-
急尖长苞冷杉Abies georgei var. smithii属于耐荫性植物,特别是在幼苗期,温凉和寒冷的气候区域比较适宜其生长。常在高海拔地区至低海拔的亚高山与高山地带的谷地、阴坡及半阴坡处形成纯林,与喜冷湿的云杉Picea aspereta,落叶松Larix gmelinii,铁杉Tsuga chinensis,松树Pinus及阔叶树形成针叶或针阔混交林。急尖长苞冷杉是西藏东南部阴坡高山林线森林群落的主要建群树种之一,在色季拉山,主要分布在海拔3 300~4 300 m,分布范围比较广泛[1]。但是由于长期过度采伐,林地生态环境恶化,天然更新比较困难,其自然分布区急剧缩小,种群数量逐渐减少[2]。在实地调查中,西藏色季拉山急尖长苞冷杉幼苗很丰富,但是幼苗向幼树过渡期间死亡率比较高,导致其天然更新效果不理想。目前,国内对于冷杉天然更新影响因素方面的研究比较多,主要集中在不同采伐方式[3-5]、生态学特性[6-7]、海拔与坡向[8-9]、土壤种子库[10-11]及地被物[9, 12-15]等。对于西藏高寒环境下急尖长苞冷杉天然更新影响因素的研究还比较少,主要为林隙对其天然更新的影响[16-17]。本研究通过海拔、坡向、种子大小、林隙等方面展开色季拉山急尖长苞冷杉天然更新影响因素的初步研究,为进一步认识色季拉山原始暗针叶林的天然更新,特别是如何采取措施促进其更新具有重要的实践意义。
-
海拔与坡向作为重要的环境因子,其对温度、湿度、光照等诸多环境因子产生直接的影响。这些因子对急尖长苞冷杉种子去翅长度、带翅长度、宽度及厚度均产生影响。对色季拉山种子特征研究表明:在阴坡,种子带翅长度、种子去翅长度、种子宽度、种子厚度在海拔3 800或3 900 m处达到最大值,最大值分别为16.87,10.54,3.85,2.31 mm,最小值分别为8.03,4.27,1.69,0.85 mm;在阳坡,种子带翅长度、种子去翅长度、种子宽度、种子厚度亦是在海拔3 800或3 900 m达最大,最大值分别为17.44,11.52,4.18,2.93 mm,最小值分别为8.79,4.85,1.81,0.72 mm;阳坡种子带翅长度、种子去翅长度、种子宽度、种子厚度要略好于阴坡。由表 1可以得出:在阴坡,急尖长苞冷杉种子去翅长度、宽度、厚度均表现为差异不显著,但是种子带翅长度表现为差异显著(P<0.05,F=2.467);在阳坡,种子去翅长度、种子宽度、种子厚度表现为差异性不显著(P>0.05),而种子带翅长度表现为差异显著(P<0.05,F=2.527)。由表 2可以得出:种子特征均表现为差异不显著。可见,色季拉山急尖长苞冷杉种子形状相对稳定,同一坡向不同海拔对种子形状影响较小,同一海拔不同坡向对种子形状影响不明显。
表 1 不同海拔种子特征差异性分析
Table 1. Difference analysis of seeds characteristic on different elevations
坡向 带翅长度/mm 去翅长度/mm 厚度/mm 宽度/mm 均值 P 均值 P 均值 P 均值 P 阴坡 11.780 ± 1.569 0.039* 6.950 ± 1.668 0.414 1.558 ± 0.508 0.444 2.484 ± 0.614 0.844 阳坡 11.965 ± 1.943 0.047* 7.085 ± 1.728 0.372 1.626 ± 0.542 0.906 2.574 ± 0.609 0.906 说明:*表示在0.05水平差异显著 表 2 不同坡向种子特征差异性分析
Table 2. Difference analysis of seeds characteristic on different slopes
海拔/m 带翅长度 去翅长度 宽度 厚度 均值/mm P 均值/mm P 均值/mm P 均值/mm P 3 700 12.254 ± 2.187 0.702 7.132 ± 1.930 0.814 2.564 ± 0.552 0.651 1.587 ± 0.582 0.784 3 800 12.204 ± 2.662 0.796 7.277 ± 2.422 0.977 2.661 ± 0.804 0.774 1.692 ± 0.431 0.750 3 900 13.005 ± 2.151 0.594 7.681 ± 1.678 0.620 2.605 ± 0.752 0.943 1.716 ± 0.580 0.958 4 000 11.523 ± 1.714 0.235 7.055 ± 1.370 0.367 2.484 ± 0.484 0.581 1.661 ± 0.587 0.883 4 100 11.354 ± 1.761 0.648 6.765 ± 1.026 0.084 2.534 ± 0.530 0.842 1.512 ± 0.463 0.834 4 200 10.893 ± 1.423 0.514 6.195 ± 1.128 0.933 2.324 ± 0.482 0.588 1.383 ± 0.465 0.345 -
种子是植物生活史中的一个重要环节,关系着种群未来的命运。种子千粒重在一定程度上可以预知种子的饱满度,同时也是衡量种子品质的重要指标,对种子萌发、休眠、出土、幼苗发育及幼苗生长产生影响,从而影响急尖长苞冷杉林的天然更新。急尖长苞冷杉种子带翅且比较小,主要靠重力扩散及借助风力,扩散能力比较强,扩散距离比较远,可以为急尖长苞冷杉提供更多的生长空间。武高林等[19]研究表明:较小的种子扩散能力强,有利于种群建植和天然更新,能减少动物捕食的数量,可形成持久土壤种子库。在色季拉山,阴坡种子千粒重分布范围为3.32~12.86 g,海拔3 900 m处种子千粒重达到最优值,平均为10.46 g;阳坡种子千粒重分布范围为3.72~14.68 g,在海拔3 800 m处最佳,平均为12.37 g;种子千粒重在阴坡与阳坡随着海拔的升高均呈先升高后下降的趋势;总体来看,阳坡种子质量要优于阴坡。由表 3可以得出:阴坡千粒重(P=0.008,F=3.500)和阳坡千粒重(P=0.003,F=4.217)均表现为差异显著;由表 4可以得出:在海拔3 800 m(P=0.038,F=5.043)和3 900 m(P=0.044,F=4.671)处种子千粒重表现为差异显著;3 700,4 000,4 100,4 200 m处均表现为差异不显著。
表 3 不同坡向种子质量差异性分析
Table 3. Difference analysis of seeds weight on different slopes
坡向 千粒重 均值/g P 阴坡 8.695 ± 2.789 0.008* 阳坡 10.05 ± 2.834 0.003* 说明:*表示在0.05水平差异显著 表 4 不同海拔种子质量差异性分析
Table 4. Difference analysis of seeds weight on different elevations
海拔/m 千粒重 均值/g P 3 700 9.550 ± 2.937 0.218 3 800 11.370 ± 2.183 0.038* 3 900 10.850 ± 0.897 0.044* 4 000 9.001 ± 2.917 0.303 4 100 8.087 ± 2.778 0.426 4 200 7.374 ± 2.965 0.342 说明:*表示在0.05水平差异显著 -
由图 1可以得出:随着海拔的升高急尖长苞冷杉幼苗数量总体上呈现先增加后减少的趋势,在海拔3 900 m处达到最大值,阴坡为15.2株·m-2,阳坡为14.2株·m-2;在海拔4 000 m处,由于调查样地处于一乱石滩,水土流失严重,保水能力较差,因此,此处幼苗数量急剧下降;高海拔处幼苗数量递减,主要是由于海拔升高气温会逐渐降低,过低的温度致使土壤温度常处于冻结状态,幼苗根系很难从土壤中吸收水分,其根系的生长受到抑制,再加上光照强度增大,紫外线增强,水分散失比较多,易造成幼苗生理性干旱而死亡;在研究海拔范围内阴坡单位面积内幼苗数量均高于阳坡,主要原因为阳坡光照强烈、温度较高、土壤含水量较低,对耐荫性树种急尖长苞冷杉幼苗的发育不利。
-
林隙是指森林群落中1株以上林冠层树木死亡形成的将会由新个体占有与更新的空间[20]。罗大庆等[17]认为在亚高山急尖长苞冷杉林中,干基折断是形成林隙的主要方式,其次为干中折断与拔根风倒,枯立的较少,且风是形成林隙的主要外力。在色季拉山,急尖长苞冷杉林中林隙广泛分布且面积较大,四周可达10 m,是其天然更新的起点和自然演替的重要机制之一。由图 2得出:不同海拔单位面积幼苗数量均表现为林隙>林缘>林下,其中在海拔3 900 m处表现的最为突出,林隙、林缘、林下幼苗数量分别为12.7,8.0,7.5株·m-2;在林隙、林缘及林下均表现为随着海拔的升高急尖长苞冷杉幼苗数量呈现先增加后减少的趋势。
-
苔藓层、凋落物层位于森林植被层与土壤层之间,是森林生态系统的重要组成部分,同时也是林地水汽交换的重要界面[21-24]。由表 5可以得出:苔藓层厚度、凋落物厚度均大于死亡幼苗根长,因此导致较多的幼苗死亡,达3.000株·m-2;不同海拔死亡幼苗根长差异性不显著,苔藓厚度、幼苗数量差异性显著,凋落物厚度、死亡幼苗数量差异性极显著。主要有以下原因:苔藓与凋落物具有遮光,减少光照的作用,有利于急尖长苞冷杉种子萌发、幼苗生长;苔藓、凋落物覆盖林地,可以减少动物对种子的觅食,且凋落物层的分解会增加林地养分,促进急尖长苞冷杉幼苗的生长;另外,苔藓层、凋落物层具有明显的持水功能,特别是在干旱胁迫条件下,苔藓层、凋落物层的水分可以暂时补给给幼苗;但是由于苔藓与凋落物的机械阻碍作用,使萌发种子根系在较短的时间很难扎进土壤,随着急尖长苞冷杉幼苗的生长,对水分、光照及其他营养元素的需求增多,使冷杉幼苗缺失水分及其他营养元素而死亡。
表 5 苔藓厚度、凋落物厚度、死亡幼苗根长、死亡幼苗数量差异性分析
Table 5. Difference analysis of thickness of moss layer, thickness of litter, length of death seeding and number of death seeding
项目 苔藓厚度/
cm凋落物厚度/
cm幼苗数量/
(株·m-2)死亡幼苗根长/cm 死亡幼苗数量/(株·m-2) 均值 7.669 ± 4.529 6.953 ± 2.826 8.717 ± 5.768 4.267 ± 1.977 3.000 ± 1.777 F 2.724 3.067 2.522 0.840 5.006 P 0.011* 0.005** 0.017* 0.688 0.000** 说明:*表示在0.05水平差异显著;**表示在0.01水平差异极显著 -
从相关性分析中可以得出(表 6):幼苗数量与林分郁闭度、带翅长度、千粒重、凋落物厚度均呈现显著正相关,与苔藓厚度呈现极显著正相关。这说明色季拉山急尖长苞冷杉林分郁闭度、带翅长度、千粒重、苔藓厚度、凋落物厚度可能有利于急尖长苞冷杉天然更新,苔藓厚度对其天然更新的影响最大。
表 6 急尖长苞冷杉天然更新影响因子与幼苗数量之间的相关系数
Table 6. Correlation coefficients among factors influencing natural regeneration between each influencing factor and the number of seedlings of Abies georgei var. smithii
项目 林分郁闭度 带翅长度 千粒重 苔藓厚度 凋落物厚度 幼苗数量 林分郁闭度 1.000 0.865* 0.808 0.904* 0.911* 0.773* 带翅长度 1.000 0.876* 0.979** 0.909* 0.860* 千粒重 1.000 0.864* 0.878* 0.643* 苔藓厚度 1.000 0.959** 0.919** 凋落物厚度 1.000 0.833* 说明:*表示在0.05水平差异显著;**表示在0.01水平差异极显著
Natural regeneration factors of Abies georgei var. smithii on Sejila Mountain
-
摘要: 为了弥补高原高山森林天然更新研究的不足,促进急尖长苞冷杉Abies georgei var.smithii种群更新和恢复,通过野外样方调查,分析了海拔与坡向、种子质量、林隙等对急尖长苞冷杉种子特性和幼苗数量的影响,进而分析了林分郁闭度、种子带翅长度、种子质量、苔藓厚度、凋落物厚度与幼苗数量的相关性等。结果表明:由于海拔与坡向的不同,急尖长苞冷杉种子带翅长度、种子去翅长度、种子宽度、种子厚度均存在差异性,尤其是阴坡与阳坡种子带翅长度均表现为显著差异;阴坡种子千粒重分布范围为3.32~12.86 g,阳坡为3.72~14.68 g,阳坡种子质量要优于阴坡;在海拔3 800与3 900 m处千粒重表现为显著差异,阴坡与阳坡亦然。在阴坡与阳坡,种子带翅长度、种子去翅长度、种子宽度、种子厚度、种子千粒重随着海拔的升高均呈先升高后下降的趋势,幼苗数量亦然。林隙研究结果为天然更新幼苗数量林隙>林缘>林下。林分郁闭度、种子带翅长度、种子质量、凋落物厚度均呈显著正相关,苔藓厚度呈极显著正相关,说明这些因素可能有利于急尖长苞冷杉天然更新,其中苔藓厚度是影响其天然更新最重要的因子。Abstract: This study lays the foundation for improving the natural regeneration effect of Abies georgei var. smithii. Using standard field observations, the main influencing factors on natural regeneration of Abies georgei var. smithii including elevation, slope, seed weight, and forest gaps, were analyzed. A correlation analysis of seedling numbers versus canopy density, length of seeds with wings, seed weight, thickness of the moss layer, and thickness of litter was conducted. Results showed that because of differences in elevation and slope, the length of seeds with wings, length of seeds without wings, width of seeds, and thickness of seeds were different, especially length of seeds with wings in shady and sunny conditions. In shade, the 1000-grain weight was from 3.32 to 12.86 g; whereas, in sunshine, the 1000-grain weight was from 3.72 to 14.68 g. Seed quality in sunshine was better than the shade. The 1000-grain weights in the shade and sunshine at 3 800 and 3 900 m were very different. In the shade and sunshine as altitude increased, the length of seeds with wings, length of seeds without wings, width of seeds, thickness of seeds, and 1000-grain weight all increased at first and then decreased; the number of seedlings was about same. The gap study showed gap > forest edge > forest. Canopy density (r=0.773), length of seeds with wings (r=0.860), seed weight (r=0.643), and thickness of litter (r=0.833) showed a significant positive correlation; thickness of moss layer (r=0.919) showed a highly significant positive correlation. Thus, these factors could be beneficial to natural regeneration of Abies georgei var. smithii in plateau mountain forests, and this study has important practical implications for promoting regeneration and recovery with thickness of the moss layer being the most important factor.
-
Key words:
- forest ecology /
- Abies georgei var. smithii /
- seed characteristics /
- seedlings /
- natural regeneration
-
表 1 不同海拔种子特征差异性分析
Table 1. Difference analysis of seeds characteristic on different elevations
坡向 带翅长度/mm 去翅长度/mm 厚度/mm 宽度/mm 均值 P 均值 P 均值 P 均值 P 阴坡 11.780 ± 1.569 0.039* 6.950 ± 1.668 0.414 1.558 ± 0.508 0.444 2.484 ± 0.614 0.844 阳坡 11.965 ± 1.943 0.047* 7.085 ± 1.728 0.372 1.626 ± 0.542 0.906 2.574 ± 0.609 0.906 说明:*表示在0.05水平差异显著 表 2 不同坡向种子特征差异性分析
Table 2. Difference analysis of seeds characteristic on different slopes
海拔/m 带翅长度 去翅长度 宽度 厚度 均值/mm P 均值/mm P 均值/mm P 均值/mm P 3 700 12.254 ± 2.187 0.702 7.132 ± 1.930 0.814 2.564 ± 0.552 0.651 1.587 ± 0.582 0.784 3 800 12.204 ± 2.662 0.796 7.277 ± 2.422 0.977 2.661 ± 0.804 0.774 1.692 ± 0.431 0.750 3 900 13.005 ± 2.151 0.594 7.681 ± 1.678 0.620 2.605 ± 0.752 0.943 1.716 ± 0.580 0.958 4 000 11.523 ± 1.714 0.235 7.055 ± 1.370 0.367 2.484 ± 0.484 0.581 1.661 ± 0.587 0.883 4 100 11.354 ± 1.761 0.648 6.765 ± 1.026 0.084 2.534 ± 0.530 0.842 1.512 ± 0.463 0.834 4 200 10.893 ± 1.423 0.514 6.195 ± 1.128 0.933 2.324 ± 0.482 0.588 1.383 ± 0.465 0.345 表 3 不同坡向种子质量差异性分析
Table 3. Difference analysis of seeds weight on different slopes
坡向 千粒重 均值/g P 阴坡 8.695 ± 2.789 0.008* 阳坡 10.05 ± 2.834 0.003* 说明:*表示在0.05水平差异显著 表 4 不同海拔种子质量差异性分析
Table 4. Difference analysis of seeds weight on different elevations
海拔/m 千粒重 均值/g P 3 700 9.550 ± 2.937 0.218 3 800 11.370 ± 2.183 0.038* 3 900 10.850 ± 0.897 0.044* 4 000 9.001 ± 2.917 0.303 4 100 8.087 ± 2.778 0.426 4 200 7.374 ± 2.965 0.342 说明:*表示在0.05水平差异显著 表 5 苔藓厚度、凋落物厚度、死亡幼苗根长、死亡幼苗数量差异性分析
Table 5. Difference analysis of thickness of moss layer, thickness of litter, length of death seeding and number of death seeding
项目 苔藓厚度/
cm凋落物厚度/
cm幼苗数量/
(株·m-2)死亡幼苗根长/cm 死亡幼苗数量/(株·m-2) 均值 7.669 ± 4.529 6.953 ± 2.826 8.717 ± 5.768 4.267 ± 1.977 3.000 ± 1.777 F 2.724 3.067 2.522 0.840 5.006 P 0.011* 0.005** 0.017* 0.688 0.000** 说明:*表示在0.05水平差异显著;**表示在0.01水平差异极显著 表 6 急尖长苞冷杉天然更新影响因子与幼苗数量之间的相关系数
Table 6. Correlation coefficients among factors influencing natural regeneration between each influencing factor and the number of seedlings of Abies georgei var. smithii
项目 林分郁闭度 带翅长度 千粒重 苔藓厚度 凋落物厚度 幼苗数量 林分郁闭度 1.000 0.865* 0.808 0.904* 0.911* 0.773* 带翅长度 1.000 0.876* 0.979** 0.909* 0.860* 千粒重 1.000 0.864* 0.878* 0.643* 苔藓厚度 1.000 0.959** 0.919** 凋落物厚度 1.000 0.833* 说明:*表示在0.05水平差异显著;**表示在0.01水平差异极显著 -
[1] 朱登强, 王军辉, 张守攻, 等.西藏色季拉山西坡急尖长苞冷杉林物种多样性及群落结构的垂直分布格局[J].西北林学院学报, 2008, 23(5):1-6. ZHU Dengqiang, WANG Junhui, ZhANG Shougong, et al. Changes in species diversity and community structure of Abies georgei var. smithii forest along altitudinal gradients on the western slope of Sejila Mountain in Tibet[J]. J Northwest For Univ, 2008, 23(5):1-6. [2] 卢杰, 潘刚, 罗大庆, 等.濒危植物急尖长苞冷杉种群生命表分析[J].水土保持研究, 2010, 17(5):212-216. LU Jie, PAN Gang, LUO Daqing, et al. Analysis to the life table of endangered population Abies georgei[J]. Res Soil Water Conserv, 2010, 17(5):212-216. [3] 韩景军, 肖文发, 罗菊春.不同采伐方式对云冷杉林更新与生境的影响[J].林业科学, 2000, 36(1):90-96. HAN Jingjun, XIAO Wenfang, LUO Juchun. Effects of different cutting methods on regeneration and habitat for spruce-fir forests[J]. Sci Silv Sin, 2000, 36(1):90-96. [4] 周蔚, 杨华, 亢新刚, 等.择伐强度对长白山区天然云冷杉针阔混交林空间结构的影响[J].西北林学院学报, 2012, 27(4):7-12. ZHOU Wei, YANG Hua, KANG Xingang, et al. Influence of the selective intensity on spatial structure of natural spruce-fir mixed stands of coniferous and broad-leaved trees in Changbai Mountains[J]. J Northwest For Univ, 2012, 27(4):7-12. [5] 郑丽凤, 周新年, 罗积长, 等.择伐强度对天然针阔混交林更新格局的影响[J].福建林学院学报, 2008, 28(4):310-313. ZHENG Lifeng, ZHOU Xinnian, LUO Jizhang, et al. Effects of selective intensity on regeneration pattern of natural mixed stand of conifer and broad-leaved trees[J]. J Fujian Coll For, 2008, 28(4):310-313. [6] 张文辉, 许晓波, 周建云, 等.濒危植物秦岭冷杉地理分布和生物生态学特性研究[J].生物多样性, 2004, 12(4):419-426. ZHANG Wenhui, XU Xiaobo, ZHOU Jianyun, et al. Distribution and bio-ecological characteristics of Abies chensiensis, an endangered plant[J]. Biodiversity Sci, 2004, 12(4):419-426. [7] 唐润琴, 李先琨, 欧祖兰, 等.濒危植物元宝山冷杉结实特性与种子繁殖力初探[J].植物研究, 2001, 21(3):403-408. TANG Runqin, LI Xiankun, OU Zulan, et al. The fruiting characteristics and reproductive capacity of seeds of Abies yuanbaoshanensis[J]. Bull Bot Res, 2001, 21(3):403-408. [8] 迪玮峙, 康冰, 高妍夏, 等.秦岭山地巴山冷杉林的更新特征及影响因子[J].西北农林科技大学学报(自然科学版), 2012, 40(6):71-78. DI Weizhi, KANG Bing, GAO Yanxia, et al. Regeneration characteristics and related affecting factors of Abies fargesii natural forests in Qinling Mountain[J]. J Northwest A&F Univ Nat Sci Ed, 2012, 40(6):71-78. [9] 符婵娟, 刘艳红, 赵本元.神农架巴山冷杉群落更新特点及影响因素[J].生态学报, 2009, 29(8):4179-4186. FU Chanjuan, LIU Yanhong, ZHAO Benyuan. Regeneration characteristics and influencing factors of Abies fargesii forests in Shennongjia National Nature Reserve[J]. Acta Ecol Sin, 2009, 29(8):4179-4186. [10] JOHNSON E A. Buried seed populations in the subarctic forest east of Great Slave Lake[J]. Can J Bot, 1975, 53:2933-2941. [11] 杨跃军, 孙向阳, 王保平.森林土壤种子库与天然更新[J].应用生态学报, 2001, 12(2):304-308. YANG Yuejun, SUN Xiangyang, WANG Baoping. Forest soil seed bank and natural regeneration[J]. Chin J Appl Ecol, 2001, 12(2):304-308. [12] 周新年, 巫志龙, 郑丽凤, 等.森林择伐研究进展[J].山地学报, 2007, 25(5):629-636. ZHOU Xinnian, WU Zhilong, ZHENG Lifeng, et al. Research progress on forest selective cutting[J]. J Mount Sci, 2007, 25(5):629-636. [13] 江波, 袁位高, 戚连忠, 等.生态约束下的采伐更新与局部生态系统稳定性研究[J].江西农业大学学报, 2004, 26(5):686-690. JIANG Bo, YUAN Weigao, QI Lianzhong, et al. Studies on felling regeneration under ecological limit and stability of local ecosystem[J]. Acta Agric Univ Jiangxi, 2004, 26(5):686-690. [14] 彭舜磊.秦岭火地塘林区森林群落近自然度评价及群落生境图绘制方法研究[D].杨凌: 西北农林科技大学, 2008. PENG Shunlei. Natural Closeness Assessment and Biotope Mapping of Forest Communities in Huoditang Forest Region in Qinling Mountain[D]. Yangling: Northwest A&F University, 2008. [15] 向小果, 曹明, 周浙昆.松科冷杉属植物的化石历史和现代分布[J].云南植物研究, 2006, 28(5):439-452. XIANG Xiaoguo, CAO Ming, ZHOU Zhekun. Fossil history and modern distribution of the genus Abies(Pinaceae)[J]. Acta Bot Yunnanica, 2006, 28(5):439-452. [16] 郭其强, 罗大庆, 汪书丽, 等.林隙对林下主要植物叶性状与光合特性的影响:以西藏急尖长苞冷杉林为例[J].东北林业大学学报, 2013, 41(9):46-49. GUO Qiqiang, LUO Daqing, WANG Shuli, et al. Effect of forest gaps on leaf morphological and photosynthetic characteristics of main species in Abies georgei var. smithi forest[J]. J Northeast For Univ, 2013, 41(9):46-49. [17] 罗大庆, 郭泉水, 薛会英, 等.藏东南亚高山冷杉林林隙特征与干扰状况研究[J].应用生态学报, 2002, 13(7):777-780. LUO Daqing, GUO Quanshui, XUE Huiying, et al. Characteristics and disturbance status of gaps in subalpine fir forest in Southeast Tibet[J]. Chin J Appl Ecol, 2002, 13(7):777-780. [18] 方江平.西藏色季拉山土壤的性状与垂直分布[J].山地研究, 1997, 15(4):228-233. FANG Jiangping. Properties and vertical distribution of soil on Shergyla Mountain in Xizang[J]. J Mount Res, 1997, 15(4):228-233. [19] 武高林, 杜国祯, 尚占环.种子大小及其命运对植被更新贡献研究进展[J].应用生态学报, 2006, 17(10):1969-1972. WU Gaolin, DU Guozhen, SHANG Zhanhuan. Contribution of seed size and its fate to vegetation renewal:a review[J]. Chin J Appl Ecol, 2006, 17(10):1969-1972. [20] WATT A S. Pattern and process in the plant community[J]. J Ecol, 1947, 35(1):1-22. [21] 何东进, 洪伟, 胡海清, 等.武夷山风景区森林景观土壤物理性质异质性及其分形特征[J].林业科学, 2005, 41(5):175-179. HE Dongjin, HONG Wei, HU Haiqing, et al. Soil physical property heterogeneity and its fractal features of different forest landscapes in the Wuyishan scenery district[J]. Sci Silv Sin, 2005, 41(5):175-179. [22] 蔺菲, 郝占庆, 叶吉.苔藓植物对植物天然更新的影响[J].生态学杂志, 2006, 25(4):456-460. LIN Fei, HAO Zhanqing, YE Ji. Effects of bryophytes on plant natural regeneration[J]. Chin J Ecol, 2006, 25(4):456-460. [23] 潘刚, 任毅华, 边巴多吉, 等.西藏色季拉山急尖长苞冷杉林枯枝落叶及苔藓层的生物量与持水性能[J].水土保持研究, 2008, 15(5):81-83, 87. PAN Gang, REN Yihua, Bianbaduoji, et al. The water holding capacity of moss and litter layers of Abies georgei forest of Mount Sejila in Tibet[J]. Res Soil Water Conserv, 2008, 15(5):81-83, 87. [24] 王贺新, 李根柱, 于冬梅, 等.枯枝落叶层对森林天然更新的障碍[J].生态学杂志, 2008, 27(1):83-88. WANG Hexin, LI Genzhu, YU Dongmei, et al. Barrier effect of litter layer on natural regeneration of forests:a review[J]. Chin J Ecol, 2008, 27(1):83-88. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.06.006