留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坡向坡位对毛竹林生物量与碳储量的影响

范叶青 周国模 施拥军 董德进 周宇峰

龙丹, 吴逸卿, 周伟龙, 等. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较[J]. 浙江农林大学学报, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
引用本文: 范叶青, 周国模, 施拥军, 等. 坡向坡位对毛竹林生物量与碳储量的影响[J]. 浙江农林大学学报, 2012, 29(3): 321-327. DOI: 10.11833/j.issn.2095-0756.2012.03.001
LONG Dan, WU Yiqing, ZHOU Weilong, et al. Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas[J]. Journal of Zhejiang A&F University, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
Citation: FAN Ye-qing, ZHOU Guo-mo, SHI Yong-jun, et al. Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand[J]. Journal of Zhejiang A&F University, 2012, 29(3): 321-327. DOI: 10.11833/j.issn.2095-0756.2012.03.001

坡向坡位对毛竹林生物量与碳储量的影响

DOI: 10.11833/j.issn.2095-0756.2012.03.001
详细信息
    通信作者: 施拥军

Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand

More Information
    Corresponding author: SHI Yong-jun
  • 摘要: 利用双因素方差分析法研究坡向、坡位对毛竹Phyllostachy edulis林生物量与碳储量的影响。结果表明:①坡向、坡位对毛竹生物量、竹林生态系统碳储量及其空间分配均有一定程度的影响,坡位影响比坡向更显著。具体地,坡向对植被碳储量影响显著(P<0.05),对土壤碳储量和生态系统碳储量影响较显著(P<0.10),坡位对植被碳储量影响极显著(P<0.01),对土壤碳储量和生态系统碳储量影响显著(P<0.05),但两者交互作用不显著;②不同水平上的指标均值分析显示,毛竹林生态系统碳储量阳坡大于阴坡、中下坡大于上坡。其中阳坡下坡的林分密度(3 817株hm-2)和林分生物量(48.705 thm-2)均值最大,阳坡中坡的土壤有机质质量分数(22.500 gkg-1),土壤碳储量(107.273 thm-2)和生态系统碳储量(156.111 thm-2)均值最大,平均胸径和土壤容重均值变化不明显;③在毛竹林生态系统碳储量组成方面,18个样地生态系统碳储量均值为(101.352 14.980) thm-2(变异系数为14.78%),其中植被占20.24%,土壤占79.76%。图3表4参19
  • 钱江源-百山祖国家公园分为钱江源和百山祖2个园区,其中百山祖园区(以下称百山祖国家公园)涵盖了中亚热带东部山地生态系统完整的垂直带谱(低海拔和中山地带均有常绿阔叶林分布),完好地保存了浙闽赣交界山地的代表性和典型性植被和生态系统。其中,百山祖国家公园内保留着大面积迄今未受人为显著干扰的甜槠Castanopsis eyrei-木荷Schima superba和青冈Quercus glauca等常绿阔叶林,这些常绿阔叶林是百山祖国家公园中最具原真性和代表性的植物群落类型之一[1]

    亚热带常绿阔叶林是世界主要森林植被类型之一,主要分布在中国,分布区域约占中国国土面积的1/4,以中亚热带的常绿阔叶林最为典型[2]。由于受到人类干扰的作用,尤其在中国经济发达的东部地区,亚热带原生常绿阔叶林绝大部分退化为次生林或被改造为人工林,老龄林或原生林几乎丧失殆尽[3]。因此,了解百山祖国家公园内的常绿阔叶林的群落结构、物种多样性和生态系统功能,并与周边区域亚热带常绿阔叶林进行对比研究,对于亚热带地区植被恢复、生物多样性保护和生态系统功能提升等均具有重要的理论指导意义。

    目前,针对亚热带常绿阔叶林的相关研究主要集中在中国东部亚热带地区,在局域尺度上探讨亚热带常绿阔叶林的群落特征和生境特点[4]、物种多样性和物种共存机制[5]、演替动态与干扰和气候的关系[67]以及群落结构和更新[89]等方面。张田田等[10]、宋永昌等[11]还在区域尺度上比较了中国亚热带不同区域分布的常绿阔叶林物种组成及群落特征,但尚未包括百山祖国家公园内中山地带和低海拔地带分布的大面积常绿阔叶林。目前,针对百山祖国家公园常绿阔叶林的研究主要以公园内的5和25 hm2常绿阔叶林固定样地为研究平台,在局域尺度上对常绿阔叶林的物种组成、群落特征和群落动态等方面进行了研究[1213]。因此,为进一步了解百山祖国家公园的常绿阔叶林的特点及与邻近其他地区常绿阔叶林群落特征差异,本研究选择分布于百山祖国家公园内的五岭坑和凤阳山,邻近地区的古田山、九龙山和乌岩岭等自然保护区内以及非自然保护区内的常绿阔叶林为研究对象,设置森林固定监测样地,结合样地内物种组成数据,比较α多样性指数、β多样性指数和生物量等的差异,对于理解亚热带常绿阔叶林的特征以及探讨百山祖常绿阔叶林原生性、完整性和代表性具有重要意义。此外,通过比较百山祖国家公园与临近地区常绿阔叶林的群落结构和物种组成差异,对于理解常绿阔叶林的群落特征、演替动态、植被恢复等均具有理论指导意义。

    钱江源-百山祖国家公园地处浙江省西南部,面积约754 km2。本研究选取百山祖园区作为研究区域,包含龙泉片区和庆元片区,是中亚热带常绿阔叶林生态系统的典型代表[14]。在百山祖国家公园庆元片区五岭坑(WLK)低海拔区域,分布有大面积以甜槠和木荷为优势种的常绿阔叶林,在龙泉片区凤阳山(FYS)的中海拔地带分布有大面积以木荷、褐叶青冈Cyclobalanopsis stewardiana和甜槠为优势种的常绿阔叶林。

    为与临近区域分布的常绿阔叶林进行比较研究,选择浙江省内其他3个国家级自然保护区,分别为古田山国家级自然保护区(GTS)[15]、九龙山国家级自然保护区(JLS)[16]、乌岩岭国家级自然保护区(WYL)[17]以及非自然保护区(FZR)内的常绿阔叶林(表1)。以上研究区域的气候类型均属于中亚热带季风气候。

    表 1  样地基本信息
    Table 1  Basic information of sample plots
    研究区域 样地名称 纬度(N) 经度(E) 样地数量/个 海拔/m 优势种
    百山祖国家公园龙泉片区 凤阳山(FYS) 27.912º 119.184º 14 1051~1651 木荷、褐叶青冈、甜槠
    百山祖国家公园庆元片区 五岭坑(WLK) 27.540º 119.064º 12 651~851 甜槠、木荷、米槠
    古田山国家级自然保护区 古田山(GTS) 29.255º 118.130º 2 658~708 甜槠、木荷
    九龙山国家级自然保护区 九龙山(JLS) 28.398º 118.841º 4 625~747 木荷、红楠
    乌岩岭国家级自然保护区 乌岩岭(WYL) 27.713º 119.655º 6 960~1073 甜槠、木荷
    非自然保护区 非自保护区(FZR) 27.560º 119.713º 12 381~871 甜槠、木荷、米槠
      说明:木荷Schima superba,褐叶青冈Cyclobalanopsis stewardiana,甜槠Castanopsis eyrei,米槠Castanopsis carlesii,红楠Machilus thunbergia
    下载: 导出CSV 
    | 显示表格

    2012—2022年,在5个研究区域共设置50个大小为30 m×30 m的常绿阔叶林样地进行调查,每个研究地点所选样地信息见表1。参照美国热带森林研究中心(Center for Tropical Forest Science, CTFS)的方法[18],将每个样地划分成36个5 m×5 m小样方,调查样地内所有胸径(DBH)≥1 cm的木本植物个体,记录物种名、胸径、树高、分枝、空间坐标及生活状态等信息。同时测定样地内生境条件,包括海拔、坡度、坡向、郁闭度和土壤类型等。

    根据《中国植物志》(https://www.iplant.cn/foc)和《浙江植物志(新编)》[19]将调查到的物种分为乔木、灌木和小灌木。根据植物的生活型和DBH值将样地中调查到的所有个体划分为成树和幼树,其中乔木物种DBH>10 cm为成树,DBH≤10 cm为幼树;灌木物种DBH>5 cm为成树,DBH≤5 cm为幼树;小灌木物种DBH>2 cm为成树,DBH≤2 cm为幼树[20]

    分别计算了样地内所有木本植物、成树和幼树的α多样性指数,包括物种丰富度指数、Shannon-Wiener多样性指数、Simpson生态优势度指数[21]以及Chao多样性指数[22]。使用vegan包中的“diversity”和“estimate”等函数计算α多样性指数。

    基于胸径的异速生长方程计算样地内所有木本植物物种(DBH≥1 cm)的生物量,每个个体通过累计其主干、枝、叶以及根的生物量获得个体总生物量。生物量(含地上和地下生物量)具体计算公式参考OUYANG等[23]在中国亚热带森林中构建的生物量与个体胸径间的异速生长方程。

    为了确定不同样地的优势种和植被类型,计算样地内不同物种的重要值,依据重要值大小确定群落优势种和植被类型[24]

    利用方差分析(ANOVA)和最小显著差异法(LSD),分析不同样地之间的所有木本植物、成树和幼树的α多样性指数以及生物量是否具有显著差异。为了比较不同样地之间的物种组成差异,基于样地间的Bray-Curtis相异度指数的主坐标分析(PCoA),将样地内木本植物数据进行降维处理,使用vegan包中的“adonis”函数进行了999次置换方差分析(PERMANOVA),检验不同分组之间的物种组成是否存在显著差异。

    在50个样地中共调查到23021株木本植物,隶属于57科128属304种。其中,常绿阔叶树种占比最高,共172种,隶属于32科60属;落叶阔叶树种共123种,隶属于40科75属;针叶树种占比最少,共3科7属9种。在百山祖国家公园中共调查到10 935株个体,隶属于52科108属241种,优势种为木荷与甜槠,其中成树多度占比34%,幼树多度占比66%。古田山自然保护区样地中优势种为甜槠和木荷,其中,成树多度占比23%,幼树多度占比77%。九龙山自然保护区样地中优势种为木荷和红楠,其中成树多度占比26%,幼树多度占比74%。乌岩岭自然保护区样地优势种为甜槠和木荷,其中成树多度占比24%,幼树多度占比76%。非自然保护区样地优势种为甜槠、木荷和米槠,成树多度占比32%,幼树多度占比68%。

    当考虑所有木本植物时,4种α多样性指数差异呈现相同趋势(图1)。百山祖国家公园五岭坑所有木本植物的物种丰富度指数、Shannon指数和Simpson指数都显著高于凤阳山(P<0.05),Chao指数无显著差异,但五岭坑与九龙山和乌岩岭所有木本植物的物种α多样性均无显著差异,凤阳山与古田山所有木本植物的物种α多样性均无显著差异。非自然保护区所有树种的物种α多样性显著低于百山祖国家公园、九龙山和乌岩岭(P<0.05),与古田山无显著差异。

    图 1  不同研究区域常绿阔叶林所有木本植物物种α多样性
    Figure 1  Differences in species α richness of all woody plants in different plots

    当考虑样地内成树的物种多样性时(图2),百山祖国家公园内五岭坑成树的Shannon指数显著高于凤阳山样地(P<0.05),而物种丰富度,Simpson指数和Chao指数无显著差异。五岭坑与古田山和乌岩岭样地成树的物种α多样性无显著差异。凤阳山成树的物种丰富度和Shannon指数显著低于乌岩岭(P<0.05),与古田山和九龙山无显著差异。非自然保护区成树的物种α多样性显著低于百山祖国家公园和乌岩岭(P<0.05),Simpson指数显著低于古田山和九龙山(P<0.05)。

    图 2  不同研究区域常绿阔叶林木本植物成树物种α多样性
    Figure 2  Differences in species α richness of mature trees in different plots

    当考虑样地内幼树的物种多样性时(图3),百山祖国家公园五岭坑幼树的物种丰富度指数,Shannon指数和Simpson指数都显著高于凤阳山样地(P<0.05),Chao指数无显著差异,但五岭坑与九龙山和乌岩岭幼树α多样性无显著差异。凤阳山,古田山和非自然保护区幼树的物种丰富度,Shannon指数和Simpson指数无显著差异。非自然保护区幼树的物种丰富度,Shannon指数和Chao指数显著低于五岭坑、九龙山和乌岩岭(P<0.05)。

    图 3  不同研究区域常绿阔叶林木本植物幼树物种α多样性
    Figure 3  Differences in species α richness of saplings in different plots

    对于所有木本植物的物种组成,百山祖国家公园中凤阳山和五岭坑样地的物种组成存在显著差异(PERMANOVA检验:F=8.138,P=0.001),凤阳山的物种组成与古田山、九龙山和乌岩岭的更为相似,而五岭坑的物种组成与非自然保护区的物种组成更为相似(图4A表2)。对于成树,凤阳山与乌岩岭的物种组成更相似,具有最低的Bray-Curtis指数值,凤阳山与五岭坑(F=7.261,P=0.001),九龙山以及非自然保护区(F=4.823,P=0.001)的物种组成存在显著差异(图4B表2),而五岭坑、九龙山以及非自然保护区的物种组成更相似。凤阳山与乌岩岭的幼树物种组成相似,且五岭坑幼树物种与非自然保护区幼树物种组成更相似,具有最低的Bray-Curtis指数值(图4C表2)。

    图 4  不同研究区域常绿阔叶林木本植物物种组成的差异
    Figure 4  Differences in species composition of woody plants among different plots
    表 2  不同研究区域之间常绿阔叶林木本植物的Bray-Curtis值以及物种组成显著差异(PERMANOVA)的检验
    Table 2  Bray-Curtis values of woody plants among different plots and the test of significant differences in species composition (PERMANOVA)
    研究对象 项目 Bray-Curtis 平方和 R2 F P
    所有木本植物 FYS/WLK 0.706 1.867 0.253 8.138 ≤0.001
    FYS/WYL 0.467 0.729 0.149 3.153 0.002
    FYS/FZR 0.648 1.436 0.182 5.347 ≤0.001
    WLK/WYL 0.637 1.366 0.328 7.807 ≤0.001
    WLK/FZR 0.582 1.433 0.220 6.204 ≤0.001
    成树 FYS/WLK 0.771 1.904 0.232 7.261 ≤0.001
    FYS/WYL 0.628 0.778 0.142 2.977 0.003
    FYS/FZR 0.711 1.387 0.167 4.823 ≤0.001
    WLK/WYL 0.646 1.285 0.272 5.986 ≤0.001
    WLK/FZR 0.631 1.458 0.205 5.689 ≤0.001
    幼树 FYS/WLK 0.685 1.656 0.218 6.700 ≤0.001
    FYS/WYL 0.443 0.708 0.137 2.869 0.002
    FYS/FZR 0.655 1.399 0.166 4.786 ≤0.001
    WLK/WYL 0.653 1.321 0.295 6.683 ≤0.001
    WLK/FZR 0.575 1.165 0.169 4.469 ≤0.001
      说明:本表仅包含具有显著差异的结果。FYS. 凤阳山;WLK. 五岭坑;GTS. 古田山;JLS. 九龙山;WYL.乌岩岭;FZR. 非自然保护区。
    下载: 导出CSV 
    | 显示表格

    在考虑样地内所有木本植物的生物量时,百山祖国家公园内凤阳山、五岭坑,乌岩岭和非自然保护区之间的生物量无显著性差异,但均显著(P<0.05)低于古田山,高于九龙山(图5A)。凤阳山、五岭坑、古田山、乌岩岭以及非自然保护区之间成树的生物量都没有显著差异,且除乌岩岭外,均显著高于九龙山(图5B)。古田山具有最高的幼树生物量,显著(P<0.05)高于凤阳山、五岭坑、九龙山,乌岩岭和非自然保护区等其他研究区域(P<0.05),且其他样地之间的幼树生物量均无显著差异(图5C)。

    图 5  不同研究区域中木本植物的生物量差异
    Figure 5  Differences in biomass of woody plants among different plots

    中国具有世界上分布最广、类型最为丰富的亚热带森林,其结构复杂,物种丰富,提供了稳定的生态系统服务价值。本研究系统分析并比较了中国亚热带地区百山祖国家公园内常绿阔叶林与其他自然保护区和非自然保护区内常绿阔叶林的群落特征。研究发现百山祖国家公园内五岭坑所有木本植物物种α多样性显著高于凤阳山,这与田磊等[25]的研究结果一致,可能与凤阳山和五岭坑所处的海拔差异有关。海拔通过影响气温和降水等影响物种α多样性,但物种α多样性随海拔的变化关系尚缺乏统一的格局[2627]。林阳等[28]发现:在百山祖国家公园内不同海拔梯度的木本植物物种α多样性与海拔梯度呈显著负相关。随着海拔的升高,气温降低,常绿阔叶树种的生长受到限制,这可能导致高海拔凤阳山比低海拔五岭坑的物种α多样性低。进一步通过对比分析不同生长型幼树和成树物种α多样性的差异,发现五岭坑幼树的物种α多样性显著高于凤阳山,但2个样地内成树的物种α多样性没有显著差异。这说明低海拔区域幼树的物种多样性显著高于高海拔区域。与成树相比,幼树的物种α多样性可能更容易受到生物和非生物因子的影响[29]。五岭坑样地处于较低海拔范围,与高海拔的凤阳山比较,五岭坑内群落生境更加稳定,可能更有利于幼树的更新和生长[30]

    “中间膨胀效应”假说认为不同物种的分布范围相互重叠,但是由于边界限制,使得不同物种的分布范围在边界处重叠小,在中心地区重叠大[31]。在百山祖国家公园和选择的自然保护区中,处于中间海拔梯度的五岭坑样地、乌岩岭样地以及九龙山样地内,总体上物种α多样性都处于较高水平,符合这一假说,从而导致处于中间海拔样地的物种丰富度更高,多项研究也证实了这一结论[32]

    另外,非自然保护区的物种α多样性显著低于自然保护区,可能与人为干扰对物种多样性的影响有关[33]。通常自然保护区限制人为活动(如砍伐或择伐),同时也对自然保护区内的物种进行特定的保护,因而具有更高的物种α多样性。

    物种组成差异能够反映群落间的异质性,物种组成相似度越高,群落间异质性和群落生境条件的异质性越小[34]。植物群落所处的生境条件、气候因子以及区域物种库等不同均会影响群落间物种组成的差异。如海拔可以通过影响温度和水分改变群落环境,进而影响群落内物种组成[35]。本研究发现:百山祖国家公园内凤阳山和五岭坑的常绿阔叶林中所有木本植物、成树和幼树的物种组成均存在显著差异,可能与2个区域所处的海拔不同有关。随海拔变化,不同物种对温度和水分等环境因子的耐受性不同,在海拔梯度上的分布范围也会不同[36]。如五岭坑样地主要分布在低海拔区域(海拔为651~851 m),乔木层优势种主要为甜槠和木荷,样地内木本植物的叶生活型以常绿阔叶树种为主(常绿阔叶树种122种、落叶树种39种和针叶树种2种),而处于高海拔的凤阳山样地(海拔为1051~1651 m),常绿阔叶树种中的青冈类和杜鹃类以及落叶树种和针叶树种的种类比例增加(常绿阔叶树种97种、落叶树种69种和针叶树种7种)。同时,除了海拔对物种组成的影响外,纬度梯度也会对物种组成产生影响[37]。李林等[38]发现相近纬度和海拔上的物种组成更相似。本研究中凤阳山和乌岩岭所处海拔和纬度更接近,2个样地所有木本植物、成树和幼树物种组成更加相似,五岭坑与非自然保护区海拔和纬度相近,物种组成也更相似。

    生物量是衡量森林生态系统生产力的重要指标,同时也是评估森林碳汇的重要参数[39]。在森林生态系统中,气候、土壤理化性质和地形等非生物因子[40]以及群落的演替历史和物种组成等生物因子[41]都是影响生物量的重要因素。如森林生物量随年均气温和年均降水的提高而逐渐升高[42],处于演替前期的次生林相比于演替后期原生林或老龄林具有更低的生物量[43]。本研究中,百山祖国家公园内的凤阳山和五岭坑区域,虽然海拔上存在差异,但2个区域间所有木本植物、成树和幼树的生物量均无显著差异,说明环境因子虽然对2个区域的物种组成和物种多样性产生了较大的影响,但对于生物量并无显著影响。本研究中古田山所有木本植物和幼树的生物量显著高于其他样地,其他各区域间幼树的生物无显著差异。结合样地中不同生长型的树种多度发现:虽然样地中幼树的多度占比均显著高于成树,但古田山幼树多度占比最高。此外,样地内壳斗科植物个体的生物量普遍高于其他物种,可能使壳斗科植物占比高的群落生物量更高。进一步分析各样地幼树中壳斗科个体多度占比发现,古田山壳斗科幼树多度占比高于凤阳山、五岭坑、九龙山、乌岩岭和非自然保护区。因此,古田山具有更高的幼树生物量,也可能与样地内壳斗科物种个体占比较高有关。本研究结果也说明物种组成是影响生物量的主要原因之一。为更全面反映百山祖国家公园与邻近地区常绿阔叶林群落特征比较,后续研究应增加研究样地的数量和分布范围。

    百山祖国家公园内凤阳山和五岭坑常绿阔叶林群落的物种多样性和物种组成存在显著差异,但生物量并无显著差异。相比于其他区域的常绿阔叶林,五岭坑常绿阔叶林具有更高的物种多样性。同时,国家公园和自然保护区内分布的常绿阔叶林物种多样性显著高于非自然保护区。在物种组成方面,五岭坑常绿阔叶林与同纬度的非自然保护区常绿阔叶林物种组成更为相似,而凤阳山则与乌岩岭常绿阔叶林的物种组成更相似。本研究结果表明:受海拔、纬度、群落演替历史和人类干扰等的影响,百山祖国家公园内分布的低海拔和中山地带常绿阔叶林中的物种多样性、物种组成和生态系统功能等不仅在公园内存在差异,尤其在五岭坑分布的以甜槠-木荷为优势种的典型常绿阔叶林和中山地带分布的以褐叶青冈等为优势种的山地常绿阔叶林,也与亚热带其他地区常绿阔叶林存在差异,说明该公园内保存的亚热带常绿阔叶林具有一定的独特性,具有较高的保护价值。

    感谢浙江大学毛志斌、韦博良,浙江师范大学林阳,中国计量大学杨中杰,华东师范大学李时轩,温州大学刘维勇、邓文婕、刘腾腾、税章利和惠城阳等,以及赖正林和姜淦冰等人参与野外调查工作。

  • [1] 曾洪, 陈聪琳, 喻静, 向琳, 孙一淼, 胡明玥, 郝建锋.  人为干扰对雅安苍坪山公园桉树人工林物种多样性和生物量的影响 . 浙江农林大学学报, 2021, 38(2): 253-261. doi: 10.11833/j.issn.20950756.20200312
    [2] 韩泽民, 李源, 王熊, 菅永峰, 周靖靖, 佃袁勇, 黄光体.  不同演替程度下马尾松人工林生物多样性对生物量的影响 . 浙江农林大学学报, 2021, 38(2): 246-252. doi: 10.11833/j.issn.2095-0756.20200334
    [3] 金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁.  浙江省公益林生物多样性和立地对生物量的影响 . 浙江农林大学学报, 2021, 38(6): 1083-1090. doi: 10.11833/j.issn.2095-0756.20200696
    [4] 仲启铖, 傅煜, 张桂莲.  上海市乔木林生物量估算及动态分析 . 浙江农林大学学报, 2019, 36(3): 524-532. doi: 10.11833/j.issn.2095-0756.2019.03.013
    [5] 俞淑红, 周国模, 施拥军, 吕玉龙, 沈振明.  毛竹碳汇造林初期净碳汇量监测与不确定性分析 . 浙江农林大学学报, 2016, 33(5): 807-815. doi: 10.11833/j.issn.2095-0756.2016.05.012
    [6] 李翠琴, 周宇峰, 顾蕾, 施拥军, 沈振明, 徐小军, 李瑞珺.  毛竹拉丝材加工利用碳转移分析 . 浙江农林大学学报, 2013, 30(1): 63-68. doi: 10.11833/j.issn.2095-0756.2013.01.009
    [7] 樊艳荣, 陈双林, 杨清平, 李迎春, 郭子武, 陈珊.  毛竹林下多花黄精种群生长和生物量分配的立竹密度效应 . 浙江农林大学学报, 2013, 30(2): 199-205. doi: 10.11833/j.issn.2095-0756.2013.02.007
    [8] 王金亮, 程鹏飞, 徐申, 王小花, 程峰.  基于遥感信息模型的香格里拉森林生物量估算 . 浙江农林大学学报, 2013, 30(3): 325-329. doi: 10.11833/j.issn.2095-0756.2013.03.003
    [9] 张梦弢, 亢新刚, 蔡烁.  长白山云冷杉林下主要树种幼树生物量 . 浙江农林大学学报, 2012, 29(5): 655-660. doi: 10.11833/j.issn.2095-0756.2012.05.003
    [10] 季碧勇, 陶吉兴, 张国江, 杜群, 姚鸿文, 徐军.  高精度保证下的浙江省森林植被生物量评估 . 浙江农林大学学报, 2012, 29(3): 328-334. doi: 10.11833/j.issn.2095-0756.2012.03.002
    [11] 钱逸凡, 伊力塔, 钭培民, 朱国亮, 应宝根, 余树全.  浙江缙云公益林生物量及固碳释氧效益 . 浙江农林大学学报, 2012, 29(2): 257-264. doi: 10.11833/j.issn.2095-0756.2012.02.016
    [12] 邵继锋, 桂仁意, 季海宝, 李国栋, 方伟.  毛竹实生苗水培体系初步建立 . 浙江农林大学学报, 2011, 28(1): 86-94. doi: 10.11833/j.issn.2095-0756.2011.01.014
    [13] 杨前宇, 谢锦忠, 张玮, 林振清.  椽竹各器官生物量模型 . 浙江农林大学学报, 2011, 28(3): 519-526. doi: 10.11833/j.issn.2095-0756.2011.03.027
    [14] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [15] 谷丽萍, 郭永清, 郎南军, 杨旭, 泽桑梓, 李江, 阮宏华, 谷晓萍.  云南红河流域麻疯树人工幼龄林碳密度与分配特征 . 浙江农林大学学报, 2010, 27(5): 671-676. doi: 10.11833/j.issn.2095-0756.2010.05.006
    [16] 金晓春, 金爱武, 宋艳冬, 娄金飞, 梅舒敏.  施肥对毛竹林换叶期冠层形成及光合能力的影响 . 浙江农林大学学报, 2010, 27(1): 57-62. doi: 10.11833/j.issn.2095-0756.2010.01.009
    [17] 张小朋, 殷有, 于立忠, 姚立海, 英慧, 张娜.  土壤水分与养分对树木细根生物量及生产力的影响 . 浙江农林大学学报, 2010, 27(4): 606-613. doi: 10.11833/j.issn.2095-0756.2010.04.022
    [18] 李贵祥, 孟广涛, 方向京, 郎南军, 袁春明, 温绍龙.  滇中高原桤木人工林群落特征及生物量分析 . 浙江农林大学学报, 2006, 23(4): 362-366.
    [19] 杨同辉, 达良俊, 宋永昌, 杨永川, 王良衍.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅰ)群落结构及主要组成树种生物量特征 . 浙江农林大学学报, 2005, 22(4): 363-369.
    [20] 李燕燕, 樊后保, 林德喜, 苏兵强, 刘春华, 孙新.  马尾松林混交阔叶树的生物量及其分布格局 . 浙江农林大学学报, 2004, 21(4): 388-392.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2012.03.001

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2012/3/321

计量
  • 文章访问数:  4865
  • HTML全文浏览量:  376
  • PDF下载量:  1956
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-20
  • 修回日期:  2011-10-27
  • 刊出日期:  2012-06-20

坡向坡位对毛竹林生物量与碳储量的影响

doi: 10.11833/j.issn.2095-0756.2012.03.001
    通信作者: 施拥军

摘要: 利用双因素方差分析法研究坡向、坡位对毛竹Phyllostachy edulis林生物量与碳储量的影响。结果表明:①坡向、坡位对毛竹生物量、竹林生态系统碳储量及其空间分配均有一定程度的影响,坡位影响比坡向更显著。具体地,坡向对植被碳储量影响显著(P<0.05),对土壤碳储量和生态系统碳储量影响较显著(P<0.10),坡位对植被碳储量影响极显著(P<0.01),对土壤碳储量和生态系统碳储量影响显著(P<0.05),但两者交互作用不显著;②不同水平上的指标均值分析显示,毛竹林生态系统碳储量阳坡大于阴坡、中下坡大于上坡。其中阳坡下坡的林分密度(3 817株hm-2)和林分生物量(48.705 thm-2)均值最大,阳坡中坡的土壤有机质质量分数(22.500 gkg-1),土壤碳储量(107.273 thm-2)和生态系统碳储量(156.111 thm-2)均值最大,平均胸径和土壤容重均值变化不明显;③在毛竹林生态系统碳储量组成方面,18个样地生态系统碳储量均值为(101.352 14.980) thm-2(变异系数为14.78%),其中植被占20.24%,土壤占79.76%。图3表4参19

English Abstract

龙丹, 吴逸卿, 周伟龙, 等. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较[J]. 浙江农林大学学报, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
引用本文: 范叶青, 周国模, 施拥军, 等. 坡向坡位对毛竹林生物量与碳储量的影响[J]. 浙江农林大学学报, 2012, 29(3): 321-327. DOI: 10.11833/j.issn.2095-0756.2012.03.001
LONG Dan, WU Yiqing, ZHOU Weilong, et al. Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas[J]. Journal of Zhejiang A&F University, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
Citation: FAN Ye-qing, ZHOU Guo-mo, SHI Yong-jun, et al. Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand[J]. Journal of Zhejiang A&F University, 2012, 29(3): 321-327. DOI: 10.11833/j.issn.2095-0756.2012.03.001

目录

/

返回文章
返回