留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浙江省耕地数量变化的因素分解分析

吴厚纯 王成军 费喜敏

汪爱娟, 洪文英, 吴燕君, 等. 浙江塘栖枇杷黄毛虫种群数量特征及预测模型[J]. 浙江农林大学学报, 2016, 33(4): 712-717. DOI: 10.11833/j.issn.2095-0756.2016.04.022
引用本文: 吴厚纯, 王成军, 费喜敏. 浙江省耕地数量变化的因素分解分析[J]. 浙江农林大学学报, 2015, 32(6): 933-939. DOI: 10.11833/j.issn.2095-0756.2015.06.017
WANG Aijuan, HONG Wenying, WU Yanjun, et al. Quantitative population characteristics and a prediction model for Melanographia flexilineata from Tangqi, Zhejiang[J]. Journal of Zhejiang A&F University, 2016, 33(4): 712-717. DOI: 10.11833/j.issn.2095-0756.2016.04.022
Citation: WU Houchun, WANG Chengjun, FEI Ximin. Factor decomposition study of farmland change in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2015, 32(6): 933-939. DOI: 10.11833/j.issn.2095-0756.2015.06.017

浙江省耕地数量变化的因素分解分析

DOI: 10.11833/j.issn.2095-0756.2015.06.017
基金项目: 

国家自然科学基金青年基金资助项目(41201125,41401642);教育部人文社会科学重点研究基地重大项目(14JJD790045);教育部人文社会科学青年基金项目(11YJC790172);浙江省自然科学基金资助项目(Y6110284);浙江省中青年学科带头人学术攀登项目(pd2013244);浙江农林大学人才启动基金项目(2014FR029)

详细信息
    作者简介: 吴厚纯,从事农村资源与环境管理研究。
    通信作者: 王成军,副教授,博士,从事土地经济研究。
  • 中图分类号: F301.2;S7-05 

Factor decomposition study of farmland change in Zhejiang Province

Funds: 

国家自然科学基金青年基金资助项目(41201125,41401642);教育部人文社会科学重点研究基地重大项目(14JJD790045);教育部人文社会科学青年基金项目(11YJC790172);浙江省自然科学基金资助项目(Y6110284);浙江省中青年学科带头人学术攀登项目(pd2013244);浙江农林大学人才启动基金项目(2014FR029)

  • 摘要: 为了分析在经济发展过程中耕地变化的原因,寻找耕地流失的根源,从而寻求有效的减缓耕地流失的途径,基于对数平均权重的迪氏分解(Logarithmic Mean Divisia Index,LMDI)方法,利用1995-2013年浙江省的社会经济数据和土地利用数据,构建相应分析因素模型,对土地利用结构,土地利用强度,人均国内生产总值(GDP)和人口等指标因素进行分析。结果表明:截至2013年浙江省土地利用结构和土地利用强度因素的累积效应为负值,人均国内生产总值和人口因素的累积效应为正值。从逐年效应来看,土地利用强度是耕地减少的最大因素,人均国内生产总值对耕地减少具有较强的抑制作用,进而提出制定严格土地政策,合理改善浙江省经济发展方式,提高土地资源利用效率,在科学的土地利用规划指导下推进城市化的可行选择,为浙江省耕地变化工作提供政策启示。图1表3参15
  • 枇杷黄毛虫Melanographia flexilineata,又名枇杷瘤蛾,属鳞翅目Lepidoptera灯蛾科Arctiidae[1],是中国南方枇杷Eriobotrya japonica上最主要的害虫。除危害枇杷外,枇杷黄毛虫还危害梨Pyrus spp.,李Prunus spp.,合欢Albizzia julibrissin,紫薇Lagerstroemia india等果树和绿化树。浙江省杭州市余杭区塘栖镇从唐代起就以盛产枇杷而著称于世[2]。近年来,鲜果枇杷价格快速上升,对品质的要求日益提高,枇杷产业迅速发展。枇杷黄毛虫在浙江余抗塘栖1 a发生4代,幼虫危害枇杷嫩芽和嫩叶,发生多时也危害老叶、嫩茎表皮和花果,严重时全树叶片被吃尽,削弱树势[3-4],影响产量。国内对枇杷黄毛虫的寄主分布、形态、生物学特征等有一定的报道[5-9],但开展系统监测调查、对其种群动态的研究及应用统计学方法建立预测模型等方面鲜有报道。本研究采用测报灯诱集与田间调查相结合的方法,通过对塘栖枇杷黄毛虫成虫灯下逐日系统监测结合田间定期系统调查,选择不同时期虫口基数、气象资料(气温、相对湿度、降水量)作为预测因子,使用逐步回归法开展其发生期和发生量的预测预报模型研究,对保障枇杷产量和品质,促进枇杷产业发展具有重要意义。

    自动虫情测报灯由河南省佳多科工贸有限公司生产,灯下接诱导漏斗和接虫袋。

    试验地设在余杭区塘栖枇杷研究所试验基地,枇杷品种为‘红娘子’‘Hongniangzi’和‘白沙’‘Baisha’,试验时期为2008-2013年。枇杷黄毛虫成虫采用频振式测报灯进行逐日诱集,每年开灯时间为4月1日至9月30日,历时约183 d,幼虫隔3 d左右田间调查1次,选取样树5株进行调查,树冠按东南西北划分4个方位,各个方位分上层、中层、下层等3层,将样树划分为12个资源单位,选取新梢枝条1枝·资源单位-1,记载各枝条上的幼虫数量。统计、记录每天诱捕的黄毛虫成虫数量及每周田间查见的黄毛虫幼虫,进行系统监测。

    利用2008-2013年枇杷黄毛虫在余杭区塘栖镇监测的系统历史资料,将前5 a的诱虫数据、田间系统调查数据和气象资料用来建模,应用SPSS 17.0软件,采取逐步回归分析方法[10],建立发生期和发生量的预测预报模型,最后1 a的资料用来检验。原始调查数据不作任何转换,所用气象资料由杭州市气象局提供。

    将2014年的实况资料,应用唐启义等[11]提出的病虫测报应验程度判定模式进行验证,从而判断组建模型的可行性。发生期预报应验程度判定模式:

    ${{T}_{s}}={{100}_{e}}^{\frac{-\pi }{\ln t}{{\left( \frac{{{a}_{1}}-{{a}_{2}}}{\delta } \right)}^{2}}}。$

    发生量预报应验程度判定模式:

    ${{D}_{s}}=100e\frac{-2a\pi }{\left( a+{{a}_{1}} \right)\ln t}\bullet \left( \frac{{{a}_{1}}-{{a}_{2}}}{\delta } \right)。$

    其中:TsDs分别为发生期和发生量判定模式的分值,TsDs<40表明预报不准确,40≤TsDs< 60表明预报比较准确,TsDs≥60表明预报准确;a为预报对象常年平均值,a1为实测值,a2为预测值;δ为预报对象常年标准差,t 为自预报发出至实际发生时的期距(d)。

    2.1.1   灯下虫情特征

    2008-2013年枇杷黄毛虫灯下成虫诱集量监测结果(图 1)显示:2008年以来,枇杷黄毛虫种群动态特征和数量结构发生了一定的变化:一是越冬代成虫始见期年度间差异较大,其中2008年、2009年和2013年成虫始见期较早,均为4月中旬,以2013年最早(4月14日),2010-2012年相对较迟。二是主害代灯下成虫峰期时间、蛾量年度间有差异,总体均以第3代峰期诱蛾量最高,其次为第2代;峰期持续时间、蛾量受当年气候等条件的影响呈相应的变化,2008年和2009年于7月中旬出现全年诱蛾最高峰,2010-2013年诱蛾最高峰出现在7月下旬;主害期危害程度年度间差异大,2011年7月下旬诱蛾量596头·灯-1·旬-1,与历年同期比第3代成虫峰期蛾量明显偏高,占全年诱集总量的55.18%,2013年7月高峰期蛾量为87头·灯-1·旬-1,明显低于历年同期,分析其原因可能与当年夏季出现罕见高温干旱天气,不利于枇杷黄毛虫生长发育有关。有研究表明:气候较为暖湿的条件下成虫产卵量多、幼虫发生量大[6],低于20 ℃和高于32 ℃的温度条件下对枇杷黄毛虫世代存活率不利[12],7月和8月干旱对黄毛虫的发生有抑制作用[6],也印证了这个可能性;第4代成虫诱集量普遍下降较快,可能与第3代幼虫发生期正值高温天气、成虫在高温下产卵少、卵孵化率下降使幼虫虫量不高有关。

    图  1  2008-2013年枇杷黄毛虫灯下成虫种群数量特征
    Figure  1.  Quantitative characteristics of adult Melanographia flexilineata during 2008-2013
    2.1.2   田间幼虫种群动态特点

    2008-2013年田间幼虫系统调查(图 2)结果表明:年度间枇杷黄毛虫均以第2代幼虫危害最重,发生期为6月中下旬至7月上旬,高峰期主要出现在6月下旬,少数年份持续至7月上旬危害重,第2代幼虫期正值枇杷成熟阶段,除叶、芽外,果实也受害,对枇杷生产影响最大,2008-2013年高峰期平均虫量140.0~188.9头·株-1·旬-1,占全年总量的32.57%~47.23%。第1代幼虫发生期为5月上旬至6月上旬,高峰期主要出现在5月中旬,少数年份推迟至5月下旬,峰期平均虫量30.6~95.0头·株-1·旬-1,以2008年最高,2013年虫量最低。第3代幼虫发生于7月下旬至8月中旬,此时正值1 a中气温最高、雨水相对较少的季节,特别是2013年为持续高温干旱的年份,成虫产卵少,卵存活率低,发生期总虫量及高峰期虫量均下降,年度间发生量差别较大,2008年高峰期虫量49.0头·株-1·旬-1,高于其他年份,而2013年由于持续高温干旱,虫量明显低于其他年份。第4代幼虫田间查见幼虫较少,与前几代次比虫量下降较快,9月中旬后,幼虫陆续化蛹越冬。

    图  2  2008-2013年枇杷黄毛虫幼虫种群数量特征
    Figure  2.  Quantitative characteristics of larvae Melanographia flexilineata during 2008-2013
    2.2.1   发生期、发生量预测模型的建立

    枇杷黄毛虫主要以幼虫啃食幼芽、叶片、嫩茎表皮和果实等,对产量和品质影响大。为开展枇杷黄毛虫的适期防治,加强危害风险监测,以第1代至第3代幼虫发生高峰期(y1,y2,y3)和高峰期发生量(y4,y5,y6)为预报对象,初选前期灯下诱蛾量、田间幼虫密度等虫情基数因子及上年12月至当年1月、4月至9月每旬平均气温、平均相对湿度、降水量等相关性较大的气象因子共56个指标作为预报因子,采用逐步回归分析,建立预测预报模型。结果表明:枇杷黄毛虫幼虫发生高峰期、高峰期虫量与前期虫口基数、气象因子密切相关,各有15个因子入选预测模型(表 1表 2)。发生期预测模型表明:前期田间幼虫虫口密度、降水量对发生高峰期影响最大,各有5个因子入选预测模型,前期灯下诱蛾量、平均相对湿度、气温等也有一定的影响。发生量预测模型表明:枇杷黄毛虫第1代至第3代幼虫旬高峰期虫量与前期田间幼虫密度、灯下诱蛾量呈显著正相关,气象因子中平均相对湿度和降水量分别有5个和4个因子入选预测模型,气温因子中5月下旬、6月上旬、7月上旬平均气温也作为预测因子入选发生量预测模型。

    表  1  枇杷黄毛虫发生期预测因子历史数据
    Table  1.  Predictive factors for occurrence period of Melanographia flexilineata
    年 份x2x5x9x10x12x20x21x22x28x31x38x40x43x46x53
    2008157791.715.827.528839.466.61572250884.760.2
    20092061.336.319.250.79114831.435.81481438074.20
    2010269.537.112.770.66140924.924.74315584.2173.9
    2011560.66816.916.33625833.829.4165.9142897542
    20121964.8148.517.830.125.510936105.3188.9921083.337.8
    2013369.32318.61224.58.1653.99.9106.552979.70
    x2x43分别为4月下旬、7月中旬诱蛾量(头·灯-1·旬-1);x20x21x22,x38x40分别为5月下旬、6月上旬、6月中旬、6月下旬、7月下旬幼虫量(头·株-1·旬-1);x5x46分别为上年12月、当年6月下旬相对湿度(%);x10为4月中旬气温(℃);x9x12x28x31x53分别为1月、4月中旬、5月中旬、5月下旬、7月中旬降水量(mm)。
    下载: 导出CSV 
    | 显示表格
    表  2  枇杷黄毛虫发生量预测因子历史数据
    Table  2.  Predictive factors for occurrence quantity of Melanographia flexilineata
    年 份x5x9x11x14x17x20x27x29x31x32x40x42x48x50x53
    20087791.778.757.164.62854.425.366.624.222030.826.960.2
    200961.336.375.853.249.8960.622.635.824.81432829.158.10
    201069.537.180.360.461.3617622.324.721.815028.938.4173.9
    201160.66860.157.963.73652.520.829.424.214030.82.442
    201264.8148.572.766.466.325.570.621.1105.324.19031.715.137.8
    201369.3234963.770.424.570.125.49.922.95031.61.50
    x5x11x14x17x27分别为上年12月、当年4月中旬、4月下旬、5月上旬、5月中旬相对湿度(%);x9x31x50x53分别为1月、5月下旬、7月上旬、7月中旬降水量(mm);x29x32x48分别为5月下旬、6月上旬、7月上旬气温(℃);x20x40分别为5月下旬、7月下旬幼虫量(头·株-1·旬-1);x42为7月上旬诱蛾量(头·灯-1·旬-1)。
    下载: 导出CSV 
    | 显示表格
    表  3  枇杷黄毛虫发生期、发生量预测模型
    Table  3.  Forecasting model for occurrence quantity and period of Melanographia flexilineata
    模型编号 预测模型 R2
    1y1=19.146+0.007x2-0.067 x5 -0.034 x9-0.486 x10+0.028 x121.000**
    2y2=-90.562+0.190 x5+0.142 x9+1.119 x11-0.044 x14+0.749 x171.000**
    3y3=3.005+0.245 x20+0.005 x21+0.085 x22-0.086 x28+0.010 x311.000**
    4y4=389.386+0.238 x20-1.230 x27-7.494 x29 +0.539 x31-0.763 x321.000**
    5y5= 34.876-0.139 x38-0.028 x40-0.004 x43-0.048 x46-0.043 x531.000**
    6y6=-492.071+2.252 x40+0.010 x42+15.380 x48-0.525 x50+0.061 x531.000**
    y1为第1代幼虫发生高峰期(5月15日为1);y2为第2代幼虫发生高峰期(6月21日为1);y3为第3代幼虫发生高峰期(8月1日为1);y4为第1代幼虫高峰期发生量(头);y5为第2代幼虫高峰期发生量(头);y6为第3代幼虫高峰期发生量(头)。
    下载: 导出CSV 
    | 显示表格
    2.2.2   发生期、发生量预测模型的拟合率检验

    将2013年的虫情、气象数据,应用1.4节的应验程度判定模式,分别对枇杷黄毛虫第1代至第3代幼虫的发生高峰期、高峰期发生量预测结果进行检验(表 4表 5)。结果表明:用逐步回归法拟合的枇杷黄毛虫幼虫发生期、发生量模型,评分分值高,均大于99分,在准确的范围内。根据模拟结果,第1代、第2代和第3代枇杷黄毛虫幼虫发生高峰期模型拟合值分别为5月19日、6月25日、8月16日,实际分别为5月19日、6月25日、8月16日;第1代、第2代和第3代幼虫高峰期发生量模型拟合值分别为30.62,106.28和5.83头·株-1·旬-1,实际分别为31,107和6头·株-1·旬-1。模型拟合值接近实测值,拟合结果准确。

    表  4  枇杷黄毛虫发生期预测模型验证
    Table  4.  Verification of forecastin model for occurrence period of Melanographia flexilineata
    预测对象a1a2tδTs结论
    第1代幼虫55.04102.1199.95准确
    第2代幼虫55.0253.7799.99准确
    第3代幼虫1615.99155.81100准确
    下载: 导出CSV 
    | 显示表格
    表  5  枇杷黄毛虫发生量预测模型验证
    Table  5.  Verification of forecastin model for occurrence quantity of Melanographia flexilineata
    预测对象aa1a2tδ Ts结论
    第1代幼虫53.753130.621015.03100准确
    第2代幼虫152.55107106.28526.2799.98准确
    第3代幼虫22.6765.831513.2299.97准确
    下载: 导出CSV 
    | 显示表格

    本研究对枇杷黄毛虫进行了灯下诱蛾及田间幼虫系统调查。结果表明:枇杷黄毛虫在浙江余杭塘栖田间虫量与越冬期温湿度条件、主害代前期虫口基数及气候条件等密切相关,灯下诱蛾年度间总虫量2008年和2011年最高,2013年明显低于历年同期,与当年夏季持续高温干旱、不利于枇杷黄毛虫生长发育有关。田间幼虫量也呈现出相似的趋性,以2011年最高,2013年最低。关于枇杷黄毛虫在中国南方枇杷产区的每年发生代数、种群动态等,国内相关文献主要为福建[3, 5]、浙江[6-7, 12]等地的调查研究,在福建福州1 a发生5代[5],上海地区1 a发生3代[13]。本研究表明枇杷黄毛虫在余杭塘栖1 a发生4代,与前人报道一致[6-7],越冬代成虫始见期2008-2013年在4月中旬至下旬(4月14日至4月29日),2008年、2009年、2013年较早,2010-2012年相对较迟,与王恩等[6]的研究结果较一致(4月20日),比何富泉等[7]报道的(5月上旬)约早15~20 d。塘栖枇杷黄毛虫田间幼虫量年度间均以第2代危害最重,发生高峰期主要出现在6月下旬,少数年份推迟至7月上旬,主害代灯下成虫峰期时间、蛾量年度间有差异,总体均以第3代峰期诱蛾量最高,其次为第2代,第4代灯下成虫与田间幼虫量均下降较快,9月中旬后,幼虫陆续在树皮裂缝中、分枝处或树干基部和附近灌木上吐丝、结茧、化蛹越冬。

    本研究对枇杷黄毛虫发生的相关因素进行了调查和统计分析,筛选出发生期和发生量各15个因子,建立了种群动态预测模型,为预测各代次枇杷黄毛虫的发生高峰、开展适期防治提供了依据。枇杷黄毛虫发生高峰期受前期田间幼虫虫口密度、降水量影响最大;田间幼虫高峰期发生量与前期虫口基数呈极显著正相关,是枇杷黄毛虫发生的最重要因素,平均相对湿度、降水量、气温等气象因子也有一定的相关性,春夏气候较为暖湿的年份,成虫产卵量多,第1代和第2代幼虫田间发生量大,气温过高则卵孵化率、幼虫存活率下降[12],特别是2013年夏季高温干旱对黄毛虫的发生有抑制作用,而比较暖湿的季节有利于黄毛虫发生。本研究引入了多年来枇杷黄毛虫发生期每旬平均气温、相对湿度、降水量等气象因子及前期虫口基数进行建模,应用唐启义等[11]提出的应验程度判定模式进行拟合率检验,评分分值均在90以上,模型拟合值与实测值接近,拟合结果准确,对今后枇杷黄毛虫的适时、准确预报具有一定的实用价值,可供杭州地区及气象等环境条件总体较为相似的地区应用。

    建立枇杷黄毛虫种群动态模型的目的是为了预测预报更为适时准确、更有效地为生产服务,以减少因该虫危害造成的损失。枇杷黄毛虫年度间发生期和发生量受当年气候条件等因素影响,在每年发生盛期内又呈季节性消长,采用多年数据建立种群动态模型可实行较准确的预测。本模型主要依据2008年以来的数据资料,为更充分地显现其年度间的周期性规律,增强预报结果的准确性,笔者将逐年追加监测资料,使样本总数增多,校正模型,使预测精度不断提高,更好地服务于生产实际。

  • [1] 张燕飞, 周晓光, 吴亚琪.  浙江省城市发展质量时空差异性及影响因素 . 浙江农林大学学报, 2023, 40(4): 892-900. doi: 10.11833/j.issn.2095-0756.20220623
    [2] 黄晓芬, 白鸥.  浙江省森林乡村空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(4): 884-893. doi: 10.11833/j.issn.2095-0756.20210558
    [3] 何思笑, 张建国.  浙江省森林康养品牌资源空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(1): 180-189. doi: 10.11833/j.issn.2095-0756.20210103
    [4] 曹壮, 余康.  农业结构调整对农业全要素生产率增长的影响效应 . 浙江农林大学学报, 2020, 37(2): 357-365. doi: 10.11833/j.issn.2095-0756.2020.02.022
    [5] 葛扬, 张建国.  浙江省森林特色小镇空间分布特征及影响因素分析 . 浙江农林大学学报, 2020, 37(2): 374-381. doi: 10.11833/j.issn.2095-0756.2020.02.024
    [6] 李政欣, 包亚芳, 孙治.  浙江省3A级景区村庄空间分布特征及其影响因素 . 浙江农林大学学报, 2019, 36(6): 1096-1106. doi: 10.11833/j.issn.2095-0756.2019.06.006
    [7] 胡晓君, 续竞秦, 何丹华, 张念如, 郑轶枫.  浙江省集体林区农户林下经济经营意愿及其影响因素 . 浙江农林大学学报, 2018, 35(3): 537-542. doi: 10.11833/j.issn.2095-0756.2018.03.020
    [8] 张晓敏, 沈月琴, 程丽敏, 梅雨晴, 陈俊, 方秋爽.  集体经济组织成员参与股权流转意愿影响因素分析 . 浙江农林大学学报, 2017, 34(2): 197-206. doi: 10.11833/j.issn.2095-0756.2017.02.001
    [9] 金婉, 沈月琴, 赵兴泉, 毛必田.  浙江省农村集体资产股份合作制改革农民满意度及其影响因素 . 浙江农林大学学报, 2017, 34(1): 170-177. doi: 10.11833/j.issn.2095-0756.2017.01.023
    [10] 陆心月, 李兰英, 万超伟, 黄文静, 李浪.  嘉兴市农户参与“两分两换”政策状况及其影响因素分析 . 浙江农林大学学报, 2013, 30(5): 734-739. doi: 10.11833/j.issn.2095-0756.2013.05.016
    [11] 张佳佳, 傅伟军, 杜群, 张国江, 姜培坤.  浙江省森林凋落物碳密度空间分布的影响因素 . 浙江农林大学学报, 2013, 30(6): 814-820. doi: 10.11833/j.issn.2095-0756.2013.06.003
    [12] 余康, 章立, 郭萍.  1989-2009 中国总量农业全要素生产率研究综述 . 浙江农林大学学报, 2012, 29(1): 111-118. doi: 10.11833/j.issn.2095-0756.2012.01.019
    [13] 张方钢, 张洋, 韦福民, 陈子林.  浙江省种子植物新记录 . 浙江农林大学学报, 2009, 26(1): 145-146.
    [14] 张晓燕, 沈月琴, 毛玉香, 傅志真.  浙江省竹子现代科技园区结构与社会经济功能分析 . 浙江农林大学学报, 2008, 25(5): 650-655.
    [15] 汪士华, 凌申坤, 赵华新, 吴丽君.  浙江省临安市农业技术推广问题探讨 . 浙江农林大学学报, 2008, 25(3): 387-391.
    [16] 楼崇, 祝国民.  浙江省竹林生态区划研究 . 浙江农林大学学报, 2007, 24(6): 741-746.
    [17] 何尧军, 单胜道.  循环型农业发展模式与保障机制初探 . 浙江农林大学学报, 2007, 24(3): 247-253.
    [18] 胡绍庆, 傅金尧, 陈春生.  浙江省白豆杉群落学研究 . 浙江农林大学学报, 2001, 18(4): 375-379.
    [19] 朱曦, 陈勤娟, 王政懂.  浙江省鹭类营巢地调查 . 浙江农林大学学报, 2000, 17(2): 185-190.
    [20] 黎章矩, 王伟, 叶胜荣.  浙江省经济林发展的历史、现状和前景 . 浙江农林大学学报, 1996, 13(4): 473-480.
  • 期刊类型引用(2)

    1. 吴燕君,洪文英,章忠梅,吴耀,缪强. 设施黄瓜白粉病流行动态与预测模型. 浙江农业学报. 2022(01): 104-111 . 百度学术
    2. 郑建洪. 4种常用药剂对枇杷黄毛虫的田间防效研究. 现代农业科技. 2017(21): 116-117 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2015.06.017

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2015/6/933

计量
  • 文章访问数:  2245
  • HTML全文浏览量:  412
  • PDF下载量:  474
  • 被引次数: 2
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-03-14
  • 刊出日期:  2015-12-20

浙江省耕地数量变化的因素分解分析

doi: 10.11833/j.issn.2095-0756.2015.06.017
    基金项目:

    国家自然科学基金青年基金资助项目(41201125,41401642);教育部人文社会科学重点研究基地重大项目(14JJD790045);教育部人文社会科学青年基金项目(11YJC790172);浙江省自然科学基金资助项目(Y6110284);浙江省中青年学科带头人学术攀登项目(pd2013244);浙江农林大学人才启动基金项目(2014FR029)

    作者简介:

    吴厚纯,从事农村资源与环境管理研究。

    通信作者: 王成军,副教授,博士,从事土地经济研究。
  • 中图分类号: F301.2;S7-05 

摘要: 为了分析在经济发展过程中耕地变化的原因,寻找耕地流失的根源,从而寻求有效的减缓耕地流失的途径,基于对数平均权重的迪氏分解(Logarithmic Mean Divisia Index,LMDI)方法,利用1995-2013年浙江省的社会经济数据和土地利用数据,构建相应分析因素模型,对土地利用结构,土地利用强度,人均国内生产总值(GDP)和人口等指标因素进行分析。结果表明:截至2013年浙江省土地利用结构和土地利用强度因素的累积效应为负值,人均国内生产总值和人口因素的累积效应为正值。从逐年效应来看,土地利用强度是耕地减少的最大因素,人均国内生产总值对耕地减少具有较强的抑制作用,进而提出制定严格土地政策,合理改善浙江省经济发展方式,提高土地资源利用效率,在科学的土地利用规划指导下推进城市化的可行选择,为浙江省耕地变化工作提供政策启示。图1表3参15

English Abstract

汪爱娟, 洪文英, 吴燕君, 等. 浙江塘栖枇杷黄毛虫种群数量特征及预测模型[J]. 浙江农林大学学报, 2016, 33(4): 712-717. DOI: 10.11833/j.issn.2095-0756.2016.04.022
引用本文: 吴厚纯, 王成军, 费喜敏. 浙江省耕地数量变化的因素分解分析[J]. 浙江农林大学学报, 2015, 32(6): 933-939. DOI: 10.11833/j.issn.2095-0756.2015.06.017
WANG Aijuan, HONG Wenying, WU Yanjun, et al. Quantitative population characteristics and a prediction model for Melanographia flexilineata from Tangqi, Zhejiang[J]. Journal of Zhejiang A&F University, 2016, 33(4): 712-717. DOI: 10.11833/j.issn.2095-0756.2016.04.022
Citation: WU Houchun, WANG Chengjun, FEI Ximin. Factor decomposition study of farmland change in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2015, 32(6): 933-939. DOI: 10.11833/j.issn.2095-0756.2015.06.017

目录

/

返回文章
返回