-
肥料农药的大量使用、化石燃料的燃烧、采矿和冶炼、城市废物的处理以及污水污泥的产生等人为活动,导致土壤重金属污染日趋严重[1-2]。2014年《全国土壤污染状况调查公报》显示:中国土壤总污染点超标率为16.1%,其中镉污染点位超标率占总超标点位的7.0%[3]。水稻Oryza sativa是中国最主要的粮食作物之一,同时又是容易富集重金属的粮食作物[4-5],因此,在重金属污染土壤中生产的稻米已成为重金属进入人体的重要途径之一[6]。有研究表明:人体过多的重金属累积会损害肾小球和肾小管,降低骨密度,导致骨质疏松,增加癌症风险等[7]。
为了缓解中国水稻土中广泛存在的镉污染,人们筛选和培育了低积累水稻品种[8]。在轻中度镉污染农田土壤中种植低吸收镉农作物,既具有经济效益又保障了粮食安全生产,是目前安全利用污染农田的研究热点[9-10]。据报道,不仅不同农作物吸收和积累重金属镉的能力存在差异,而且同一作物的不同品种之间也存在差异[11]。有研究表明:选择并培育遗传因子稳定的低吸收水稻品种,可作为重金属镉污染农田的安全来源[12]。通过试验筛选出的低吸收水稻品种已经投入使用,并且取得了很好的种植效果[13]。但也有研究表明:诸如环境、施肥和水管理等农艺措施的差异都会对作物镉的吸收和积累产生一定的影响[14-16]。因此,为了选择适合当地环境种植的低吸收水稻品种,本研究在镉污染地区农田中对5个水稻品种开展大田试验,测定不同生育期内不同水稻品种的各项生长生理指标,并分析镉在不同水稻品种植株中的积累和分布特征,为轻中度镉污染耕地安全利用和粮食安全生产提供参考。
-
供试低吸收水稻品种为‘中浙优1号’‘Zhongzheyou 1’、‘中浙优8号’‘Zhongzheyou 8’、‘华浙优71’‘Huazheyou 71’、‘甬优17’‘Yongyou 17’和‘甬优1540’‘Yongyou 1540’,其种子均在当地种子专卖店统一采购。
供试水稻于2019年6月插秧种植。在选定的耕地里设置5个处理,每个处理3个重复,共15个小区,每个小区面积均为30 m2。小区试验全部采用人工移栽的插秧方式,将不同水稻品种的种子播种于事先平整好的育秧地,按照不同品种划分各自育秧地块,在整个育秧阶段通过常规农艺措施保证秧苗水肥供应。秧苗生长35~40 d进行大田移栽,株行距为25 cm×20 cm,每穴2~3株,浅插匀植。种植前按照600 kg·hm−2的复合肥作为基肥[复合肥品牌为稻香源,氮+五氧化二磷+氧化钾质量分数≥50%,m(N)∶m(P)∶m(K)=25∶5∶20]。在秧苗移栽大田后10~15 d进行追肥,追肥采用150 kg·hm−2的尿素,其他水稻管理与当地常规管理模式保持一致。供试土壤为浙江省丽水市景宁畲族自治县某村镉污染地区土壤,供试耕地土壤的基本理化性质见表1。
表 1 供试土壤基本性质
Table 1. Basic properties of tested soil
pH 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 速效磷/(mg·kg−1) 速效钾/(mg·kg−1) 全镉/(mg·kg−1) 4.58±0.26 7.59±0.49 203.97±7.61 44.52±1.04 193.69±2.28 2.36±0.64 -
根据HJ/T 166—2004《土壤环境监测技术规范》,采集耕作层0~20 cm的土样[17]。为了使采集的土壤样品更具代表性,尽量规避土壤本身空间分布不均造成的影响。采用多点取样,再混合成1个混合样品。每个样品1.0 kg。采样后带回实验室风干,磨细后,用10目和100目的筛子过筛后装袋备用,用于测定大田土壤基本理化性质、全镉质量分数及有效镉质量分数[18]。
试验过程中,分别在水稻分蘖期、拔节期、育穂期和成熟期采集土壤样品及水稻样品。采集后的土壤样品自然风干,研磨,去除动植物残渣和石头,分别过10目和100目备用;水稻样品用去离子水洗干净后,105 ℃杀青30 min,在75 ℃烘干至恒量,再将试验各时期水稻分为根、茎、叶、穗(育穂期和成熟期)、籽粒(成熟期),然后用粉碎机把所有样品碾碎后,用100目筛过装袋备用。
-
土壤全镉采用三酸消解法测定[19]:称取研磨通过100目筛子的均匀土壤0.100 0 g于50 mL聚四氟乙烯坩埚中,再用实验用去离子水湿润土壤,然后加入7 mL氟化氢溶液和5 mL浓硝酸溶液,在电热板上消煮蒸发至近干燥,取下聚四氟乙烯坩埚,冷却后,加入1 mL高氯酸,继续消煮到不再冒白烟,坩埚内残渣呈均匀的浅色(呈凹凸状为消煮不完全)。若消煮不完全,则添加1mL硝酸继续加热溶解残渣,至溶液完全澄清后转移到50 mL容量瓶中,定容摇匀,过滤保存,然后用石墨炉原子吸收光谱仪(岛津AA-7000,日本)测定镉元素。
土壤有效镉的测定[20]:称取10.0 g过2 mm筛孔的风干土样于100 mL塑料瓶中,加入20 mL DTPA浸提剂。在振荡机上振荡2 h,过滤取上清液,用石墨炉原子吸收光谱仪(岛津AA-7000,日本)测定镉元素。
植物样分析:称取0.3 g植物样品于消煮管中,加入5 mL的浓硝酸,在消煮仪中160 ℃消煮2 h,消煮完成冷却后,用蒸馏水定容至25 mL,采用石墨炉原子吸收光谱(岛津AA-7000,日本)测定。所有药品及试剂均为优级纯或基准试剂。
-
采用Excel 2016和SPSS V13.0 进行方差分析(ANOVA)和最小差异显著法(LSD)分析。采用SigmaPlot 12.5绘图。富集系数(FBA)=稻米镉质量分数/土壤镉质量分数。转移系数(TF)=水稻组织(茎、叶、壳和米)镉质量分数/水稻组织(根、茎、叶和壳)镉质量分数。
-
如图1A所示:不同水稻品种在分蘖期根、茎、叶全镉质量分数基本一致。不同水稻品种根部镉质量分数都高于茎、叶片中的镉质量分数。不同水稻器官对镉的吸收累积是不同的,其中‘中浙优8号’‘甬优17’‘华浙优71’等3个水稻品种不同器官吸收的镉从大到小依次为根、茎、叶,而‘中浙优1号’和‘甬优1540’茎部在分蘖期的吸附累积量略高于叶部;不同品种根和叶对镉吸收积累无显著差异(P>0.05)。如图1B所示:5个水稻品种在拔节期根部镉质量分数均高于茎部、叶部,各器官对镉的积累存在一定的规律性,从大到小均表现为根、茎、叶。‘甬优17’和‘华浙优71’水稻品种的茎和叶镉质量分数显著低于‘中浙优1号’和‘中浙优8号’(P<0.05)。5个水稻品种在孕穗期各器官对镉的吸收和积累从大到小依次为根、茎、叶、穗,即在土壤中根部吸收积累镉的数量高于茎、叶和穗(图1C);‘华浙优71’水稻品种的穗镉质量分数显著低于其他品种(P<0.05)。在成熟期时,‘中浙优1号’‘甬优17’和‘华浙优71’等3个水稻品种的根镉质量分数小于茎,高于叶,‘中浙优8号’和‘甬优1540’等2个水稻品种的不同器官对镉吸收和积累的量从大到小依次为根、茎、叶、糙米、稻壳;不同水稻品种中,‘华浙优71’的根镉质量分数显著低于其他品种(P<0.05),‘中浙优8号’水稻品种的茎和糙米镉质量分数显著低于其他品种(P<0.05)。
图 1 中度污染土壤中水稻根、茎、叶、稻壳、糙米在不同生长期镉质量分数差异
Figure 1. Differences in Cd contents in rice roots, stems, leaves, husks, and brown rice in moderately polluted soils at different growth periods
同一水稻品种在不同生育期阶段的相同器官中的镉积累情况不同,根茎叶中镉质量分数从小到大依次为分蘖期、拔节期、孕穗期、成熟期。
-
由表2可知:‘中浙优8号’土壤有效镉和全镉质量分数最高,分别为(0.64±0.35)和(1.82±0.05) mg·kg−1;‘甬优17’土壤有效镉和全镉质量分数最低,分别为(0.28±0.17)和(0.94±0.37) mg·kg−1。这可能是‘中浙优8号’对镉的吸收能力较弱,导致土壤中的镉质量分数无显著变化,而‘甬优17’吸收了土壤中大量的镉,导致土壤中的镉减少。
表 2 各试验小区土壤全镉和有效镉
Table 2. Total Cd and available Cd in the soil of each test plot
水稻品种 土壤有效镉/
(mg·kg−1)土壤全镉/
(mg·kg−1)有效镉/
全镉/%‘中浙优1号’ 0.41±0.08 a 1.55±0.28 a 32.80 ‘中浙优8号’ 0.64±0.35 a 1.72±0.05 a 35.16 ‘甬优1540’ 0.46±0.29 a 1.56±0.58 a 34.03 ‘甬优17’ 0.28±0.17 a 1.64±0.37 a 29.68 ‘华浙优71’ 0.50±0.11 a 1.41±0.33 a 38.07 说明:相同小写字母表示品种间差异不显著 -
表3显示了不同水稻品种对镉积累和转运的影响。水稻中镉的TF在‘甬优1540’‘甬优17’和‘华浙优71’中表现出相似的趋势:TF壳—米>TF根—茎>TF茎—壳>TF茎—叶,‘中浙优8号’表现出TF壳—米>TF根—茎>TF茎—叶>TF茎—壳,在‘中浙优8号’水稻中观察到最低TF为0.06。镉在糙米中的FBA从大到小依次为‘中浙优1号’‘甬优1540’和‘华浙优71’‘甬优17’‘中浙优8号’。
表 3 水稻镉积累和转运特征
Table 3. Accumulation and transport characteristics of Cd in Rice
水稻品种 TF根—茎 TF茎—叶 TF茎—壳 TF壳—米 FBA米 ‘中浙优1号’ 1.17 0.33 0.21 1.14 0.14 ‘中浙优8号’ 0.97 0.45 0.06 2.24 0.07 ‘甬优1540’ 0.92 0.14 0.31 1.50 0.10 ‘甬优17’ 1.01 0.08 0.20 2.29 0.08 ‘华浙优71’ 1.49 0.13 0.30 1.82 0.10 -
由表4可知:不同水稻品种产量为(5 137.5~7 549.5) kg·hm−2,均值为6 762.3 kg·hm−2。在5个水稻品种中,‘中浙优8号’产量最高,为(7 549.5±29.3) kg·hm−2,显著高于其他品种(P<0.05);‘甬优17’品种水稻产量最低。在各水稻品种中,‘中浙优8号’水稻千粒重和分蘖数最高,分别为(34.87±3.46) g和(24.22±2.55)个·丛−1。
表 4 水稻各项生长指标数据统计
Table 4. Statistics of various growth indicators of rice
水稻品种 产量/
(kg·hm−2)千粒重/g 分蘖数/
(个·丛−1)‘中浙优1号’ 7489.5±31.1 a 27.00±2.56 bc 14.89±2.12 c ‘中浙优8号’ 7549.5±29.3 a 34.87±3.46 a 24.22±2.55 a ‘甬优1540’ 6114.0±570.6 b 25.93±3.94 bc 21.56±4.17 ab ‘甬优17’ 5678.0±636.5 b 25.57±1.14 c 16.11±2.12 bc ‘华浙优71’ 6980.6±611.2 a 30.60±0.92 ab 22.00±3.84 c 说明:不同小写字母表示不同品种间差异显著(P<0.05) -
稻米镉与土壤有效镉、土壤全镉、水稻产量、千粒重和分蘖数的相关性分析可知(表5):土壤有效镉与土壤全镉具有极显著相关关系(P<0.01),稻米镉与分蘖数显著相关(P<0.05),千粒重与水稻产量和分蘖数显著相关(P<0.05),稻米镉与土壤有效镉、全镉无显著相关。
表 5 稻米中镉与土壤镉及生长特性的相关性分析
Table 5. Correlation analysis of Cd contents in rice and soil and their growth characteristics
项目 稻米镉 土壤有效镉 土壤全镉 水稻产量 千粒重 分蘖数 稻米镉 1 土壤有效镉 0.151 1 土壤全镉 −0.029 0.885** 1 水稻产量 0.103 0.500 0.335 1 千粒重 −0.354 0.348 0.352 0.574* 1 分蘖数 −0.527* −0.066 −0.112 0.203 0.603* 1 说明:*和**分别表示在0.05和0.01水平上显著相关
Transfer coefficient and distribution characteristics of Cd in low absorption rice cultivars under Cd stress
-
摘要:
目的 探索镉污染农田下不同低吸收水稻Oryza sativa品种对镉的吸收积累差异及在不同生长时期的分布特征。 方法 选取5个低镉吸收品种‘中浙优1号’‘ Zhongzheyou 1’、‘中浙优8号’‘ Zhongzheyou 8’、‘华浙优71’‘ Huazheyou 71’、‘甬优17’‘ Yongyou 17’和‘甬优1540’‘ Yongyou 1540’,在浙江省丽水市景宁畲族自治县某村镉污染农田开展大田试验,探究5种低吸收品种水稻生长情况及对镉的吸收转运特征。 结果 同一水稻品种不同器官中镉的积累存在差异。在拔节期和孕穗期,镉质量分数从大到小依次为根、茎、叶、穗;在成熟期,除‘中浙优8号’外,其余水稻品种镉质量分数从大到小依次为茎、根、叶、糙米、稻壳;不同水稻品种中,‘华浙优71’水稻品种的根镉质量分数显著低于其他品种(P<0.05),‘中浙优8号’水稻品种的茎和糙米镉质量分数显著低于其他品种(P<0.05)。同一水稻品种在不同生育期的相同器官中镉积累情况不同,根茎叶中镉质量分数从小到大依次为分蘖期、拔节期、孕穗期、成熟期。‘中浙优8号’水稻品种产量、千粒重和分蘖数均高于其他品种。在不同水稻品种中,糙米镉与千粒重、水稻产量、土壤全镉和土壤有效镉无显著相关。 结论 筛选出‘中浙优8号’为镉污染稻田的优选品种,后期可进一步对其低吸收积累特征进行探讨。图1表5参32 Abstract:Objective The purpose is to explore the difference of Cd absorption and accumulation among different low absorption rice (Oryza sativa) cultivars in Cd polluted farmland and their distribution characteristics in different growth stages. Method 5 cultivars with low Cd absorption were selected: ‘Zhongzheyou 1’, ‘Zhongzheyou 8’,‘Huazheyou 71’,‘Yongyou 17’and‘Yongyou 1540’. A field experiment was carried out in a village of Jingning County, Lishui City, Zhejiang Province, to explore the growth and Cd uptake and transport characteristics of 5 low absorption cultivars of rice. Result There were differences in the accumulation of Cd in different organs of the same rice variety. At jointing stage and booting stage, the mass fraction of Cd from large to small was root, stem, leaf and ear. At the maturity stage, the Cd content of rice cultivars other than ‘Zhongzheyou 8’ was stem, root, leaf, brown rice and rice husk in descending order. Among the different rice cultivars, Cd content in the root of ‘Huazheyou 71’ was significantly lower than that of other cultivars (P<0.05), and Cd content in the stem and brown rice of ‘Zhongzheyou 8’ was significantly lower than that of other cultivars (P<0.05). The accumulation of Cd in the same organs of the same rice cultivars at different growth stages was different. The mass fraction of Cd in roots, stems and leaves from small to large showed as tillering stage, jointing stage, booting stage and maturity stage. The yield, 1000-grain weight and tiller number of ‘Zhongzheyou 8’ were higher than those of other cultivars. In different rice cultivars, the content of Cd in brown rice was not significantly correlated with 1000-grain weight, rice yield, soil total Cd content and soil available Cd content. Conclusion ‘Zhongzheyou 8’ is selected as the preferred cultivars in Cd polluted paddy field, and its low absorption and accumulation characteristics can be further discussed in the later stage. [Ch, 1 fig. 5 tab. 32 ref.] -
Key words:
- low absorption /
- Cd stress /
- rice /
- transport mechanism /
- distribution
-
表 1 供试土壤基本性质
Table 1. Basic properties of tested soil
pH 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 速效磷/(mg·kg−1) 速效钾/(mg·kg−1) 全镉/(mg·kg−1) 4.58±0.26 7.59±0.49 203.97±7.61 44.52±1.04 193.69±2.28 2.36±0.64 表 2 各试验小区土壤全镉和有效镉
Table 2. Total Cd and available Cd in the soil of each test plot
水稻品种 土壤有效镉/
(mg·kg−1)土壤全镉/
(mg·kg−1)有效镉/
全镉/%‘中浙优1号’ 0.41±0.08 a 1.55±0.28 a 32.80 ‘中浙优8号’ 0.64±0.35 a 1.72±0.05 a 35.16 ‘甬优1540’ 0.46±0.29 a 1.56±0.58 a 34.03 ‘甬优17’ 0.28±0.17 a 1.64±0.37 a 29.68 ‘华浙优71’ 0.50±0.11 a 1.41±0.33 a 38.07 说明:相同小写字母表示品种间差异不显著 表 3 水稻镉积累和转运特征
Table 3. Accumulation and transport characteristics of Cd in Rice
水稻品种 TF根—茎 TF茎—叶 TF茎—壳 TF壳—米 FBA米 ‘中浙优1号’ 1.17 0.33 0.21 1.14 0.14 ‘中浙优8号’ 0.97 0.45 0.06 2.24 0.07 ‘甬优1540’ 0.92 0.14 0.31 1.50 0.10 ‘甬优17’ 1.01 0.08 0.20 2.29 0.08 ‘华浙优71’ 1.49 0.13 0.30 1.82 0.10 表 4 水稻各项生长指标数据统计
Table 4. Statistics of various growth indicators of rice
水稻品种 产量/
(kg·hm−2)千粒重/g 分蘖数/
(个·丛−1)‘中浙优1号’ 7489.5±31.1 a 27.00±2.56 bc 14.89±2.12 c ‘中浙优8号’ 7549.5±29.3 a 34.87±3.46 a 24.22±2.55 a ‘甬优1540’ 6114.0±570.6 b 25.93±3.94 bc 21.56±4.17 ab ‘甬优17’ 5678.0±636.5 b 25.57±1.14 c 16.11±2.12 bc ‘华浙优71’ 6980.6±611.2 a 30.60±0.92 ab 22.00±3.84 c 说明:不同小写字母表示不同品种间差异显著(P<0.05) 表 5 稻米中镉与土壤镉及生长特性的相关性分析
Table 5. Correlation analysis of Cd contents in rice and soil and their growth characteristics
项目 稻米镉 土壤有效镉 土壤全镉 水稻产量 千粒重 分蘖数 稻米镉 1 土壤有效镉 0.151 1 土壤全镉 −0.029 0.885** 1 水稻产量 0.103 0.500 0.335 1 千粒重 −0.354 0.348 0.352 0.574* 1 分蘖数 −0.527* −0.066 −0.112 0.203 0.603* 1 说明:*和**分别表示在0.05和0.01水平上显著相关 -
[1] 柴磊, 王新, 马良, 等. 基于 PMF 模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 2020, 40(9): 3919 − 3929. CHAI Lei, WANG Xin, MA Liang, et al. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models [J]. China Environ Sci, 2020, 40(9): 3919 − 3929. [2] 周杨, 周文斌, 马嘉伟, 等. 缙云县某复垦地块土壤环境质量调查及生态风险评价[J]. 浙江农林大学学报, 2022, 39(2): 388 − 395. ZHOU Yang, ZHOU Wenbin, MA Jiawei, et al. Soil environmental quality investigation and ecological risk assessment of a reclamation land in Jinyun County [J]. J Zhejiang A&F Univ, 2022, 39(2): 388 − 395. [3] 环境保护部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2021-01-10]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417-270670.htm. Ministry of Ecology and Environment. Report on the National General Suruey of Soil Contamination [EB/OL]. (2014-04-17)[2021-01-10]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417-270670.htm. [4] CAI Limei, WANG Qiushuang, LUO Jie, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China [J]. Sci Total Environ, 2019, 65: 725 − 733. [5] HUANG Ying, WANG Lingyu, WANG Wenjia, et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis [J]. Sci Total Environ, 2019, 651: 3034 − 3042. [6] 黄颖. 不同尺度农田土壤重金属污染源解析研究[D]. 杭州: 浙江大学, 2018. HUANG Ying. Analysis of Heavy Metal Pollution Sources in Farmland Soils at Different Scales[J]. Hangzhou: Zhejiang University, 2018. [7] XIANG Long, LIU Pinghui, JIANG Xingfu, et al. Health risk assessment and spatial distribution characteristics of heavy metal pollution in rice samples from a surrounding hydrometallurgy plant area in No. 721 uranium mining, East China[J/OL]. J Geochem Explor, 2019, 207: 106360[2022-01-08].doi:10.1016/j.gexplo.2019.106360. [8] CHI Yihan, LI Fangbai, TAM N F, et al. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials [J]. Sci Total Environ, 2018, 643: 1314 − 1324. [9] 刘昭兵, 纪雄辉, 彭华, 等. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报, 2010, 21(4): 908 − 914. LIU Shaobing, JI Xionghui, PENG Hua, et al. Effects and action mechanisms of different water management modes on rice Cd absorptionand accumulation [J]. Chin J Appl Ecol, 2010, 21(4): 908 − 914. [10] 王萍, 罗沐欣键, 刘静, 等. 不同水平Cd胁迫下低累积Cd水稻品种筛选[J]. 中国稻米, 2021, 27(1): 75 − 79. WANG Ping, LUO Muxinjian, LIU Jing, et al. Screening of rice varieties with low accumulation Cd under different levels of Cd stress [J]. China Rice, 2021, 27(1): 75 − 79. [11] 徐燕玲, 陈能场, 徐胜光, 等. 低镉累积水稻品种的筛选方法研究——品种与类型[J]. 农业环境科学学报, 2009, 28(7): 1346 − 1352. XU Yanling, CHEN Nengchang, XU Shengguang, et al. Breeding rice cultivars with low accumulation of cadmium: cultivars versus types [J]. J Agro-Environ Sci, 2009, 28(7): 1346 − 1352. [12] 单天宇, 刘秋辛, 阎秀兰, 等. 镉砷复合污染条件下镉低吸收水稻品种对镉和砷的吸收和累积特征[J]. 农业环境科学学报, 2017, 36(10): 1938 − 1945. SHAN Tianyu, LIU Qiuxin, YAN Xiulan, et al. Cd and As absorption and transport characteristics of rice in a paddy field co-contaminated by Cd and As [J]. J Agro-Environ Sci, 2017, 36(10): 1938 − 1945. [13] 蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析[J]. 农业环境科学学报, 2016, 35(6): 1028 − 1033. CAI Qiuling, LIN Dasong, WANG Guo, et al. Differences in cadmium accumulation and transfer capacity among different types of rice cultivars [J]. J Agro-Environ Sci, 2016, 35(6): 1028 − 1033. [14] 颜旭, 周群丰, 廖博通, 等. 水分管理对不同季别水稻稻米镉积累的影响[J]. 作物研究, 2021, 35(3): 189 − 194. YAN Xu, ZHOU Qunfeng, LIAO Botong, et al. Effects of water management on cadmium accumulation in rice [J]. Crop Res, 2021, 35(3): 189 − 194. [15] 杨小粉, 伍湘, 汪泽钱, 等. 水分管理对水稻镉砷吸收积累的影响研究[J]. 生态环境学报, 2020, 29(10): 2091 − 2101. YANG Xiaofen, WU Xiang, WANG Zeqian, et al. Effects of water management on the absorption and accumulation of cadmium and arsenic in rice [J]. J Ecol Environ, 2020, 29(10): 2091 − 2101. [16] NOCTIO F F, LANCILLI C, DENDENA B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation [J]. Plant Cell Environ, 2011, 34(6): 994 − 1008. [17] 孙约兵, 徐应明, 史新, 等. 污灌区镉污染土壤钝化修复及其生态效应研究[J]. 中国环境科学, 2012, 32(8): 1467 − 1473. SUN Yuebing, XU Yingming, SHI Xin, et al. The immobilization remediation of Cd contaminated soils in wastewater irrigation region and its ecological effects [J]. China Environ Sci, 2012, 32(8): 1467 − 1473. [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [19] LI Yaqian, MA Jiawei, SHAFI M, et al. Effects of adsorption characteristics of different amendments on heavy metals (Pb, Zn, and Cd) [J]. J Soils Sediments, 2020, 20(7): 2868 − 2876. [20] XU Weijie, HOU Shuzhen, KHAN M A, et al. Effect of water and fertilization management on Cd immobilization and bioavailability in Cd-polluted paddy soil[J/OL]. Chemosphere, 2021, 276: 130168[2022-01-10]. doi: 10.1016/j.chemosphere.2021.130168. [21] LUO Wenxuan, YANG Shaona, KHAN M A, et al. Mitigation of Cd accumulation in rice with water management and calcium-magnesium phosphate fertilizer in field environment [J]. Environ Geochem Health, 2020, 42(11): 3877 − 3886. [22] 龙小林, 向珣朝, 徐艳芳, 等. 镉胁迫下籼稻和粳稻对镉的吸收、转移和分配研究[J]. 中国水稻科学, 2014, 28(2): 177 − 184. LONG Xiaolin, XIANG Xunchao, XU Yanfang, et al. Absorption, transfer and distribution of Cd in Indica and Japonica Rice under Cd stress [J]. China J Rice Sci, 2014, 28(2): 177 − 184. [23] 吴照祥, 孙小艳, 刘腾云, 等. 中、轻度污染农田杂交水稻对Cd的吸收和累积分布[J]. 江西农业大学学报, 2019, 41(3): 423 − 430. WU Zhaoxiang, SUN Xiaoyan, LIU Tengyun, et al. Cd accumulation, distribution and transport in varieties of hybrid rice grown in medium to low Cd-polluted farmland [J]. Acta Agric Univ Jiangxi Nat Sci Ed, 2019, 41(3): 423 − 430. [24] 孙聪, 陈世宝, 宋文恩, 等. 不同品种水稻对土壤中镉的富集特征及敏感性分布(SSD)[J]. 中国农业科学, 2014, 47(12): 2384 − 2394. SUN Cong, CHEN Shibao, SONG Wenen, et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution [J]. Sci Agric Sci, 2014, 47(12): 2384 − 2394. [25] 王宇豪, 杨力, 康愉晨, 等. 镉污染大田条件下不同品种水稻镉积累的特征及影响因素[J]. 环境科学, 2021, 42(11): 5545 − 5553. WANG Yuhao, YANG Li, KANG Yuchen, et al. Characteristics and influencing factors of cadmium accumulation in different rice varieties under cadmium contaminated field conditions [J]. Environ Sci, 2021, 42(11): 5545 − 5553. [26] 谌首蓓. 菌渣还田对稻麦轮作土壤重金属形态及生物有效性的影响[D]. 成都: 四川农业大学, 2020. CHEN Shoubei. Effects of Mushroom Residue Application on Heavy Metals Speciations and Bioavailability under Rice-wheat Rotation System[D]. Chengdu: Sichuan Agricultural University, 2020. [27] 史静. 杂交水稻对土壤Cd, Zn吸收与Cd耐性的基因型差异[D]. 南京: 南京农业大学, 2008. SHI Jing. Genotypic Differences in Cadmium, Zinc Accumulation and Cadmium Tolerance Between Hybrid Rice Cultivars[D]. Nanjing: Nanjing Agricultural University, 2008. [28] 薛涛, 廖晓勇, 王凌青, 等. 镉污染农田不同水稻品种镉积累差异研究[J]. 农业环境科学学报, 2019, 38(8): 1818 − 1826. XUE Tao, LIAO Xiaoyong, WANG Lingqing, et al. Cadmium accumulation in difference rice cultivars from cadmium-polluted paddy fields [J]. J Agro- Environ Sci, 2019, 38(8): 1818 − 1826. [29] 冯爱煊, 贺红周, 李娜, 等. 基于多目标元素的重金属低累积水稻品种筛选及其吸收转运特征[J]. 农业资源与环境学报, 2020, 37(6): 988 − 1000. FENG Aixuan, HE Hongzhou, LI Na, et al. Screening of rice varieties with low accumulation of heavy metals based on multiple target elements and their absorption and transport characteristics in rice plants [J]. J Agric Resour Environ, 2020, 37(6): 988 − 1000. [30] FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant [J]. Plant Physiol, 2010, 152(4): 1796 − 1806. [31] YU Hui, WANG Junli, FANG Wei, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice [J]. Sci Total Environ, 2006, 370(2/3): 302 − 309. [32] 刘琦, 胡剑锋, 周伟, 等. 四川盆地不同类型水稻品种机插栽培的干物质生产及产量特性分析[J]. 中国水稻科学, 2019, 33(1): 35 − 46. LIU Qi, HU Jianfeng, ZHOU Wei, et al. Dry matter production and yield characteristics of machine-transplanted rice varieties falling into different types in Sichuan Basin [J]. Chin J Rice Sci, 2019, 33(1): 35 − 46. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210402