留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响

付妍琳 李国雷

付妍琳, 李国雷. 磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响[J]. 浙江农林大学学报, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
引用本文: 付妍琳, 李国雷. 磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响[J]. 浙江农林大学学报, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
FU Yanlin, LI Guolei. Combined effects of phosphorus and controlled-release nitrogen on growth and nutrient status of transplanted Larix olgensis seedlings[J]. Journal of Zhejiang A&F University, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
Citation: FU Yanlin, LI Guolei. Combined effects of phosphorus and controlled-release nitrogen on growth and nutrient status of transplanted Larix olgensis seedlings[J]. Journal of Zhejiang A&F University, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008

磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响

doi: 10.11833/j.issn.2095-0756.2016.06.008
基金项目: 

中央高校基本科研业务费专项 TD2011-08

详细信息
    作者简介: 付妍琳,从事林木种苗培育理论与技术研究。E-mail:bjfu_fu@163.com
    通信作者: 李国雷,副教授,从事林木种苗培育理论与技术研究。E-mail:glli226@163.com
  • 中图分类号: S718.4

Combined effects of phosphorus and controlled-release nitrogen on growth and nutrient status of transplanted Larix olgensis seedlings

  • 摘要: 为探明长白落叶松Larix olgensis移植苗木培育所需的缓释氮肥及磷肥最佳用量,以长白落叶松移植苗为研究对象,通过设置4个缓释氮肥水平(0,6,12,18 g·m-2氮)与3个磷肥水平(0,21,42 g·m-2五氧化二磷)共计12个施肥处理组合,研究长白落叶松移植苗木生长状况和养分积累对不同氮磷施肥量的响应规律。结果表明:氮磷仅对叶片磷含量存在显著交互作用(P=0.024),施肥对苗木生长和养分状况的影响是通过其主效应引起的。缓释氮肥对苗高、地径、各器官生物量及茎、叶、整株的氮、磷含量影响显著(P=0.001~0.026),其中6 g·m-2和12 g·m-2(氮)对苗木生长和养分积累促进作用较大,但2种施氮量水平间差异不显著;磷肥对苗高、根生物量、叶氮、整株磷含量及叶磷质量分数影响显著(P=0.009~0.040),21 g·m-2和42 g·m-2五氧化二磷均显著高于对照,但2种磷肥施用水平间差异不显著。与对照相比,6 g·m-2施氮量下苗高、地径、整株生物量和氮含量分别增加22.3%,12.9%,39.9%和48.3%;21 g·m-2五氧化二磷施用量下苗高、根生物量、叶氮、整株磷含量分别增加13.3%,19.3%,17.8%,25.9%。综合考虑施肥效果,缓释氮肥对长白落叶松苗木影响较磷肥大,长白落叶松移植苗最佳施肥量为缓释氮肥(氮)6 g·m-2,磷肥(五氧化二磷)21 g·m-2。图5表2参26
  • 图  1  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木苗高、地径

    Figure  1  Main effects of N (A) and P2O5 (B) on height and diameter of Larix olgensis seedlings

    图  2  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木生物量及根茎比

    Figure  2  Main effects of N (A) and P2O5 (B) on tissue dry mass and root/shoot of Larix olgensis seedlings

    图  3  氮(A)× 五氧化二磷(B)交互作用下长白落叶松苗木叶磷含量

    Figure  3  Interaction of N (A) and P2O5 (B) on foliage P content of Larix olgensis seedlings

    图  4  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木各部位及整株氮和磷含量

    Figure  4  Main effects of N (A) and P2O5 (B) on tissue N and P content of Larix olgensis seedlings

    图  5  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木各部位及整株氮、磷质量分数

    Figure  5  Main effects of N (A) and P2O5 (B) on tissue N and P concentration of Larix olgensis seedlings

    表  1  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木形态指标主效应和交互效应方差分析F

    Table  1.   F values derived from ANOVA of the main effects N (A),P2O5 (B) and of their interaction effect (AxB) on morphological attributes of Larix olgensis seedlings

    变异来源 苗高 地径 生物量 根茎比
    整株
    A 7.225*** 3.686* 5.514** 4.158* 5.064** 5.201** 1.145
    B 5.443* 1.756 4.848* 2.834 2.028 3.161 1.834
    A×B 0.841 0.264 0.996 0.313 0.747 0.640 0.465
    说明:***表示P<0.001;**表示P<0.01;*表示P<0.05。
    下载: 导出CSV

    表  2  不同氮(A)和五氧化二磷(B)施用量下长白落叶松各部位及整株氮、磷含量的主效应和交互效应方差分析F

    Table  2.   F values derived from ANOVA of the main effects N(A), P2O5(B) and of their interaction effect (A×B) on tissue N and P content of Larix olgensis seedlings

    变异来源
    整株 整株
    A 2.893 5.065** 7.419KKK 6.338** 2.036 3.885* 7.221 5.639***
    B 1.670 2.368 4.178* 3.155 3.283 1.820 9.558 5.734***
    AxB 1.293 0.713 1.358 1.345 1.005 0.674 3.023* 1.284
    说明:*** 表示P<0.001;**表示P<0.01;*表示P<0.05。
    下载: 导出CSV
  • [1] TIMMER V R, ARMSTRONG G. Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions[J]. Can J For Res, 1987, 17(7):644-647.
    [2] OLIET J A, PUE'RTOLAS J, PLANELLES R, et al. Nutrient loading of forest tree seedlings to promote stress resistance and field performance:a Mediterranean perspective[J]. New For, 2013, 44(44):649-669.
    [3] VILLAR-SALVADOR P, USCOLA M, JACOBS D F, et al. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees[J]. New For, 2015, 46(5/6):813-839
    [4] SILLA F, ESCUDERO A. Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean Quercus species[J]. Oecologia, 2003, 136(1):28-36.
    [5] SALIFU K F, ISLAM M A, JACOBS D F. Retranslocation, plant and soil recovery of nitrogen-15 applied to bareroot black walnut seedlings[J]. Commun Soil Sci Plant Anal, 2009, 40(9):1408-1417.
    [6] MILLARD P, GRELET G. Nitrogen storage and remobilization by trees:ecophysiological relevance in a changing world[J]. Tree Physiol, 2010, 30(9):1083-1095.
    [7] USCOLA M, OLIET J A, VILLAR-SALVADOR P, et al. Nitrogen form and concentration interact to affect the performance of two ecologically distinct Mediterranean forest trees[J]. Eur J For Res, 2014, 133(2):235-246.
    [8] VILLAR-SALVADOR P, PU?RTOLAS J, CUESTA B, et al. Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival[J]. New For, 2012, 43(5-6):755-770.
    [9] DANIELS T G, SIMPSON D G. Seedling production and processing:bareroot[M]//LAVENDER D P,PARISH R,JOHNSON C M, et al. Regenerating British Columbia's Forests. Victoria:T D Mock and Associates Inc, 1990:229.
    [10] LOK E H, DELL B. Phosphorus requirements for containerized Pterocarpus indicus seedlings[J]. J For Res, 2015, 26(3):657-662.
    [11] JACOBS D F, LANDIS T D. Nursery manual for native plants:a guide for tribal nurseries:Fertilization[M]//DUMROESE R K, LUNA T, LANDIS T D, et al. Nursery Management. Washington D C:USDA Forest Service, 2009:302.
    [12] ISAAC M E, HARMAND J M, DREVON J J. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions[J]. J Plant Physiol, 2011, 168(8):776-781.
    [13] JACOBS D F, TIMMER V R. Fertilizer induced changes in rhizosphere electrical conductivity:Relation to forest tree seedling root system growth and function[J]. New For, 2005, 30(2-3):147-166.
    [14] HAASE D L, ROSE R, TROBAUGH J. Field performance of three stock size of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium[J]. New For, 2006, 31(1):1-24.
    [15] OLIET J A, PLANELLES R, SEGURA M L, et al. Mineral nutrition and growth of containerized Pinus halepensis seedings under controlled-release fertilizer[J]. Sci Hortic, 2004, 103(1):113-129.
    [16] OLIET J A, PLANELLES R, ARTERO F, et al. Field performance of Pinus hale Pensis planted in Mediterranean arid conditions:relative influence of seedling morphology and mineral nutrition[J]. New For, 2009, 37(3):313-331.
    [17] 祝燕, 马履一, 刘勇, 等. 控释氮肥对长白落叶松苗木生长的影响[J]. 南京林业大学学报:自然科学版, 2011, 35(10):24-28.

    ZHU Yan, MA Lüyi, LIU Yong, et al. Application of controlled-release fertilizer in the cultivation of Larix olgensis seedling[J]. J Nanjing For Univ Nat Sci Ed, 2011, 35(10):24-28.
    [18] LI Guolei, LIU Yong, ZHU Yan, et al. Influence of initial age and size on the field performance of Larix olgensis seedlings[J]. New For, 2011, 42(2):215-226.
    [19] LI Guolei, ZHU Yan, LIU Yong, et al. Effect of nursery nitrogen application of bare-root Larix olgensis seedlings on growth, nitrogen uptake and initial field performance[J]. J Environ Biol, 2012, 34(1):79-85.
    [20] LI Guolei, LIU Yong, ZHU Yan, et al. Effect of fall-applied nitrogen on growth, nitrogen storage, and frost hardiness of bareroot Larix olgensis seedlings[J]. Silv Fenn, 2012, 46(3):345-354.
    [21] ZHU Y, DUMROESE R K, PINTO J R, et al. Fall fertilization enhanced nitrogen storage and translocation in Larix olgensis seedlings[J]. New For, 2013, 44(6):849-861.
    [22] 国家林业局. GB 6000-1999全国森林培育技术标准汇编:种子苗木卷[S]. 北京:中国标准出版社, 2003.
    [23] 康瑶瑶, 刘勇, 马履一, 等. 施肥对长白落叶松苗木养分库氮磷吸收利用的影响[J]. 北京林业大学学报, 2011, 33(2):31-36.

    KANG Yaoyao, LIU Yong, MA Lüyi, et al. Effects of fertilization on uptake and availability of N and P nutrient pool of Larix olgensis seedlings[J]. J Beijing For Univ, 2011, 33(2):31-36.
    [24] 魏红旭, 徐程扬, 马履一, 等. 缓释肥和有机肥对长白落叶松容器苗养分库构建的影响[J]. 应用生态学报, 2011, 22(7): 1731-1736.

    WEI Hongxu, XU Chengyang, MA Lüyi, et al. Effects of controlled-release fertilizer and organic amendment on the construction of nutrients reserves in Larix olgensis container seedlings[J]. Chin J Appl Ecol, 2011, 22(7):1731-1736.
    [25] 于钦民, 徐福利, 王渭玲. 氮磷肥对杉木幼苗生物量及养分分配的影响[J]. 植物营养与肥料学报, 2014, 20(1):118-128.

    YU Qinmin, XU Fuli, WANG Weiling. Effect of nitrogen and phosphorus fertilization on nutrient distribution of Cunninghamia lanceolata seedlings[J]. J Plant Nut Fert, 2014, 20(1):118-128.
    [26] VILLAR-SALVADOR P, VALLADARES F, DOMÍNGUEZ-LERENA S, et al. Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa:insights from a provenance, fertilization, and rhizobial inoculation study[J]. Environ Exper Bot, 2008, 64(2):145-154.
  • [1] 杨王庭, 邵香君, 周菊敏, 桂仁意.  不同溶解氧质量浓度对雷竹水培苗生长和生理生化的影响 . 浙江农林大学学报, 2021, 38(2): 280-288. doi: 10.11833/j.issn.2095-0756.20200286
    [2] 张东北, 王秀花, 周生财, 吴小林, 楚秀丽, 周志春.  不同家系马尾松容器苗对基质配比及控释肥的响应 . 浙江农林大学学报, 2019, 36(5): 1044-1050. doi: 10.11833/j.issn.2095-0756.2019.05.026
    [3] 唐继新, 雷渊才, 曾冀, 李忠国, 李武志, 农良书, 赵总.  米老排人工林皆伐迹地种子天然更新林密度调控效应 . 浙江农林大学学报, 2018, 35(3): 459-466. doi: 10.11833/j.issn.2095-0756.2018.03.009
    [4] 赵匡记, 纪福利, 刘延文, 刘晓兰, 贾忠奎, 马履一.  华北落叶松林分生长对间伐和修枝的响应 . 浙江农林大学学报, 2016, 33(4): 581-588. doi: 10.11833/j.issn.2095-0756.2016.04.005
    [5] 陈闻, 王晶, 叶正钱, 费行海, 孙圳, 王国明.  施肥对普陀樟苗木生长及养分吸收利用的影响 . 浙江农林大学学报, 2014, 31(3): 358-365. doi: 10.11833/j.issn.2095-0756.2014.03.005
    [6] 王艺, 丁贵杰.  干旱胁迫下外生菌根真菌对马尾松幼苗生长和微量元素吸收的影响 . 浙江农林大学学报, 2012, 29(6): 822-828. doi: 10.11833/j.issn.2095-0756.2012.06.004
    [7] 吴国欣, 王凌晖, 梁惠萍, 李远发, 郝建.  氮磷钾配比施肥对降香黄檀苗木生长及生理的影响 . 浙江农林大学学报, 2012, 29(2): 296-300. doi: 10.11833/j.issn.2095-0756.2012.02.021
    [8] 赵建华, 叶力勤, 安巍, 张昆, 王亚军, 石志刚.  宁夏枸杞苗木分级及不同质量苗木定植初期生长特征 . 浙江农林大学学报, 2011, 28(3): 450-454. doi: 10.11833/j.issn.2095-0756.2011.03.016
    [9] 孙宇, 李国雷, 刘勇, 马履一, 祝燕, 姜长吉, 刘福森, 李学莲.  水施磷肥对长白落叶松苗木生长和磷吸收的影响 . 浙江农林大学学报, 2011, 28(2): 219-226. doi: 10.11833/j.issn.2095-0756.2011.02.008
    [10] 朱丽华, 程方, 秦莉, 叶建仁.  湿地松组培再生植株瓶内菌根化及驯化移栽 . 浙江农林大学学报, 2010, 27(3): 398-403. doi: 10.11833/j.issn.2095-0756.2010.03.013
    [11] 吴江, 刘鹏, 吴家胜.  遮光对杨桐生长及叶片色素质量分数的影响 . 浙江农林大学学报, 2010, 27(5): 786-789. doi: 10.11833/j.issn.2095-0756.2010.05.024
    [12] 李永进, 丁贵杰.  不同家系马尾松插穗内源生根抑制物的分离、纯化及鉴定 . 浙江农林大学学报, 2010, 27(4): 507-512. doi: 10.11833/j.issn.2095-0756.2010.04.005
    [13] 刘伟, 周善松, 张先祥, 冯建国, 吴雪梅.  不同立地条件下木荷容器苗与裸根苗造林对比试验 . 浙江农林大学学报, 2009, 26(6): 829-834.
    [14] 高永茜, 周跃华, 田昆, 郑畹, 聂艳丽, 段辉, 张文东.  蔗渣基质对云南松种子育苗的影响 . 浙江农林大学学报, 2009, 26(4): 598-602.
    [15] 温佐吾, 骆宗诗, 马宏勋, 吴冬生, 李宗辉, 黄以黔.  黔中地区马尾松次生林定向经营技术 . 浙江农林大学学报, 2008, 25(2): 221-227.
    [16] 吴家胜, 应叶青, 程晓建, 黎章矩.  杨桐不同立体经营模式比较研究 . 浙江农林大学学报, 2007, 24(5): 555-558.
    [17] 史富强, 周凤林.  云南红豆容器苗的苗木分级 . 浙江农林大学学报, 2006, 23(6): 651-655.
    [18] 杨斌, 赵文书, 姜远标, 王发忠.  思茅松造林苗木选择及施肥效应 . 浙江农林大学学报, 2005, 22(4): 396-399.
    [19] 周永学, 樊军锋, 杨培华, 高建社, 刘永红.  奥地利黑松与油松1 年生苗生长和生物量对比分析 . 浙江农林大学学报, 2003, 20(4): 438-441.
    [20] 余树全, 付达荣, 李翠环, 刘军, 刘大健.  康定杨优树无性系苗期测定 . 浙江农林大学学报, 2003, 20(3): 245-248.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.06.008

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2016/6/976

图(5) / 表(2)
计量
  • 文章访问数:  2374
  • HTML全文浏览量:  477
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-30
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-12-20

磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响

doi: 10.11833/j.issn.2095-0756.2016.06.008
    基金项目:

    中央高校基本科研业务费专项 TD2011-08

    作者简介:

    付妍琳,从事林木种苗培育理论与技术研究。E-mail:bjfu_fu@163.com

    通信作者: 李国雷,副教授,从事林木种苗培育理论与技术研究。E-mail:glli226@163.com
  • 中图分类号: S718.4

摘要: 为探明长白落叶松Larix olgensis移植苗木培育所需的缓释氮肥及磷肥最佳用量,以长白落叶松移植苗为研究对象,通过设置4个缓释氮肥水平(0,6,12,18 g·m-2氮)与3个磷肥水平(0,21,42 g·m-2五氧化二磷)共计12个施肥处理组合,研究长白落叶松移植苗木生长状况和养分积累对不同氮磷施肥量的响应规律。结果表明:氮磷仅对叶片磷含量存在显著交互作用(P=0.024),施肥对苗木生长和养分状况的影响是通过其主效应引起的。缓释氮肥对苗高、地径、各器官生物量及茎、叶、整株的氮、磷含量影响显著(P=0.001~0.026),其中6 g·m-2和12 g·m-2(氮)对苗木生长和养分积累促进作用较大,但2种施氮量水平间差异不显著;磷肥对苗高、根生物量、叶氮、整株磷含量及叶磷质量分数影响显著(P=0.009~0.040),21 g·m-2和42 g·m-2五氧化二磷均显著高于对照,但2种磷肥施用水平间差异不显著。与对照相比,6 g·m-2施氮量下苗高、地径、整株生物量和氮含量分别增加22.3%,12.9%,39.9%和48.3%;21 g·m-2五氧化二磷施用量下苗高、根生物量、叶氮、整株磷含量分别增加13.3%,19.3%,17.8%,25.9%。综合考虑施肥效果,缓释氮肥对长白落叶松苗木影响较磷肥大,长白落叶松移植苗最佳施肥量为缓释氮肥(氮)6 g·m-2,磷肥(五氧化二磷)21 g·m-2。图5表2参26

English Abstract

付妍琳, 李国雷. 磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响[J]. 浙江农林大学学报, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
引用本文: 付妍琳, 李国雷. 磷肥与缓释氮肥对长白落叶松移植苗生长和养分状况的影响[J]. 浙江农林大学学报, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
FU Yanlin, LI Guolei. Combined effects of phosphorus and controlled-release nitrogen on growth and nutrient status of transplanted Larix olgensis seedlings[J]. Journal of Zhejiang A&F University, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
Citation: FU Yanlin, LI Guolei. Combined effects of phosphorus and controlled-release nitrogen on growth and nutrient status of transplanted Larix olgensis seedlings[J]. Journal of Zhejiang A&F University, 2016, 33(6): 976-983. doi: 10.11833/j.issn.2095-0756.2016.06.008
  • 造林初期,苗木从土壤中获取养分的能力较差,主要依靠体内储存养分的内转移和再分配[1],因此苗圃阶段如何合理施肥,增加苗木养分库进而提高苗木造林效果成为国内外广大学者共同关注的科学问题[2-3]。在施肥元素类型与苗木质量的关系中,氮肥的研究相对较多,内容涵盖氮肥形态(铵态氮与硝态氮)、树种特性(落叶与阔叶、快速生长与慢速生长、先锋树种与顶极群落树种)、氮储存与再利用方式(休眠期与春季蛋白质和氨基酸种类变化与转移途径的不同)以及土壤肥力(瘠薄与肥沃)、库强(生长点发育与氮转移)等[4-7]。据不完全统计,近5 a来发表在高水平学术期刊上的有关氮肥加载与养分再利用的综述至少有4篇[2-3, 6, 8]。磷肥是植物生长、发育不可缺少的基本元素,磷肥施用量对于苗木体内磷的直接积累以及对其他元素的储存均可能产生影响[9-10]。尽管作为植物必需的第二大元素,人们对苗木磷吸收与积累规律的研究相对较少,对磷肥的探讨往往是依据不同氮肥量对同一施磷量苗木磷吸收变化的表述上,磷肥对其他元素影响方面的研究则更为少见[11-12],氮肥和磷肥如何调控苗木质量尚不完全清楚。相对于速溶肥,缓释肥可以在苗圃整地时机械施入并依靠自身的包膜逐渐释放养分以供给苗木生长,由于节省的劳动力成本远远大于肥料本身的价格而受苗木生产者青睐[13]。缓释肥释放肥料的速度除与包膜材料和技术、气候、施肥方法等相关外,还取决于树种特性、苗木规格或苗龄甚至其所施肥料种类[14-16]。相对于速溶肥,目前对缓释肥作用规律方面的研究较少[17]。因此,针对特定树种的某一规格的苗木开展缓释肥对其生长和养分积累的影响彰显必要。长白落叶松Larix olgensis作为分布在中国东北地区的主要速生树种之一,因适应性强、生长快、用途广、材质优良,在中国用材树种发展中发挥重要作用,其苗木培育技术得到广泛关注[18-21]。根据国家标准(全国森林培育技术标准汇编: 种子苗木卷 GB 6000-1999)所规定的生产规程,长白落叶松苗木需要经过播种培育1 a,然后换床移植1 a[22]。我们的前期研究发现,落叶松播种苗和移植苗对于磷肥和速溶氮肥的响应规律存在很大差异[23]。祝燕等[17]、魏红旭等[24]分别对长白落叶松大田播种苗、容器苗进行了缓释氮肥研究。因此,进一步研究磷肥和缓释氮肥对长白落叶松移植苗生长和养分积累的影响对于指导苗木生产具有现实意义。

    • 试验地点位于吉林市龙潭区江密峰苗圃(43°45′N,126°45′E)。实验地区为温带大陆性季风气候,全年平均气温为3.0~5.0 ℃,1月平均气温-20.0~-18.0 ℃,7月平均气温21.0~23.0 ℃;全区年降水量为650.0~750.0 mm,≥10 ℃年有效积温2 400.0~3 000.0 ℃,日照时数2 400.0~2 600.0 h。土壤为暗棕壤,0~20 cm土层全氮质量分数为1.94 g·kg-1,速效磷质量分数226.17 mg·kg-1,pH 6.17。

      供试材料为2013年该苗圃培育的规格均一的1年生长白落叶松播种苗(种子产地:吉林省小北湖),试验所用缓释氮肥选用树脂包衣尿素(北京首创科技有限公司),释放期为90 d,氮含量比例为42%。磷肥为常规肥料过磷酸钙。

    • 2014年5月,起垄式构建宽度为1 m的苗床,为防止肥料和水分相互干扰,小区之间埋入深30 cm的双层塑料布。同时,为避免水分和养分在苗床、步行道间发生转移,苗床四周起垄,两侧埋入深40 cm的双层塑料布。5月3日进行移植,开沟深度为20 cm,将计算称量好的过磷酸钙、缓释氮肥和适量苗圃土壤充分混合后,均匀撒入沟中,覆土5 cm,然后移植苗木。苗木株距为5 cm,行距为10 cm,密度为200株·m-2。苗木规格为苗高(9.39 ± 0.35) cm,地径(0.13 ± 0.04) cm。根据土壤墒情和苗木生长状况,进行合理灌溉,人工进行除草。

    • 试验采用裂区试验设计,设置氮(N)(A)和五氧化二磷(P2O5)(B)2个施肥因素。4个施氮水平分别为A1(0 g·m-2),A2(6 g·m-2),A3(12 g·m-2),A4(18 g·m-2),对应缓释氮肥量分别为0,14.29,28.57,42.86g·m-2;五氧化二磷3个水平分别为B1(0 g·m-2),B2(21 g·m-2),B3(42 g·m-2),即对应过磷酸钙分别为 0,131.25,262.50 g·m-2。试验设置3个区组,各区组包括全部12个处理组合。

    • 9月28日,在每个小区苗床中央区域随机选取10株苗木,测量苗高和地径后,将苗木连根挖取,用清水冲洗干净,再用去离子水润洗,按根、茎、叶3个部分分别剪下,放入烘箱内在68 ℃下烘48 h后称量根、茎、叶生物量,再将烘干样品混合,粉碎,过0.25 mm筛,采用硫酸-过氧化氢法消煮,采用凯氏定氮法测定氮质量分数,钼锑抗比色法测定磷质量分数。苗高、地径、生物量以10株苗木测量值的平均值计算,氮、磷质量分数以混合样品的测定值计算。

    • 应用SPSS 16.0软件对试验数据进行双因素方差分析,如处理间差异显著,则用Duncan法在0.05水平上进行多重比较。应用Excel 2007软件进行绘图。

    • 施磷与施氮量交互效应对苗高、地径、生物量、根茎比等生长指标均无显著影响(P=0.450~0.949)(表 1)。主效应方面,除根茎比外,施氮量对生长指标影响均达到显著水平(P=0.001~0.026)(表 1)。当施氮量为A2(6 g·m-2)时,苗高和地径比对照分别增加了22.3%和12.9%,施氮量为A3(12 g·m-2)时,苗高和地径均达到最大值,分别为26.41 cm和0.53 cm,但与A2(6 g·m-2)和A4(18 g·m-2)处理间差异不显著(图 1)。与苗高、地径相似的是,A2,A3,A4苗木整株生物量及各器官生物量处理间无显著差异,其峰值也均出现在A3(12 g·m-2)上;不同的是,A4处理的苗木根、茎生物量较A3有了较大下降(图 2)。

      表 1  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木形态指标主效应和交互效应方差分析F

      Table 1.  F values derived from ANOVA of the main effects N (A),P2O5 (B) and of their interaction effect (AxB) on morphological attributes of Larix olgensis seedlings

      变异来源 苗高 地径 生物量 根茎比
      整株
      A 7.225*** 3.686* 5.514** 4.158* 5.064** 5.201** 1.145
      B 5.443* 1.756 4.848* 2.834 2.028 3.161 1.834
      A×B 0.841 0.264 0.996 0.313 0.747 0.640 0.465
      说明:***表示P<0.001;**表示P<0.01;*表示P<0.05。

      图  1  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木苗高、地径

      Figure 1.  Main effects of N (A) and P2O5 (B) on height and diameter of Larix olgensis seedlings

      图  2  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木生物量及根茎比

      Figure 2.  Main effects of N (A) and P2O5 (B) on tissue dry mass and root/shoot of Larix olgensis seedlings

      磷肥对苗木生长影响的主效应小于氮肥,施磷量仅对苗高、根系生物量有显著影响(P=0.011~0.017)(表 1)。施磷处理B2(21 g·m-2),B3(42 g·m-2)的苗高和根系生物量均显著高于对照,其中苗高分别较对照增加13.3%,16.2%(图 1),根系生物量分别较对照增加了19.3%,27.1%(图 2)。

    • 施磷与氮量交互效应对叶磷含量影响显著(P=0.024)(表 2),在不施氮肥A1(0 g·m-2)或者施较高氮肥A4(18 g·m-2)时,磷肥施用量对叶磷积累没有显著影响;而在施氮量A2(6 g·m-2),A3(12 g·m-2)下,磷肥施用量对叶磷积累有显著影响,叶片磷含量最高的处理组合为A2B3,即施入6 g·m-2(氮)和42 g·m-2(五氧化二磷)能使苗木叶片磷含量达到最大(图 3)。

      表 2  不同氮(A)和五氧化二磷(B)施用量下长白落叶松各部位及整株氮、磷含量的主效应和交互效应方差分析F

      Table 2.  F values derived from ANOVA of the main effects N(A), P2O5(B) and of their interaction effect (A×B) on tissue N and P content of Larix olgensis seedlings

      变异来源
      整株 整株
      A 2.893 5.065** 7.419KKK 6.338** 2.036 3.885* 7.221 5.639***
      B 1.670 2.368 4.178* 3.155 3.283 1.820 9.558 5.734***
      AxB 1.293 0.713 1.358 1.345 1.005 0.674 3.023* 1.284
      说明:*** 表示P<0.001;**表示P<0.01;*表示P<0.05。

      图  3  氮(A)× 五氧化二磷(B)交互作用下长白落叶松苗木叶磷含量

      Figure 3.  Interaction of N (A) and P2O5 (B) on foliage P content of Larix olgensis seedlings

      主效应方面,施氮量除对根系氮、磷含量没有显著影响外(P=0.056~0.136),对其他器官或整株氮和磷储存均有显著影响(P=0.001~0.021)(表 2)。与对照相比,施入氮肥均可提高苗木茎、叶和整株氮含量,而氮施入量之间对氮吸收促进作用无显著差异。施入氮肥可以提高苗木茎、整株磷含量,但苗木整株磷含量在A2(6 g·m-2)时达到最大,施氮量增加至A3(12 g·m-2)时整株磷含量略微下降,而施氮量增加至A4(18 g·m-2)时,整株磷含量显著下降(图 4)。

      图  4  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木各部位及整株氮和磷含量

      Figure 4.  Main effects of N (A) and P2O5 (B) on tissue N and P content of Larix olgensis seedlings

      施磷量仅对叶氮含量、整株磷含量有显著影响(P=0.009~0.028)(表 2),随施磷量的增大,叶氮含量和整株磷含量均呈上升趋势,其中B2(21 g·m-2),B3(42 g·m-2)叶氮含量较对照分别增加17.8%和30.5%,整株磷含量分别增加25.9%和37.1%(图 4)。

    • 氮磷交互效应对苗木器官和整株氮、磷质量分数均无显著影响(P=0.121~0.754)。施氮量主效应对苗木各器官及整株氮、磷质量分数均无显著影响(P=0.108~0.937)。施磷量主效应仅对叶磷质量分数有显著影响(P=0.040)。施磷量为B1(0 g·m-2),B2(21 g·m-2),B3(42 g·m-2)的叶片磷质量分数分别为0.21%,0.25%和0.27%,B2和B3分别较B1提高了19.0%和28.6%(图 5)。

      图  5  不同氮(A)和五氧化二磷(B)施用量下长白落叶松苗木各部位及整株氮、磷质量分数

      Figure 5.  Main effects of N (A) and P2O5 (B) on tissue N and P concentration of Larix olgensis seedlings

    • 与1年生长白落叶松播种苗,氮磷交互作用对于各器官氮、磷含量均无显著影响不同[23],2年生长白落叶松移植苗氮磷的交互作用对于叶磷含量产生显著影响。长白落叶松为落叶树种,叶片凋落到苗圃,磷元素返还给苗圃土壤而增加土壤肥力,翌年春季苗木造林后,直接与周围环境产生作用关系的为根系和茎,其作为养分库向根茎尖及新萌叶等生长点提供磷元素。因此,氮磷交互效应对于长白落叶松翌年造林后的养分内循环并不发挥实际的生理意义。

      除叶片磷含量外,氮磷交互效应并未对其他指标产生显著影响,但从主效应仍可以看出,氮磷配施对于提高苗木生长及养分状况均有一定促进作用。这与杉木Cunninghamia lanceolata氮磷配施研究结果相似[25],可见,氮磷配施对苗木发育促进作用主要是通过肥料自身的影响引起的,并无叠加作用。本试验还发现:施氮对苗木质量的提高更加明显,施用缓释氮肥可以显著促进长白落叶松移植苗苗高、地径、各器官及整株生物量及氮、磷含量的增长。与A1(对照)相比,A2(6 g·m-2)施氮量下整株生物量及氮、磷含量分别增加39.9%,48.3%,48.1%。从组织部位看,A2(6 g·m-2)增加的生物量分配给茎的比例最高(46.2%),增加的氮含量分配部位与生物量规律相似,在茎中高达56.2%,而增加的磷含量则更多地分配到叶当中(58.3%)。由此可见,施氮使得更多的生物量及氮含量分配到茎中,使得更多的磷分配到叶中。本实验中,施磷对苗高、根生物量、叶氮、整株磷含量及叶磷质量分数均有显著提高。初始规格(苗高、根生物量)相对大的苗木造林后,不仅可以提高苗木与杂草的竞争力,还可以增加木质部水分的运输能力[26]。苗木磷质量分数在造林中的作用同样重要,如在地中海地区开展的造林试验表明:磷质量分数影响苗木的成活率和生长[16]。因此,施磷对落叶松生长和养分状况的提高是否有利于造林效果,需进一步验证。

      本试验结果显示:2年生长白落叶松移植苗最佳缓释氮肥氮施用量为A2(6 g·m-2),即30 mg·株-1,与魏红旭等[24]建议长白落叶松播种容器苗提供氮18.18 mg·株-1的缓释肥并配施1.82 g鸡粪有机肥(相当于氮9.99 mg)的氮施用总量基本相近。不同的是,本试验中氮对苗高、地径、生物量均有显著影响,这可能与肥料类型及施肥方式不同有关。在同一苗圃试验条件下,2年生移植苗对氮需求量较1年生播种苗小,1年生播种苗设置12,24,36 g·m-2 3个施氮水平,在施氮量为36 g·m-2时,苗高、各器官生物量均达到最大,而施氮量为24 g·m-2时苗木体内氮含量最高[17]。本试验中,苗高、地径、各器官生物量、叶、茎及整株氮含量峰值均出现在12 g·m-2。2年生移植苗和1年生播种苗对施氮响应规律的不同验证了施肥研究需重视苗木类别的差异,长白落叶松播种苗与移植苗规格以及根系结构的差异性等[19]均可能导致需肥规律的不同。与不施氮磷肥相比,移植后磷肥和缓释氮肥配施可以显著促进长白落叶松移植苗的生长和养分积累,当施肥量成倍增施,即施氮量由A2(6 g·m-2)提高到A3(12 g·m-2),五氧化二磷由B2(21 g·m-2)提高到B3(42 g·m-2)时,苗木生长表现及养分含量总体有所提高,但增施效果与A2和B2相比差异并不显著。因此,该实验条件下2年生长白落叶松移植苗最佳施肥用量为6 g·m-2的氮,配施21 g·m-2的五氧化二磷,即实际生产中为14.29 g·m-2的缓释氮肥,配施131.25 g·m-2的过磷酸钙。

参考文献 (26)

目录

    /

    返回文章
    返回