅小林.  浙江景宁厚朴数量化地位指数表的编制 . 浙江农林大学学报, 1993, 10(1): 63-68.
    [20] 郑勇平, 曾建福, 汪和木, 石柏林, 於琼花.  浙江省杉木实生林多形地位指数曲线模型 . 浙江农林大学学报, 1993, 10(1): 55-62.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220623

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/4/892

图(2) / 表(3)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  92
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2023-05-26
  • 录用日期:  2023-05-30
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-08-20

浙江省城市发展质量时空差异性及影响因素

doi: 10.11833/j.issn.2095-0756.20220623
    基金项目:  国家自然科学基金资助项目(41871216);浙江省哲学社会科学规划课题(20NDQN300YB)
    作者简介:

    张燕飞(ORCID: 0000-0001-5069-3392),讲师,从事城乡规划研究。E-mail: 112736299@qq.com

    通信作者: 吴亚琪(ORCID: 0009-0007-4069-1060),讲师,从事城乡规划研究。E-mail: wuyaqi@zafu.edu.cn
  • 中图分类号: TU984.2

摘要:   目的  探索和评价浙江省城市发展质量时空差异性,分析影响因素,为城市发展提供科学依据。  方法  从社会功能、经济发展、生态环境和文化特质4个维度,采用熵权-优劣解距离法(TOPSIS)模型评价浙江省城市发展质量差异,运用障碍度模型探索影响城市发展质量的主要障碍因子。  结果  从时序变化来看,浙江省城市发展质量总体水平稳步提升,且城市间排序相对稳定,但城市间的差异性呈扩大趋势;从空间变化上来看,浙江省城市发展逐步形成了以杭州市和宁波市为中心的环杭州湾高质量城市群格局;从子系统评价结果来看,各城市在社会功能、经济发展、生态环境及文化特质等方面发展质量不均衡,其中,经济发展子系统不均衡现象最明显。对影响浙江省城市发展的障碍度分析发现:不同城市的障碍因子在子系统层面和指标层层面的高值区及变化趋势都存在差异性,但文化特质和经济发展都是制约各城市高质量发展的主要子系统,而生态环境子系统对城市发展质量影响最小。  结论  浙江省城市发展质量总体呈上升趋势,各城市具有不同的发展优劣势,体现了发展不平衡现状;障碍因子存在明显差异,需要制定差异化发展策略。图2表3参26

English Abstract

杨宁馨, 毛方杰, 杜华强, 等. 浙江省丽水市森林碳汇时空演变及对极端降水的响应[J]. 浙江农林大学学报, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
引用本文: 张燕飞, 周晓光, 吴亚琪. 浙江省城市发展质量时空差异性及影响因素[J]. 浙江农林大学学报, 2023, 40(4): 892-900. DOI: 10.11833/j.issn.2095-0756.20220623
YANG Ningxin, MAO Fangjie, DU Huaqiang, et al. Spatiotemporal evolution of forest carbon sink in Lishui City and its response to extreme precipitation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
Citation: ZHANG Yanfei, ZHOU Xiaoguang, WU Yaqi. Spatiotemporal differences and influencing factors of urban development quality in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2023, 40(4): 892-900. DOI: 10.11833/j.issn.2095-0756.20220623
  • 城市发展是指城市由小到大、由简单到复杂的演变过程。城市发展质量体现了城市区域的协调发展能力,能有效地反映城市发展水平,也关系到城市社会、环境、生活、经济等各个方面的可持续发展情况[1]。城市作为经济发展的重要载体,需要践行高质量发展理念[23],是中国经济发展新常态下的必然选择和基本特征[4]。由此可见,对城市发展质量进行评估,有助于明确城市发展过程中的潜在问题与不足,对制定合理城市发展战略,保障城市高质量建设和可持续发展具有重要的现实意义。

    近年来,围绕城市发展质量问题,学者从不同视角进行了探讨。从研究对象看,学者对城市个体[57]、城市群[8]、跨区域城市群[911]等开展了包括城市发展质量测度、变化趋势、驱动因素等的探索分析。从研究角度看,有单一因子的评价,也有多因子分析,但复合多因子指标比单一指标具有更好的解释力[12],多因子指标评价集中于社会、经济、环境、设施等几个维度。目前,城市文化维度对城市发展影响的解释较为缺乏,同时也尚未构建各维度综合性逻辑框架。从研究方法看,主要有层次分析法(AHP)[13]、熵值法[1415]、主成分分析法[16]、线性回归[17]等。其中,熵权法基于评价指标的原始信息求得权重,与AHP法相比,它客观性更强、精确度更高,可最大程度地降低指标权重误差,而且在指标数量、样本多少以及数据分布等方面都没有严格的要求和限制,且在评价中可充分利用原始数据,信息损失较少,同时,该方法还具有操作简单、真实可靠、表征直观等优点[18]

    因此,本研究从多因素角度探析城市发展质量内涵,构建了城市发展质量综合评价多维测度框架体系,探究了浙江省城市发展质量分异特征,同时引入障碍度模型,对城市发展质量的影响机制进行诊断分析,以期为浙江省各城市发展策略制定提供理论参考。

    • 浙江省位于中国东南沿海(27°02′~31°11′N,118°01′~123°10′E),总面积为10.55万km2。本次研究区域为浙江省11个地级行政区,包括杭州、宁波、温州、嘉兴、湖州、绍兴、金华、衢州、舟山、台州、丽水。至2019年末,浙江省常住人口为5 850万人,比上年末增加了113万人,城镇化率为70.0%,地区生产总值为62 352亿元。

      本研究所有评价指标数据来源于浙江省统计年鉴,各行政区统计年鉴,各地区的国民经济和社会发展统计公报、生态环境公报等。部分数据来源于政府网站的其他发文。所用数据的时间节点为2010、2015和2019年。

    • 熵权法是一种根据指标变异性程度来确定客观权重根的方法,能够有效反映数据隐含的信息,增强指标的差异性和分辨性,达到全面反映各类信息的目的[19]。TOPSIS模型是系统工程中有限方案多目标决策分析方法[20]

      基于熵权-TOPSIS模型的城市发展质量评价包括对判断矩阵进行标准化处理、计算概率矩阵、计算每个指标的信息熵、归一化得到每个指标的熵权、计算加权决策矩阵、计算方案的优劣值,具体计算公式及步骤参考文献[2123],最后,得到不同城市的贴近度(Si),来定义城市发展质量的优劣程度,如式(1)所示:

      $$ S_{i}=\frac{D_{{i}}^-}{D_{{i}}^++D_{{i}}^-}。 $$ (1)

      式(1)中:Si的取值为0~1,Si越大,表示第i项城市发展质量越接近于最优水平。根据文献[2425],将贴近度划分为4个等级,表示城市发展质量的高低,即贴近度在0~0.18时为低水平,0.18~0.32时为较低水平,0.32~0.50时为中等水平,0.50~0.70时为较好水平,0.70~1.00时为优质水平;$ D_i^ + $、$ D_i^ - $表示每个方案在各因素下的最优距离与最劣距离。

    • 对影响浙江省城市发展质量的主要障碍因素进行分析与诊断,可以针对性地制定和调整城市发展规划政策。计算公式如下:

      $$ O_{j}=\frac{I_{j} \times F_{j}}{\displaystyle\sum _{j=1}^n I_{j} \times F_{j}}。 $$ (2)

      式(2)中:Oj表示第j项指标的障碍度;Ij为指标偏离度,为各指标值与最优目标值之间的差距,可以用1与各指标的极值标准化值的差值来表示;Fj为因子贡献度,可用各指标权重值来表示;n为指标数量。

    • 城市是一个开放的复杂系统,城市发展可以理解为是以新城镇化为目标,涵盖了社会、经济、环境、文化等各方面的整合提升和彼此关联运作的结果[26]。由此可以将城市发展分解为4个方面,即社会功能、经济发展、生态环境、文化特质。其中,社会功能开发程度决定了城市中享受的社会福利和保障措施程度,以满足城市居民的各种活动需求,是城市公共服务能力的体现;经济发展活力是城市赖以生存和发展的基础和动力源,是城市竞争力的关键所在;生态环境质量是人类活动行为给自然环境所产生的积极影响和消极影响的综合外部环境响应结果,一方面人类活动促使环境要素发生改变,另一方面生态系统的承载能力约束着人口、经济的规模,制约着城市发展的效率,从而推进着城市的环境治理行为。城市文化特质是文化在地理景观中清晰、有意义的印记,是城市发展的内在驱动力,同时文化既有社会属性,也有经济和产业属性,可有效助推城市经济发展和创新。由此,城市发展质量内涵可理解为区域复杂系统中,社会功能、经济发展、环境响应和文化提升等多个过程综合作用的效果。

    • 从社会功能、经济发展、生态环境、文化特质4个维度出发,构建了城市发展质量测度体系(表1)。其中,社会功能系统主要选取了反映道路交通建设情况和城市服务能力等方面的指标,表达城市居民生活便捷程度,是城市发展质量的直观感受;经济发展系统主要从产业发展和经济水平2个角度衡量城市经济发展情况,是城市发展活力的具体表征;生态环境系统主要涵盖了环境效果和城市绿地建设2个方面,体现城市发展开发利用过程对环境的影响及治理效果;文化特质系统强调了城市的文化遗产保护和文旅融合,体现了城市发展过程中风貌保护和文化的可持续开发利用情况。

      表 1  城市发展质量评价指标体系

      Table 1.  Evaluation index system of urban development quality

      目标系统准则层指标层
      城市发展质量 社会功能 道路交通 人均道路面积C1/(m2·人−1)
      每万人拥有公共交通数量C2/(辆·万人−1)
      城市服务 养老保险参保率C3/%
      教育支出公共预算占比C4/%
      每万人卫生技术人员C5/(人·万人−1)
      经济发展 产业发展 规模以上工业总产值C6/亿元
      第三产业就业比例C7/%
      第三产业占比C8/%
      经济水平 人均GDP C9/(元·人−1)
      人均社会消费品零售总额C10/(元·人−1)
      人均可支配收入C11/(元·人−1)
      生态环境 环境效果 水质达标率C12/%
      空气质量优良率C13/%
      城市绿地 人均公园绿地面积C14/(m2·人−1)
      建成区绿化覆盖率C15/%
      文化特质 文化遗产 历史文化名镇(村)数量C16/个
      非物质文化遗产保护C17/个
      文旅融合 旅游收入C18/亿元
      旅游人数C19/人次
        说明:所有指标均为正指标。
    • 表2所示:2010—2019年,浙江省城市发展质量总体水平稳步提升,贴近度平均值从0.340提升至0.365,低水平发展城市比例由36.3%将至18.2%,但各城市间的差距有所增大,贴近度差值从2010年的0.627增加至2019年的0.721。城市间排序相对稳定,杭州和宁波一直位列第1位和第2位;舟山、衢州等5个城市位于后5位,且排序较为稳定;温州、嘉兴等4个城市位列中间,排序随时间有所调整,其中嘉兴的城市建设效果明显,提升速度较快。杭州和宁波的城市建设质量明显优于其他城市,9 a间一直保持前列,究其原因,这2个城市都为浙江省的副省级城市,杭州还是浙江省省会城市,城市建设规模大,经济实力强,容易集中各类社会资源推进城市建设,提升城市发展质量。

      表 2  浙江省城市发展质量综合评价结果

      Table 2.  Comprehensive evaluation results of urban development quality in Zhejiang Province

      城市2010年2015年2019年
      贴近度排序贴近度排序贴近度排序
      杭州0.76510.75610.8191
      宁波0.66120.67820.7892
      温州0.38940.36960.3394
      嘉兴0.32060.38440.4473
      湖州0.16680.22280.2329
      绍兴0.42430.48630.3375
      金华0.36650.37350.2906
      衢州0.107110.147100.15310
      舟山0.138100.145110.09811
      台州0.24370.23170.2587
      丽水0.15890.20890.2558
    • 2010年,浙江省城市发展质量空间格局呈现以杭州和宁波为双重心的结构特征,杭州和宁波为高值区,绍兴、金华和温州等3个城市为中等水平,湖州、衢州、丽水和舟山等4个城市为低水平,低水平城市占比较大,城市发展质量总体水平不高。2015年,浙江省城市发展质量明显提升,其中嘉兴的城市发展质量水平提升明显,形成了以杭州和宁波为中心的环杭州湾高质量发展城市群的分布结构。2019年,浙江省城市发展质量总体较好,环杭州湾高质量城市发展分布结构特征进一步加强,宁波上升为优质水平,但金华发展质量评价值有所降低,由中等水平降至较低水平,衢州和舟山仍处于低水平。

    • 表3可见:经济发展和文化特质层面的得分与城市发展质量水平较为一致,城市发展质量得分较高的城市(杭州、宁波等),经济发展和文化特质得分也相对较高。生态环境的评价得分则与城市发展质量水平不一致,其中,城市生态环境较好的城市(湖州、衢州和丽水等),在城市发展质量得分方面却低于其他城市。通过计算标准差,发现各城市子系统发展不均衡。其中,经济发展的标准差最大,2010年为0.289,虽然后面呈现下降趋势,但均高于其他子系统,说明城市间经济发展水平不均衡性明显;社会功能标准差为0.109~0.163,城市间差异较小;生态环境标准差先升后降,不均衡现象总体呈缓解趋势;文化特质标准差先降后升,说明各城市不均衡性呈扩大趋势,2019年达0.209,仅低于经济发展子系统。

      表 3  浙江省城市发展质量子系统评价值

      Table 3.  Evaluation value of urban development quality subsystem in Zhejiang Province

      年份系统各城市子系统评价值标准差
      杭州宁波温州嘉兴湖州绍兴金华衢州舟山台州丽水
      2010社会功能0.6590.6940.5130.5260.5210.3320.3400.3750.4640.3730.2580.121
      经济发展0.9760.9200.3460.4520.2350.5640.2720.0350.2530.2750.0440.289
      生态环境0.7990.3690.2640.2090.7470.7970.6550.7920.6800.5250.7750.216
      文化特质0.6970.4550.4370.2040.1270.2580.4430.1200.0880.2440.2220.185
      2015社会功能0.6970.7530.3160.3800.3930.3630.2820.2610.4260.2940.1800.163
      经济发展0.9030.9140.3390.5280.3320.6340.3410.1590.2540.2850.1620.254
      生态环境0.7250.3750.1950.2230.8390.3470.7810.8370.5640.3710.7960.241
      文化特质0.7070.4260.4760.2380.1920.2810.4680.1900.1370.3010.3150.167
      2019社会功能0.6420.6300.3660.3390.3550.4870.4170.4080.5350.3490.1670.109
      经济发展0.8210.8870.2690.5430.2490.3750.2070.0650.1770.2450.0570.264
      生态环境0.5370.3370.6310.2430.7460.7650.6360.8100.6280.3070.6370.192
      文化特质0.8600.5640.4780.2330.2520.2800.4520.2270.0950.3160.4040.209
    • 图1图2表明:4个子系统对浙江省城市发展质量的障碍度变化存在一定差异。从具体数值来看,文化特质子系统障碍度最大,平均达43.29%,后面依次是经济发展、社会功能和生态环境子系统,平均分别为27.81%、22.25%和6.65%。这表明文化特质子系统对浙江省城市发展质量的制约性最大,生态环境子系统影响最小,浙江省生态环境保护情况较好。从发展趋势来看,生态环境和经济发展的平均障碍度呈递增态势,其中生态环境增长最为明显,9 a间增长了40.15%;文化特质子系统呈下降趋势,下降了13.95%,社会功能的平均障碍度趋于平稳,改变不大。由此可见,浙江省未来在文化特质上,需要挖掘各地的特色,将历史文化保护与城市更新相结合,进一步做好文旅融合;在经济发展上,应注重高质量发展理念,推动质量、效率和动力等的变革,优化经济结构、转换增长动力,经济实现量的合理增长和质的稳步提升;同时,需进一步加快民生事业发展,完善基础设施建设,提高公共服务能力,为居民提供更好的社会功能;在生态环境方面,虽然在各子系统中障碍度最低,但是呈上升趋势,说明社会经济的发展给生态环境带来了较大的压力,需要进一步加强生态环境建设,给居民提供更好的生活环境。

      图  1  浙江省城市发展质量子系统障碍度

      Figure 1.  Obstacle degree of urban development quality subsystem in Zhejiang Province

      图  2  浙江省城市发展质量指标层的障碍度

      Figure 2.  Obstacle degree of urban development quality index layer in Zhejiang Province

      各城市的指标层障碍度因子也存在明显差异。从数值大小和出现频次来看,规模以上工业总产值、历史文化名镇(村)数量最为活跃,说明这2个指标对浙江省城市发展质量水平的影响最大。经济相对发达的城市,在规模以上工业总产值、人均GDP等经济发展方面具有很大优势,障碍度都小于经济相对落后的城市,如杭州和宁波,2010、2015及2019年,规模以上工业总产值、人均GDP都不是主要障碍因子,制约城市发展质量水平的主要是水质达标率、空气质量优良率、每万人拥有公交数量等,主要原因是经济相对发达的城市,人口规模大,集聚程度高,人地矛盾较为突出,这对城市环境改善和基础设施配套完善方面造成较大的压力。就历史文化名镇(村)数量来说,经济落后和发达地区在2010年都是主要障碍因子,而2015年后,衢州、丽水等经济相对落后地区,该指标已经不是主要障碍因子,主要原因是这些城市发展速度慢,而随着历史文化保护认知程度的提升,很快修正了原来盲目扩张对原有城市历史痕迹的破坏。相反,经济发展和城市扩张越快速的城市,对于历史文化街区、历史建筑等的破坏越严重。如杭州市指标层障碍因子最大的就是历史文化名镇(村)数量,2010年达57.64%,9 a间虽呈下降趋势,但一直是主要障碍因子。究其原因是自20世纪90年代以来,随着城市快速发展,杭州全面启动了旧城改造计划,大片的历史街区和传统民居群被“抹平”。自2013年以来,逐渐形成了名城保护和城市协调发展模式,历史文化街区、镇(村)等得到了有效保护,相关的指标对城市发展质量制约作用降低。另外,文化特质子系统中的旅游收入一直为大部分城市的主要障碍因子,说明加强特色文化挖掘和开发,做好文旅融合是以后关注的重点之一。经济相对落后的城市(丽水、衢州等),在规模以上工业总产值、人均GDP等方面明显表现不足,一直是主要障碍因子,说明制定的经济发展策略效果尚显不足;同时经济发展力不足也制约了这些城市基础设施、公共服务能力等社会功能方面的供给力,因此相关指标也是这类城市的主要障碍因子。温州、嘉兴、绍兴等城市质量评价值处于中间的城市,也是浙江省经济发展的中等城市,指标层主要障碍因子也集中于规模以上工业总产值、每万人拥有公共交通数量和历史文化名镇(村)数量等。

    • 从时间上来看,浙江省各城市发展质量评价结果总体呈现差异性增大的趋势;从空间上来看,高质量城市集中在以杭州和宁波为中心的环杭州湾区域。主要原因是这2个城市人口、经济、基础设施等各项要素资源集聚,有利于城市高效快速发展;同时这2个城市具有较强的辐射效应,形成了杭州都市圈和宁波都市圈,周边的城市,如嘉兴、绍兴、金华、台州、湖州等城市发展质量综合排名和分值较高或者呈上升趋势。但是都市圈也会出现“虹吸作用”及城市间的资源错配,导致周边其他城市吸纳产业、集聚人口能力不足,出现城市发展缓慢的问题,如金华市,近年来出现发展后续动力不足的状况,城市发展质量综合评分值有所降低。温州和丽水的发展相对独立,受杭州和宁波辐射影响较小。温州得益于原来较好的产业经济基础,但近年来城市经济发展速度缓慢,其经济发展子系统是主要障碍因子层,且障碍度有所提升,2019城市发展质量综合评价值已低于嘉兴;丽水良好的发展态势得益于优质的生态环境和人文环境,其中,丽水的生态环境状况指数连续15 a位列浙江省第1位。衢州和舟山2个城市与其他城市差距较大,主要原因是经济薄弱,文旅融合不足,经济发展和文化特质子系统是主要障碍因子层,但这2个城市分别属于杭州都市圈和宁波都市圈,舟山还地处长江三角洲腹地,发展潜力较大。

    • 浙江省城市发展质量总体呈上升趋势,并逐渐形成了以杭州和宁波为中心的环杭州湾高质量城市发展群,衢州等经济相对落后地区城市发展质量水平相对滞后,城市间的发展差距在扩大。各城市在生态环境、社会功能、经济发展及文化特质等4个子系统的评价结果存在不均衡现象,其中,经济发展的不均衡现象最为显著,说明浙江省各城市具有不同的发展优势和弱势,体现了发展不平衡和不充分的事实现状。

      本研究认为不同地区宜采取针对性的措施,提出如下政策建议:①经济相对发达的城市(杭州和宁波等),需重点关注人口聚集带来的人地关系紧张问题,在发展经济的同时,解决好生态环境保护、公共服务设施完善及城市更新与历史文化遗产保护问题等;②生态环境优势明显的城市(衢州、丽水等),需在良好生态本底基础上,保持生态优先、绿色发展战略,发展生态工业,实施高质量经济发展道路,推进城市基础设施建设,满足居民对高品质美好生活需求;③加强都市圈内城市间的功能性联系,构建一体化综合交通体系,加快社会保障同城化,并根据城市差异性,充分发挥各自的比较优势,实行差异性功能定位,实现都市圈优势互补,形成发展合力;④温州作为传统经济强市,因聚焦自身的历史传统、现有基础和未来发展潜力,强化产业创新升级,培育浙江省经济增长第三极,以打造杭州-宁波-温州“铁三角”。⑤加强各城市历史文化传承、保护与挖掘,把深厚的历史底蕴和丰富的文化遗产,融入城市品质提升规划中,让文化赋能城市品质提升,同时立足各自优势文化资源禀赋,推动文旅融合提档升级。

参考文献 (26)

目录

/

返回文章
返回