-
食物作为重要的生态因子,其品质、可获得性、种类等是动物能量学、生理生态学研究的主要内容之一。食物的丰富度和质量,以及动物对食物中能量的同化能力都会对动物的能量代谢水平产生决定性影响[1]。动物的最大可持续代谢能就受到食物的可利用性和动物的同化能力的制约[2]。随着食物品质的改变,动物的消化系统会进行适应性调节,并通过体质量与基础代谢率反映出来。鸟类在其生理、形态等方面的适应与能量的分配密切相关,保持自身能量的收支平衡是应对外界环境的重要手段[3-4]。ROZMAN等[5]研究发现:当冬季食物丰富度和能量不足时,鸟类会通过降低能量代谢,改变脂肪含量等方式来应对食物的短缺。WILLIAMS等[6]研究表明:云雀Alauda arvensis通过进食高能量食物来补偿与产热有关的能量消耗,以应对恶劣的环境条件变化。崔思荣等[7]研究发现:斑翅山鹑Perdix dauurica会选择性地食用能量高的食物,例如麻籽Cannabis sativa ssp. sativa,芝麻Sesamum indicum,而吃得很少甚至不吃小麦Triticum aestivum和高粱Sorghum bicolor,反映了斑翅山鹑觅食的能量代谢适应性对策;杨志宏等[8]发现:树麻雀Passer montanus进食高能食物时消化能、消化率增加,进食低能食物反之;徐兴军等[4]的研究表明:树麻雀进食高蛋白的黄粉虫Tenebrio molitor与进食纤维素含量较高的稗草Echinochloa crusgalli籽相比,肌糖原、肝糖原含量增高。糖原是动物机体内糖的储存形式,肌糖原分解为肌肉自身收缩供给能量,肝糖原分解主要维持血糖浓度,因此,糖原对动物获得生存所需要的能量具有重要意义[9]。树麻雀属雀形目Passeriformes雀科Fringillidae,生活于溪边丛生柳林、沼泽和农田,食性比较杂,主要以谷粒、稗草籽、种子、果实等植物性食物为食,繁殖期间也吃大量昆虫,常见于中国东北地区,是中国北方地区最常见的雀形目鸟类之一[10]。关于树麻雀的研究主要针对其代谢产热方面[11-12],如树麻雀肝脏的线粒体呼吸和肝脏、肌肉的细胞色素C氧化酶在夏季明显高于冬季等。目前,对食物组分差异影响树麻雀消化道组织学变化的研究较少。本研究以树麻雀为试验材料,从器官水平、整体水平及显微水平来探究树麻雀对食物组分差异的适应性,旨在深入了解树麻雀适应不同食物组分对其能量代谢的影响,阐明产热和能量代谢调节在动物适应不良环境条件变化中的作用和意义,为进一步了解北方小型鸟类的生存机制提供理论依据。
-
由表 1可见:驯化开始时,3组树麻雀的体质量组间无明显差异,驯化至第1周结束时,3组树麻雀体质量均呈上升趋势,稗草籽组树麻雀体质量与对照组、黄粉虫组相比差异极显著(P<0.01);对照组、黄粉虫组树麻雀在驯化2~4周时大幅增加,在第4周驯化结束时比初始体质量分别增加1.12,0.66 g;稗草籽组在驯化2~3周时大幅降低,在第4周驯化结束时比初始体质量降低了0.41 g;4周驯化结束时3组树麻雀体质量组间差异均极显著(P<0.01)。
表 1 各处理树麻雀的体质量
Table 1. Body mass of Passer montanus in different treatments
组别 体质量/g 0周 1周 2周 3周 4周 对照组 19.41 ± 0.03 19.49 ± 0.04 aA 19.84 ± 0.03 aA 20.20 ± 0.03 aA 20.53 ± 0.03 aA 稗草籽组 19.35 ± 0.04 19.42 ± 0.04 bB 19.38 ± 0.03 bB 19.10 ± 0.04 bB 18.94 ± 0.04 bB 黄粉虫组 19.32 ± 0.05 19.55 ± 0.03 aA 19.80 ± 0.03 cC 19.87 ± 0.03 cC 19.98 ± 0.04 cC 说明:同列数据后不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01) 稗草籽组、黄粉虫组、对照组树麻雀的体脂质量分数分别为17.09%,19.48%,18.58%。稗草籽组体脂质量分数与黄粉虫组、对照组相比差异均显著(P<0.05),黄粉虫组体脂质量分数与对照组相比差异不显著(P>0.05)。
由表 2可见:稗草籽组树麻雀心脏、肝脏、肺、胰腺的鲜质量极显著高于黄粉虫组和对照组(P<0.01);黄粉虫组大肠、小肠、十二指肠、直肠、肌胃的鲜质量极显著高于稗草籽组和对照组(P<0.01);黄粉虫组肝脏、十二指肠、肌胃的干质量极显著高于稗草籽组和对照组(P<0.01);对照组肺、大肠、直肠的干质量均极显著高于其他2组(P<0.01);3组树麻雀胰腺干质量组间差异均不显著(P>0.05)。
表 2 各处理树麻雀器官的鲜质量和干质量
Table 2. Fresh and dry organ weight of Passer montanus in diiferent treatments
器官 对照组 稗草籽组 黄粉虫组 鲜质量/mg 干质量/mg 鲜质量/mg 干质量/mg 鲜质量/mg 干质量/mg 心脏 327.96 ± 2.05 aA 122.09 ± 4.52 aA 412.13 ± 2.44 bB 119.30 ± 1.04 aA 292.00 ± 3.25 cC 132.20 ± 1.15 bB 肝脏 700.06 ± 1.15 aA 216.05 ± 2.90 aA 874.25 ± 2.16 bB 198.90 ± 7.60 bB 601.30 ± 1.49 cC 235.80 ± 4.73 cC 肺 268.88 ± 2.27 aA 71.94 ± 1.89 aA 278.30 ± 3.16 bB 68.90 ± 0.75 bB 261.50 ± 2.61 cC 261.50 ± 2.61 cC 胰腺 72.94 ± 2.31 aA 5.06 ± 0.38 78.30 ± 2.61 bB 4.90 ± 0.38 68.90 ± 2.67 cC 4.80 ± 0.41 大肠 111.44 ± 2.05 aA 29.43 ± 0.96 aA 104.63 ± 2.53 bB 20.80 ± 0.67 bB 125.90 ± 2.91 cC 24.60 ± 0.56 cC 小肠 103.11 ± 2.32 aA 26.17 ± 0.66 aA 89.47 ± 2.82 bB 21.90 ± 0.59 bB 109.72 ± 2.31 cC 24.44 ± 0.55 cC 十二指肠 133.70 ± 2.82 aA 29.02 ± 0.75 aA 153.80 ± 1.65 bB 30.13 ± 0.60 bB 180.77 ± 2.60 cC 34.70 ± 0.34 cC 直肠 30.56 ± 0.22 aA 8.91 ± 0.15 aA 27.50 ± 0.28 bB 8.35 ± 0.06 bB 38.31 ± 0.40 cC 7.75 ± 0.06 cC 肌胃 490.89 ± 2.08 aA 197.97 ± 3.21 aA 473.52 ± 2.54 bB 213.90 ± 1.25 bB 528.22 ± 2.76 cC 207.66 ± 0.65 cC 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) -
由表 3可见:驯化1周后,对照组和稗草籽组的基础代谢率呈小幅增高趋势;3~4周时3组基础代谢率均增加,在第4周驯化结束时达到最大值,对照组、稗草籽组、黄粉虫组基础代谢率与第1周相比分别增加0.14,0.35,0.11 mL·g-1·h-1,稗草籽组与对照组、黄粉虫组差异均极显著(P<0.01),对照组与黄粉虫组差异不显著(P>0.05)。
表 3 各处理树麻雀的基础代谢率
Table 3. Basal metabolic rate of Passer montanus in different treatments
组别 基础代谢率/(mL·g-1·h-1) 0周 1周 2周 3周 4周 对照组 5.18 ± 0.02 5.21 ± 0.02 5.28 ± 0.04 aA 5.28 ± 0.05 aA 5.32 ± 0.03 aA 稗草籽组 5.18 ± 0.03 5.19 ± 0.03 5.31 ± 0.04 aA 5.35 ± 0.05 bB 5.53 ± 0.04 bB 黄粉虫组 5.17 ± 0.04 5.13 ± 0.04 5.19 ± 0.05 bB 5.22 ± 0.04 aA 5.28 ± 0.05 aA 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) -
由表 4可知:驯化后稗草籽组和黄粉虫组的消化能、消化率与对照组相比,差异均极显著(P<0.01);稗草籽组与黄粉虫组相比差异极显著(P<0.01)。
表 4 各处理树麻雀的消化能和消化率
Table 4. Digestion and digestibility of Passer montanus in different treatments
组别 消化能/(kJ·g-1) 消化率/% 对照组 82.36 ± 0.93 aA 87.44 ± 0.62 aA 稗草籽组 67.26 ± 1.06 bB 83.02 ± 0.44 bB 黄粉虫组 114.58 ± 1.02 cC 89.15 ± 0.42 cC 说明:同列数据后不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01) -
由表 5可见:驯化后,树麻雀大肠、小肠、直肠、十二指肠长度由长到短的顺序均为:黄粉虫组>对照组>稗草籽组,3组树麻雀大肠、小肠、十二指肠长度组间差异均极显著(P<0.01);对照组、稗草籽组直肠长度与黄粉虫组相比差异均极显著(P<0.01),对照组与稗草籽组相比差异不显著(P>0.05)。
表 5 各处理树麻雀的消化道长度
Table 5. Digestive tract length of Passer montanus in different treatments
组别 消化道长度/mm 大肠 小肠 十二指肠 直肠 对照组 19.83 ± 0.03 aA 130.42 ± 0.04) aA 12.22 ± 0.02 aA 8.38 ± 0.04 aA 稗草籽组 19.25 ± 0.03 bB 129.57 ± 0.03) bB 12.09 ± 0.04 bB 8.34 ± 0.03 aA 黄粉虫组 19.96 ± 0.04 cC 131.69 ± 0.03) cC 12.28 ± 0.03 cC 9.07 ± 0.02 bB 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) -
由表 6可见:驯化4周后,对照组树麻雀肝糖原质量分数分别比稗草籽组、黄粉虫组高1.5 g·kg-1,2.6 g·kg-1;对照组肌糖原质量分数分别比稗草籽组、黄粉虫组低3.8 g·kg-1,2.1 g·kg-1;3组树麻雀肝糖原、肌糖原含量组间差异均极显著(P<0.01),且肌糖原的变化幅度大于肝糖原的变化幅度。
表 6 各处理树麻雀的糖原质量分数
Table 6. Glycogen content of Passer montanus in different treatments
组别 糖原质量分数/(g·kg-1) 肝糖原 肌糖原 对照组 4.80 ± 0.20 aA 4.60 ± 0.10 aA 稗草籽组 3.30 ± 0.10 bB 8.40 ± 0.10 bB 黄粉虫组 2.20 ± 0.10 cC 6.70 ± 0.10 cC 说明:同列数据后不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01) -
由表 7可见:稗草籽组、黄粉虫组大肠绒毛高度与对照组相比差异均极显著(P<0.01),稗草籽组与黄粉虫组组间差异不显著(P>0.05);3组树麻雀的大肠绒毛宽度、大肠黏膜层厚度、大肠壁截面积组间差异均不显著(P>0.05)。
表 7 各处理树麻雀的大肠绒毛高度、宽度、黏膜层厚度及肠壁截面积
Table 7. Large intestine villus height, villus width, mucosal layer thickness, section area of Passer montanus in different treatments
处理 大肠绒毛高度/μm 大肠绒毛宽度/μm 大肠黏膜层厚度/μm 大肠壁截面积/mm2 小肠绒毛高度/μm 小肠绒毛宽度/μm 小肠黏膜层厚度/μm 小肠壁截面积/mm2 十二指肠绒毛高度/μm 十二指肠绒毛宽度/μm 十二指肠黏膜层厚度/μm 十二指肠壁截面积/mm2 对照组 540.68 ± 4.24 aA 67.88 ± 2.21 553.06 ± 3.63 4.25 ± 0.08 583.01 ± 3.60 aA 67.14 ± 2.76 aA 518.71 ± 4.05 aA 4.82 ± 0.11 550.46 ± 3.88 aA 52.77 ± 0.21 aA 562.55 ± 3.22 aA 5.05 ± 0.14 稗草籽组 545.33 ± 2.20 bB 70.08 ± 1.36 554.17 ± 1.90 4.29 ± 0.03 584.35 ± 2.79 aA 69.89 ± 1.66 aA 521.64 ± 2.00 aA 4.78 ± 0.04 550.27 ± 3.32 aA 54.22 ± 1.55 aA 564.33 ± 4.08 aA 5.13 ± 0.03 黄粉虫组 548.54 ± 3.84 bB 72.56 ± 1.92 558.64 ± 2.59 4.36 ± 0.04 590.13 ± 4.30 bB 72.51 ± 1.91 bB 525.61 ± 2.70 bB 4.88 ± 0.06 552.19 ± 3.25 bB 59.66 ± 1.13 bB 568.93 ± 4.13 bB 5.19 ± 0.07 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) 对照组、稗草籽组小肠及十二指肠的绒毛高度、绒毛宽度、黏膜层厚度与黄粉虫组相比差异均极显著(P<0.01);3组小肠及十二指肠的肠壁截面积组间差异均不显著(P>0.05)。
Food composition differences influencing tree sparrow energy metabolism and its digestive tract structure
-
摘要: 为探寻食物组分差异对小型鸟类生理生化指标和消化道的影响,了解小型鸟类如何通过自我调节以应对不良环境条件变化的生存策略。将树麻雀Passer montanus按体质量随机分为对照组(饲喂小米Setaria italica),稗草籽组(饲喂稗草Echinochloa crusgalli籽),黄粉虫组(饲喂黄粉虫Tenebrio molitor),8只·组-1,进行驯化,4周后通过烘干恒质量法、索氏抽提法、硫酸-蒽酮法、石蜡切片法等方法,测定其基础代谢率(basal metabolic rate,BMR)、体质量、器官鲜质量和干质量、体脂质量分数、糖原质量分数和消化道长度,消化道绒毛高度、宽度、黏膜层厚度及肠壁截面积等指标的变化。结果表明:饲喂4周后,3组树麻雀基础代谢率与第1周相比分别增加0.14,0.35和0.11 mL·g-1·h-1,稗草籽组与对照组和黄粉虫组差异显著(P < 0.05),对照组与黄粉虫组差异不显著(P > 0.05);体质量组间差异均极显著(P < 0.01);黄粉虫组大肠、小肠、十二指肠、直肠、肌胃的鲜质量极显著高于稗草籽组和对照组(P < 0.01),黄粉虫组十二指肠、肌胃的干质量极显著高于稗草籽组和对照组(P < 0.01),对照组大肠、直肠的干质量极显著高于稗草籽组和黄粉虫组(P < 0.01);稗草籽组和黄粉虫组的消化能、消化率与对照组间的差异极显著(P < 0.01);3组树麻雀大肠、小肠、十二指肠长度组间差异均极显著(P < 0.01),稗草籽组、黄粉虫组大肠绒毛高度与对照组间的差异均极显著(P < 0.01),对照组、稗草籽组的小肠和十二指肠绒毛高度、黏膜层厚度与黄粉虫组间的差异均极显著(P < 0.01)。表明食物组分差异是影响树麻雀能量代谢和消化道形态改变的重要环境因子之一。Abstract: This experiment was conducted to invesigate the effects of different food components on the physiological and biochemical indexes and digestive tract of small birds (Passer montanus), for understanding the survival strategy of P. montanus through self-regulation in response to adverse changes in environmental conditions. The birds were randomly divided into three groups:a control group (fed with millet-Setaria italica), a grass seed group (fed with grass-Echinochloa crusgalli seed), and a mealworm group (fed with mealworms-Tenebrio molitor). The birds have been domesticating for four weeks until the relevant indicators were detected, such as the basal metabolic rate (BMR) and body mass, organ quality of fresh and dry weight, body fat mass fraction, glycogen content, length of the digestive tract and the digestive tract mucous membrane layer thickness and height, width, cross-section of the intestinal wall. Results showed that the basal metabolic rates of the birds in the three groups (control group, grass seed group, mealworm group) were increased by 0.14, 0.35 and 0.11 mL·g-1·h-1 respectively compared with the first week, and it was higher in the grass seed group than those in the other two groups (P < 0.05). Body mass of the birds were all extremely significantly different between groups (P < 0.01). Organ fresh weight of the large intestine, small intestine, duodenum and rectum were extremely significantly higher in the grass seed group than those in the grass seed group and control group (P < 0.01). Dry weight of duodenum and muscle stomach of the birds in the mealworm group were extremely significantly higher than those in the grass group and control group (P < 0.01), while dry weight of the colon and rectum in control group were extremely significantly higher than those in the grass group and mealworm group (P < 0.01). Digestible energy and digestibility of the birds in the mealworm group was significantly higher than those in the grass group (P < 0.01). The length of large intestine, small intestine, duodenum of the birds were extremely significant difference among the three groups (P < 0.01). The heights of large intestinal villus in the grass seed group and mealworm group were extremely significantly different with those in the control group (P < 0.01), and the height and mucosal layer thickness of small intestine and duodenum villus in the control group and grass seed group were all extremely significantly different with those in the mealworm group (P < 0.01). The differences of food component is one of the important environmental factors that would influence energy metabolism and digestive tract morphological structure of P. montanus.
-
Key words:
- zoology /
- Passer montanus /
- food composition differences /
- basal metabolic rate /
- paraffin section /
- digestive tract
-
表 1 各处理树麻雀的体质量
Table 1. Body mass of Passer montanus in different treatments
组别 体质量/g 0周 1周 2周 3周 4周 对照组 19.41 ± 0.03 19.49 ± 0.04 aA 19.84 ± 0.03 aA 20.20 ± 0.03 aA 20.53 ± 0.03 aA 稗草籽组 19.35 ± 0.04 19.42 ± 0.04 bB 19.38 ± 0.03 bB 19.10 ± 0.04 bB 18.94 ± 0.04 bB 黄粉虫组 19.32 ± 0.05 19.55 ± 0.03 aA 19.80 ± 0.03 cC 19.87 ± 0.03 cC 19.98 ± 0.04 cC 说明:同列数据后不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01) 表 2 各处理树麻雀器官的鲜质量和干质量
Table 2. Fresh and dry organ weight of Passer montanus in diiferent treatments
器官 对照组 稗草籽组 黄粉虫组 鲜质量/mg 干质量/mg 鲜质量/mg 干质量/mg 鲜质量/mg 干质量/mg 心脏 327.96 ± 2.05 aA 122.09 ± 4.52 aA 412.13 ± 2.44 bB 119.30 ± 1.04 aA 292.00 ± 3.25 cC 132.20 ± 1.15 bB 肝脏 700.06 ± 1.15 aA 216.05 ± 2.90 aA 874.25 ± 2.16 bB 198.90 ± 7.60 bB 601.30 ± 1.49 cC 235.80 ± 4.73 cC 肺 268.88 ± 2.27 aA 71.94 ± 1.89 aA 278.30 ± 3.16 bB 68.90 ± 0.75 bB 261.50 ± 2.61 cC 261.50 ± 2.61 cC 胰腺 72.94 ± 2.31 aA 5.06 ± 0.38 78.30 ± 2.61 bB 4.90 ± 0.38 68.90 ± 2.67 cC 4.80 ± 0.41 大肠 111.44 ± 2.05 aA 29.43 ± 0.96 aA 104.63 ± 2.53 bB 20.80 ± 0.67 bB 125.90 ± 2.91 cC 24.60 ± 0.56 cC 小肠 103.11 ± 2.32 aA 26.17 ± 0.66 aA 89.47 ± 2.82 bB 21.90 ± 0.59 bB 109.72 ± 2.31 cC 24.44 ± 0.55 cC 十二指肠 133.70 ± 2.82 aA 29.02 ± 0.75 aA 153.80 ± 1.65 bB 30.13 ± 0.60 bB 180.77 ± 2.60 cC 34.70 ± 0.34 cC 直肠 30.56 ± 0.22 aA 8.91 ± 0.15 aA 27.50 ± 0.28 bB 8.35 ± 0.06 bB 38.31 ± 0.40 cC 7.75 ± 0.06 cC 肌胃 490.89 ± 2.08 aA 197.97 ± 3.21 aA 473.52 ± 2.54 bB 213.90 ± 1.25 bB 528.22 ± 2.76 cC 207.66 ± 0.65 cC 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) 表 3 各处理树麻雀的基础代谢率
Table 3. Basal metabolic rate of Passer montanus in different treatments
组别 基础代谢率/(mL·g-1·h-1) 0周 1周 2周 3周 4周 对照组 5.18 ± 0.02 5.21 ± 0.02 5.28 ± 0.04 aA 5.28 ± 0.05 aA 5.32 ± 0.03 aA 稗草籽组 5.18 ± 0.03 5.19 ± 0.03 5.31 ± 0.04 aA 5.35 ± 0.05 bB 5.53 ± 0.04 bB 黄粉虫组 5.17 ± 0.04 5.13 ± 0.04 5.19 ± 0.05 bB 5.22 ± 0.04 aA 5.28 ± 0.05 aA 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) 表 4 各处理树麻雀的消化能和消化率
Table 4. Digestion and digestibility of Passer montanus in different treatments
组别 消化能/(kJ·g-1) 消化率/% 对照组 82.36 ± 0.93 aA 87.44 ± 0.62 aA 稗草籽组 67.26 ± 1.06 bB 83.02 ± 0.44 bB 黄粉虫组 114.58 ± 1.02 cC 89.15 ± 0.42 cC 说明:同列数据后不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01) 表 5 各处理树麻雀的消化道长度
Table 5. Digestive tract length of Passer montanus in different treatments
组别 消化道长度/mm 大肠 小肠 十二指肠 直肠 对照组 19.83 ± 0.03 aA 130.42 ± 0.04) aA 12.22 ± 0.02 aA 8.38 ± 0.04 aA 稗草籽组 19.25 ± 0.03 bB 129.57 ± 0.03) bB 12.09 ± 0.04 bB 8.34 ± 0.03 aA 黄粉虫组 19.96 ± 0.04 cC 131.69 ± 0.03) cC 12.28 ± 0.03 cC 9.07 ± 0.02 bB 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) 表 6 各处理树麻雀的糖原质量分数
Table 6. Glycogen content of Passer montanus in different treatments
组别 糖原质量分数/(g·kg-1) 肝糖原 肌糖原 对照组 4.80 ± 0.20 aA 4.60 ± 0.10 aA 稗草籽组 3.30 ± 0.10 bB 8.40 ± 0.10 bB 黄粉虫组 2.20 ± 0.10 cC 6.70 ± 0.10 cC 说明:同列数据后不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01) 表 7 各处理树麻雀的大肠绒毛高度、宽度、黏膜层厚度及肠壁截面积
Table 7. Large intestine villus height, villus width, mucosal layer thickness, section area of Passer montanus in different treatments
处理 大肠绒毛高度/μm 大肠绒毛宽度/μm 大肠黏膜层厚度/μm 大肠壁截面积/mm2 小肠绒毛高度/μm 小肠绒毛宽度/μm 小肠黏膜层厚度/μm 小肠壁截面积/mm2 十二指肠绒毛高度/μm 十二指肠绒毛宽度/μm 十二指肠黏膜层厚度/μm 十二指肠壁截面积/mm2 对照组 540.68 ± 4.24 aA 67.88 ± 2.21 553.06 ± 3.63 4.25 ± 0.08 583.01 ± 3.60 aA 67.14 ± 2.76 aA 518.71 ± 4.05 aA 4.82 ± 0.11 550.46 ± 3.88 aA 52.77 ± 0.21 aA 562.55 ± 3.22 aA 5.05 ± 0.14 稗草籽组 545.33 ± 2.20 bB 70.08 ± 1.36 554.17 ± 1.90 4.29 ± 0.03 584.35 ± 2.79 aA 69.89 ± 1.66 aA 521.64 ± 2.00 aA 4.78 ± 0.04 550.27 ± 3.32 aA 54.22 ± 1.55 aA 564.33 ± 4.08 aA 5.13 ± 0.03 黄粉虫组 548.54 ± 3.84 bB 72.56 ± 1.92 558.64 ± 2.59 4.36 ± 0.04 590.13 ± 4.30 bB 72.51 ± 1.91 bB 525.61 ± 2.70 bB 4.88 ± 0.06 552.19 ± 3.25 bB 59.66 ± 1.13 bB 568.93 ± 4.13 bB 5.19 ± 0.07 说明:同列数据后不同小写字母表示差异显著(P < 0.05),不同大写字母表示差异极显著(P < 0.01) -
[1] 宋志刚, 王德华.哺乳动物基础代谢率的主要影响因素[J].兽类学报, 2002, 22(1):53-60. SONG Zhigang, WANG Dehua. Influcing factors on basal metabolic rate in mammals[J]. Acta Theriol Sin, 2002, 22(1):53-60. [2] 王玉山, 王德华, 王祖望.动物长期能量收支理论及研究进展[J].动物学研究, 2000, 21(3):238-244. WANG Yushan, WANG Dehua, WANG Zuwang. The progress on the theory of long-term energy budget in animals[J]. Zool Res, 2000, 21(3):238-244. [3] LOVEGROVE B G. The influence of climate on the basal metabolic rate of small mammals:a slow-fast metabolic continuum[J]. J Comp Physiol B, 2003, 173(2):87-112. [4] 徐兴军, 邵淑丽, 张伟伟, 等.不同食物对麻雀肝糖原和肌糖原含量的影响[J].黑龙江畜牧兽医, 2012(12):126-128. XU Xingjun, SHAO Shuli, ZHANG Weiwei, et al. Influence of different foods on the content of liver glycogen and muscle glycogen[J]. Heilongjiang Anim Sci Vet Med, 2012(12):126-128. [5] ROZMAN J, RUNCIMAN D, ZANN R A. Seasonal variation in body mass and fat of Zebra finches in south-eastern Australia[J]. Emu Austr Ornitho, 2003, 103(1):11-19. [6] WILLIAMS J B, TIELEMAN B I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures[J]. J Exp Biol, 2000, 203(20):3153-3159. [7] 崔思荣.斑翅山鹑的食物能量代谢[J].佳木斯大学学报(自然科学版), 2010, 28(4):622-623. CUI Sirong. Food energy metabolism of partridge[J]. J Jiarnusi Univ Nat Sci Ed, 2010, 28(4):622-623. [8] 杨志宏, 邵淑丽.食物质量差异对树麻雀能量预算和消化道形态特征的影响[J].生态学报, 2011, 31(14):3937-3946. YANG Zhihong, SHAO Shuli. The influence of different food qualities on the energy budget and digestive tract morphology of tree sparrows Passer montanus[J]. Acta Ecol Sin, 2011, 31(14):3937-3946. [9] 柳劲松, 李铭, 邵淑丽.树麻雀肝脏和肌肉产热特征的季节性变化[J].动物学报, 2008, 54(5):777-784. LIU Jinsong, LI Ming, SHAO Shuli. Seasonal changes in thermogenic properties of liver and muscle in tree sparrows Passer montanus[J]. Acta Zool Sin, 2008, 54(5):777-784. [10] 阮向东.麻雀生态学研究进展[J].动物学杂志, 1989, 24(6):44-48. RUAN Xiangdong. Development of sparrow ecology[J]. Chin J Zool, 1989, 24(6):44-48. [11] 张国凯, 方媛媛, 姜雪华, 等.白头鹎的代谢率与器官重量在季节驯化中的可塑性变化[J].动物学杂志, 2008, 43(4):13-19. ZHANG Guokai, FANG Yuanyuan, JIANG Xuehua, et al. Adaptive plasticity in metabolic rate and organ masses among Pycnonotus sinensis, in seasonal acclimatization[J]. Chin J Zool, 2008, 43(4):13-19. [12] BARCELÓ G, SALINAS J, CAVIERES G, et al. Thermal history can affect the short-term thermal acclimation of basal metabolic rate in the passerine Zonotrichia capensis[J]. J Therm Biol, 2009, 34(8):415-419. [13] 林琳, 曹梦婷, 胡益林, 等.环境温度对白头鹎代谢产热和蒸发失水的影响[J].生态学报, 2014, 34(3):564-571. LIN Lin, CAO Mengting, HU Yilin, et al. Effect of environmental temperature on thermogenesis and evaporative water loss in Chinese bulbuls (Pycnonotus sinensis)[J]. Acta Ecol Sin, 2014, 34(3):564-571. [14] 汪诗平, 李永宏.放牧率和放牧时期对绵羊排粪量、采食量和干物质消化率关系的影响[J].动物营养学报, 1997, 9(1):47-54. WANG Shiping, LI Yonghong. The influence of different stocking rates and grazing periods on the amount of feces and its relationship to DM intake and digestibility of grezing sheep[J]. Acta Zoonutr Sin, 1997, 9(1):47-54. [15] AL-MANSOUR M I. Seasonal variation in basal metabolic rate and body composition within individual sanderling bird Calidris alba[J]. J Biol Sci, 2004, 4(4):564-567. [16] 吴梦斯, 赵丽丹, 王润梅, 等.画眉冬夏两季能量收支和消化道形态特征比较[J].生态学杂志, 2015, 34(4):1031-1037. WU Mengsi, ZHAO Lidan, WANG Runmei, et al. Comparison of energy budget and digestive tract morphology in Hwamei Garrulax canorus between winter and summer[J]. Chin J Ecol, 2015, 34(4):1031-1037. [17] 徐兴军, 邵淑丽, 张伟伟, 等.饥饿条件下麻雀体内糖原含量和基础代谢率的变化[J].江苏农业科学, 2013, 40(11):348-350. XU Xingjun, SHAO Shuli, ZHANG Weiwei, et al. In the body of tree sparrow glycogen content and BMR change under the condition of hunger[J]. Jiangsu Agric Sci, 2013, 40(11):348-350. [18] 王昌河, 谢振丽, 吕建伟.动物组织石蜡切片H-E染色的快速方法[J].生物学通报, 2012, 47(7):50-51. WANG Changhe, XIE Zhenli, LÜ Jianwei. A H-E dyeing fast method for animal tissue paraffin section[J]. Bull Biol, 2012, 47(7):50-51. [19] 李兴升. 布氏田鼠和长爪沙鼠血清瘦素对体重、能量摄入和产热的作用[D]. 北京: 中国科学院, 2005. LI Xingsheng. Effects of Serum Leptin on Body Weight, Energy Intake and Heat Production in Brandt's voles and Mongolian gerbil[D]. Beijing: Chinese Academy of Sciences, 2005. [20] COOPER S J. Daily and seasonal variation in body mass and visible fat in mountain chickadees and juniper titmice[J]. Wilson J Ornithol, 2007, 119(4):720-724. [21] WU Mengsi, XIAO Yuchao, YANG Fang, et al. Seasonal variation in body mass and energy budget in Chinese bulbuls (Pycnonotus sinensis)[J]. Avian Res, 2014, 5:4. doi:10.1186/s40657-014-0004-8. [22] ZHANG Weihong, LI Ming, LIU Jinsong, et al. Seasonal acclimatization of metabolism in Eurasian tree sparrows(Passer montanus)[J]. Comp Biochem Physiol Part A Molr Integra Physiol, 2008, 151(4):519-525. [23] 赵志军, 陈竞峰, 王德华.光周期和高脂食物对布氏田鼠能量代谢和产热的影响[J].动物学报, 2008, 54(4):576-589. ZHAO Zhijun, CHEN Jingfeng, ,WANG Dehua. Effects of photoperiod and high fat diet on energy intake and thermogenesis in brandt's voles Lasiopodomys brandtii[J]. Acta Zool Sin, 2008, 54(4):576-589. [24] 娄美芳. 食物质量对布氏田鼠母体能量代谢、繁殖输出及后代代谢表型的影响[D]. 济南: 山东师范大学, 2013. LOU Meifang. Effects of Food Quality on Energy Metabolism, Reproductive Output and Offspring Metabolic Phenotype in Maternal Brandt's Voles (Lasiopodomys brandtii)[D]. Ji'nan: Shandong Normal University, 2013. [25] 王有祥, 徐兴军, 邵淑丽, 等.温度驯化对白腰朱顶雀脱支酶活性的影响[J].东北林业大学学报, 2015, 43(9):107-110. WANG Youxiang, XU Xingjun, SHAO Shuli, et al. Effects of temperature acclimatization on enzyme activity in Carduelis flammea debranching[J]. J Northeast For Univ, 2015, 43(9):107-110. [26] DOWD W W, BRILL R W, BUSHNELL P G, et al. Standard and routine metabolic rates of juvenile sandbar sharks (Carcharhinus plumbeus), including effects of body mass and acute temperature change[J]. Fish Bull, 2005, 104(3):323-331. [27] RINTAMAKI P T, STONE J R, LUNDBERG A. Seasonal and diurnal body-mass fluctuations for two nonhoarding species of parus in Sweden modeled using pathanalysis[J]. Auk Orithol Adv, 2003, 120(3):658-670. [28] 刘丽, 陈晓波, 余红心, 等.品种与日粮营养水平对鸡内脏器官质量及指数的影响[J].饲料研究, 2010(11):49-51. LIU Li, CHEN Xiaobo, YU Hongxin, et al. Breed and daily ration nutritional level influence of chicken's visceral organ mass and index[J]. Feed Res, 2010(11):49-51. [29] 宋志刚, 王德华.内蒙古草原布氏田鼠代谢率与身体器官的关系[J].兽类学报, 2003, 23(3):230-234. SONG Zhigang, WANG Dehua. Relationship between metabolic rate and organ size in Brandt's voles (Microtus brandti)[J]. Acta Theriol Sin, 2003, 23(3):230-234. [30] 冯照军, 季丽萍, 施雯, 等.中华蟾蜍糖原含量的季节变化[J].动物学报, 2007, 53(6):1048-1053. FENG Zhaojun, JI Liping, SHI Wen, et al. Seasonal changes of the glycogen content in Bufo gargarizans[J]. Acta Zool Sin, 2007, 53(6):1048-1053. [31] KARASOV W H, del RIO C M, CAVIEDESVIDAL E. Ecological physiology of diet and digestive systems[J]. Ann Rev Physiol, 2011, 73(73):69-93. [32] STARCK J M, RAHMAAN G H. Phenotypic flexibility of structure and function of the digestive system of Japanese quail[J]. J Exp Biol, 2003, 206(11):1887-1897. [33] PIERSMA T, DRENT J. Phenotypic flexibility and the evolution of organisnal design[J]. Trends Ecol Evol, 2003, 18(5):228-233. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.02.020