HE Liu, CAO Minmin, LU Jianbing, et al. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1267-1277. DOI: 10.11833/j.issn.2095-0756.20210820
Citation: LÜ Yulong, ZHOU Xiufeng, HE Ying. Soil fertility after change from an evergreen broadleaf forest to mao bamboo stands and white tea plantations[J]. Journal of Zhejiang A&F University, 2017, 34(4): 656-661. DOI: 10.11833/j.issn.2095-0756.2017.04.011

Soil fertility after change from an evergreen broadleaf forest to mao bamboo stands and white tea plantations

DOI: 10.11833/j.issn.2095-0756.2017.04.011
  • Received Date: 2016-09-12
  • Rev Recd Date: 2016-10-17
  • Publish Date: 2017-08-20
  • Evaluation of soil fertility caused by a change in land use pattern can provide a theoretical basis for soil improvement. The purpose of this study was to explore and to evaluate the evolutionary development of soil fertility after land use change from an evergreen broadleaf forest to Mao bamboo (Phyllostachys edulis) stands and white tea (Camellia sinensis) plantations. Soil samples were taken from 4 soil profiles including the 0-10, 10-30, 30-60 and > 60 cm soil depths, analyzed with a correlation analysis, and evaluated according to soil fertility grading standards for white tea plantation and Mao bamboo. Results showed that organic carbon and available N, P, and K in the 4 soil profiles greatly decreased with soil depth. Soil pH values in each soil layer of the 10-year-old Mao bamboo stands and a 10-year-old white tea plantation increased slightly; whereas, organic carbon in the 0-10 and 10-30 cm soil depths in these bamboo and tea plantations decreased slightly. Compared to the evergreen broadleaf forest, available N in a 40-year-old white tea plantation was 26.1 mg·kg-1 lower in the 0-10 cm soil layer and 11.9 mg·kg-1 lower in the 10-30 cm layer. Available P and K in the 0-10 and 10-30 cm soil depths of white tea plantations increased and then decreased with plantation years. Soil organic carbon content was positively correlated with soil available N (R2 =0.767 0) and K (R2 =0.731 8) (P < 0.01), but not with soil available P. According to soil fertility standards, organic carbon and available N and K in the soils under Mao bamboo stands with white tea plantations were deficient with available P extremely deficient. In light of the evolutionary changes, farmers should increase the rates of organic manure and chemical fertilizer so as to ensure improvement in soil fertility.
  • [1] WANG Jiayu, ZHU Lingjiao, HUANG Chengpeng, JIANG Peikun, ZHA Qiangwei, CHEN Linhai.  Effects of silicon fertilizer and biochar on active silicon components in Phyllostachys edulis forest soil . Journal of Zhejiang A&F University, 2024, 41(3): 496-505. doi: 10.11833/j.issn.2095-0756.20230366
    [2] CAO Shanzhi, ZHOU Jiashu, ZHANG Shaobo, YAO Yihan, LIU Juan, LI Yongfu.  Effects of biochar-based urea and common urea on soil N2O flux in Phyllostachys edulis forest soil . Journal of Zhejiang A&F University, 2023, 40(1): 135-144. doi: 10.11833/j.issn.2095-0756.20220254
    [3] GUO Jiahuan, SUN Jiejie, FENG Huili, CAO Penghe, YU Yuanchun.  Research progress on evolution trends and maintenance measures of soil fertility quality in Cunninghamia lanceolata plantations . Journal of Zhejiang A&F University, 2020, 37(4): 801-809. doi: 10.11833/j.issn.2095-0756.20190478
    [4] WANG Chunlin, ZHANG Jinchi, ZHUANG Yilin, ZHOU Jiao, HAN Cheng, LIU Xin, ZHUANG Jiayao.  Surface volume soil water content in grasslands versus bamboo stands in a Nanjing suburb . Journal of Zhejiang A&F University, 2014, 31(6): 911-918. doi: 10.11833/j.issn.2095-0756.2014.06.013
    [5] ZHANG Lijing, GE Hongli.  Gross primary production in Phyllostachys edulis based on MODIS . Journal of Zhejiang A&F University, 2014, 31(2): 178-184. doi: 10.11833/j.issn.2095-0756.2014.02.003
    [6] CHEN Xiaorong, CHEN Yuanyuan, LUO Zhengrong, DING Bingyang.  A 5-year mid-mountain subtropical evergreen broadleaved forest study in Baishanzu,east China . Journal of Zhejiang A&F University, 2013, 30(6): 821-829. doi: 10.11833/j.issn.2095-0756.2013.06.004
    [7] CAI Yanbin, SONG Zhaoliang, JIANG Peikun.  Silicon fractions in Phyllostachys edulis soils derived from different parent materials . Journal of Zhejiang A&F University, 2013, 30(6): 799-804. doi: 10.11833/j.issn.2095-0756.2013.06.001
    [8] DU Hua-qiang, TANG Meng-ping, CUI Rui-rui.  Spatial heterogeneity of soil nutrients in an evergreen broadleaved forest of Mount Tianmu,Zhejiang . Journal of Zhejiang A&F University, 2011, 28(4): 562-568. doi: 10.11833/j.issn.2095-0756.2011.04.007
    [9] YE Geng-ping, LIU Juan, JIANG Pei-kun, ZHOU Guo-mo, WU Jiao-sen.  Soil respiration during the growing season with intensive management of Phyllostachys pubescens . Journal of Zhejiang A&F University, 2011, 28(1): 18-25. doi: 10.11833/j.issn.2095-0756.2011.01.004
    [10] XU Qiu-fang, WU Jia-sen, JIANG Pei-kun.  Soil biological properties with weed removal in a Chinese chestnut (Castanea mollissima) plantation . Journal of Zhejiang A&F University, 2010, 27(5): 659-663. doi: 10.11833/j.issn.2095-0756.2010.05.004
    [11] HUI Shu-rong, WANG Jiao, ZHANG Qian, WEI Zhong-ping, LIU Yang.  Soil-water dynamics with different agroforestry planting combinations on sandy lands in northwestern Liaoning Province . Journal of Zhejiang A&F University, 2010, 27(4): 579-584. doi: 10.11833/j.issn.2095-0756.2010.04.017
    [12] GONG He-de, ZHANG Yi-ping, LIU Yu-hong, YANG Guo-ping, LU Zhi-yun, LU Hua-zheng.  nterception capability in an evergreen broad-leaved forest of Ailaoshan,Yunnan Province . Journal of Zhejiang A&F University, 2008, 25(4): 469-474.
    [13] FANG Guo-jing, TANG Meng-ping, ZHANG Xue-lian.  The mingling index with evergreen broadleaf forests on Mount Tianmu . Journal of Zhejiang A&F University, 2008, 25(2): 216-220.
    [14] JIANG Ting, TANG Meng-ping.  Quantitative relationships with competition of dominant tree populations in an evergreen broad-leaved forest on Mount Tianmu . Journal of Zhejiang A&F University, 2008, 25(4): 444-450.
    [15] JIANG Jun-ming, ZHU Wei-shuang, LIU Guo-hua, FEI Shi-ming, CHEN Xiu-ming.  Soil fertility in a Phyllostachys pubescens forest of southern Sichuan . Journal of Zhejiang A&F University, 2008, 25(4): 486-490.
    [16] ZHANG Lǜ-qin, ZHANG Ming-kui.  Changes of organic C, N and P pools in red soil in transformation between agricultural land and forestry land . Journal of Zhejiang A&F University, 2006, 23(1): 75-79.
    [17] GAO Zhi-qin, FU Mao-yi.  Characteristics of seasonal changes in soil carbon and nitrogen nutrients of different Phyllostachys pubescens stands . Journal of Zhejiang A&F University, 2006, 23(3): 248-254.
    [18] LIU Shou-zan, GUO Sheng-li, BAI Yan.  Changes in soil organic carbon under different land use types in slope land in gully region of Loess Plateau . Journal of Zhejiang A&F University, 2005, 22(5): 490-494.
    [19] YU Yi-wu, JIANG Zhi-biao, HU Yong-xu.  Stand characteristerics of evergreen broad-leaved forest with Schima superba in Hangzhou . Journal of Zhejiang A&F University, 1999, 16(3): 242-246.
    [20] Lin Kaimin, Lin Guoqing, Zhang Shenlong, Yu Lixuan..  Differences of soil Fertility between Nautral Broadleaved Forest and Replanted Chinese Fir Forest. . Journal of Zhejiang A&F University, 1995, 12(2): 221-225.
  • [2]
    REN Fuli, WANG Wenlong, YANG Guoqing. The major problem facing the development of Anji white tea industry and its countermeasures [J]. J Huzhou Univ, 2015, 37(9): 10-13.
    [3]
    PAN Chunxia, LI Xuetao, LÜ Yulong. Resources and biomass of Phyllostachys heterocycla cv. pubescens in Anji [J]. J Zhejiang For Sci Technol, 2010, 30(1): 82-84.
    [4]
    LU Wenyuan, QIAN Wenchun, LAI Jianhong, et al. Situation and development measures of Anji Baicha industry [J]. Tea Sci Technol, 2012(1): 25-27.
    [5]
    HUANG Jinfa, CAO Zhihong, LI Aifen, et al. Soil fertility quality evolution after land use change from rice-wheat rotation to plastic film covered vegetable [J]. Plant Nutr Fert Sci, 2003, 9(1): 19-25.
    [7]
    SHEN Han. The selection of paticipating factors in soil evaluation and the determination of gradation indices [J]. Acta Agric Boreal-Sin, 1990, 5(3): 63-69.
    [10]
    XU Qiufang, XU Jinming. Changes in soil carbon pool induced by substitution of plantation for native forest [J]. Pedospheres, 2003, 13(3): 271-278.
    [12]
    CAI Rongrong, HUANG Fang, SUN Da, et al. Temporal and spatial variation of soil organic matters in Phyllostachys praecox stands with intensive cultivation management [J]. J Zhejiang For Coll, 2007, 24(4): 450-455.
    [13]
    JIANG Peikun, MENG Cifu, WU Jiasen, et al. Accumulation and leaching risk of soil phosphorus in Lei bamboo stands in the upper reaches of Taihu Lake [J]. Am-Eur J Agric Environ Sci, 2013, 13(7): 891-900.
    [15]
    MENG Cifu, JIANG Peikun, LI Yongfu, et al. Contrasting Effect of application of chemical fertilizers or/and organic manure on soil quality under a Phyllostachys praecox stand in subtropical China [J]. World J Agric Sci, 2011, 7(3): 351-358.
    [16]
    ZHOU Guomo, XU Jinming, WU Jiasen, et al. Changes in soil active organic carbon with history of intensive management of Phyllostachys pubesens forest [J]. Sci Silv Sin, 2006, 42(6): 124-128.
    [17]
    ZHOU Guomo, MENG Cifu, JIANG Peikun, et al. Review of carbon fixation in bamboo forests in China [J]. Bot Rev, 2011, 77(3): 262-270.
    [18]
    LI Chong, ZHOU Guomo, SHI Yongjun, et al. Effects of different management measures on soil carbon in bamboo forest ecosystems [J]. Sci Silv Sin, 2015, 51(4): 26-35.
    [19]
    LI Guodong, ZHOU Kechao, YANG Mingying, et al. Characteristics of the soil carbon andnitrogen contents and transformation rates on the different types moso bamboo plantations [J]. J Soil Water Conserv, 2013, 27(3): 248-252.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.0 %FULLTEXT: 17.0 %META: 73.7 %META: 73.7 %PDF: 9.3 %PDF: 9.3 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %其他: 0.8 %其他: 0.8 %Beauharnois: 0.4 %Beauharnois: 0.4 %China: 0.5 %China: 0.5 %Matawan: 0.1 %Matawan: 0.1 %Seattle: 4.3 %Seattle: 4.3 %[]: 0.1 %[]: 0.1 %上海: 0.8 %上海: 0.8 %东莞: 0.1 %东莞: 0.1 %临汾: 0.3 %临汾: 0.3 %丽水: 0.1 %丽水: 0.1 %九江: 0.3 %九江: 0.3 %兰辛: 0.1 %兰辛: 0.1 %北京: 1.7 %北京: 1.7 %南京: 0.4 %南京: 0.4 %南昌: 0.4 %南昌: 0.4 %南通: 0.3 %南通: 0.3 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 0.5 %台州: 0.5 %呼和浩特: 0.4 %呼和浩特: 0.4 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %大同: 0.1 %大同: 0.1 %天津: 0.5 %天津: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.4 %宁波: 0.4 %宣城: 0.3 %宣城: 0.3 %广州: 0.4 %广州: 0.4 %庆阳: 0.1 %庆阳: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 2.9 %张家口: 2.9 %成都: 0.5 %成都: 0.5 %扬州: 0.5 %扬州: 0.5 %新乡: 0.1 %新乡: 0.1 %无锡: 0.5 %无锡: 0.5 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.7 %杭州: 1.7 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.3 %济南: 0.3 %济宁: 0.3 %济宁: 0.3 %深圳: 0.9 %深圳: 0.9 %温州: 0.7 %温州: 0.7 %湖州: 0.3 %湖州: 0.3 %漯河: 1.7 %漯河: 1.7 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.4 %纽约: 0.4 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 24.2 %芒廷维尤: 24.2 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 0.9 %苏州: 0.9 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.4 %衢州: 0.4 %西双版纳: 0.4 %西双版纳: 0.4 %西宁: 24.5 %西宁: 24.5 %西安: 0.3 %西安: 0.3 %西雅图: 0.1 %西雅图: 0.1 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 3.0 %诺沃克: 3.0 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.0 %运城: 3.0 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.5 %郑州: 0.5 %重庆: 0.3 %重庆: 0.3 %金华: 0.3 %金华: 0.3 %长沙: 0.9 %长沙: 0.9 %阿坝: 0.1 %阿坝: 0.1 %马尼拉: 0.4 %马尼拉: 0.4 %其他其他BeauharnoisChinaMatawanSeattle[]上海东莞临汾丽水九江兰辛北京南京南昌南通博阿努瓦台州呼和浩特哥伦布嘉兴大同天津娄底宁波宣城广州庆阳开封张家口成都扬州新乡无锡昆明晋城朝阳杭州武汉沈阳济南济宁深圳温州湖州漯河石家庄秦皇岛纽约绍兴芒廷维尤芝加哥苏州衡阳衢州西双版纳西宁西安西雅图诺伊达诺沃克贵阳运城邯郸郑州重庆金华长沙阿坝马尼拉Highcharts.com
  • Cited by

    Periodical cited type(4)

    1. 常丽娟,刘晓娇,吴佳灵,朱茜,冯煜清,赵慧茹,郭子怡,张宝贵. 五台山不同海拔土壤可培养细菌数量特征研究. 防护林科技. 2024(01): 61-65+68 .
    2. 骆争荣,郑伟成,唐战胜,蔡臣臣,陈旭波,郑子洪. 浙江九龙山香果树生境土壤微生物多样性及其影响因素. 浙江农林大学学报. 2024(05): 1013-1023 . 本站查看
    3. 吴丰,徐晨璐,聂小力,杨涛,毛聪,许青阳,黄武彪,周双石,王玲. 光泽县土地利用方式对土壤微生物群落结构的影响机制. 环境科学与技术. 2024(12): 190-198 .
    4. 杨发峻,王维奇,吴梓炜,许宏达,葛茂泉,林少颖,李先德,张永勋,吴传惠. 福建典型茶园土壤养分及其计量比对细菌群落结构的影响. 水土保持学报. 2023(06): 209-218 .

    Other cited types(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(2)

Article views(3412) PDF downloads(485) Cited by(7)

Related
Proportional views

Soil fertility after change from an evergreen broadleaf forest to mao bamboo stands and white tea plantations

doi: 10.11833/j.issn.2095-0756.2017.04.011

Abstract: Evaluation of soil fertility caused by a change in land use pattern can provide a theoretical basis for soil improvement. The purpose of this study was to explore and to evaluate the evolutionary development of soil fertility after land use change from an evergreen broadleaf forest to Mao bamboo (Phyllostachys edulis) stands and white tea (Camellia sinensis) plantations. Soil samples were taken from 4 soil profiles including the 0-10, 10-30, 30-60 and > 60 cm soil depths, analyzed with a correlation analysis, and evaluated according to soil fertility grading standards for white tea plantation and Mao bamboo. Results showed that organic carbon and available N, P, and K in the 4 soil profiles greatly decreased with soil depth. Soil pH values in each soil layer of the 10-year-old Mao bamboo stands and a 10-year-old white tea plantation increased slightly; whereas, organic carbon in the 0-10 and 10-30 cm soil depths in these bamboo and tea plantations decreased slightly. Compared to the evergreen broadleaf forest, available N in a 40-year-old white tea plantation was 26.1 mg·kg-1 lower in the 0-10 cm soil layer and 11.9 mg·kg-1 lower in the 10-30 cm layer. Available P and K in the 0-10 and 10-30 cm soil depths of white tea plantations increased and then decreased with plantation years. Soil organic carbon content was positively correlated with soil available N (R2 =0.767 0) and K (R2 =0.731 8) (P < 0.01), but not with soil available P. According to soil fertility standards, organic carbon and available N and K in the soils under Mao bamboo stands with white tea plantations were deficient with available P extremely deficient. In light of the evolutionary changes, farmers should increase the rates of organic manure and chemical fertilizer so as to ensure improvement in soil fertility.

HE Liu, CAO Minmin, LU Jianbing, et al. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1267-1277. DOI: 10.11833/j.issn.2095-0756.20210820
Citation: LÜ Yulong, ZHOU Xiufeng, HE Ying. Soil fertility after change from an evergreen broadleaf forest to mao bamboo stands and white tea plantations[J]. Journal of Zhejiang A&F University, 2017, 34(4): 656-661. DOI: 10.11833/j.issn.2095-0756.2017.04.011
  • 土壤肥力是土壤质量的主要构成部分,包括土壤肥力各因子的数量、在特定的环境条件下与诸因子协同作用下的养分有效性以及特定植物的养分需求和产出[1]。土壤肥力高低不仅受土壤养分、植物的吸收能力和植物生长的环境条件各因子的单独影响,也取决于各因子的协调程度。土壤肥力质量研究必须同时兼顾农业生产力和环境保护2个方面。浙江省安吉县位于浙江省西北部,土地总面积为1 887 km2,是中国著名的竹子和白茶Camellia sinensis之乡。毛竹Phyllostachys edulis和白茶是安吉县农林业的两大支柱产业。拥有规模生产茶园面积1.13 ×104 hm2,产量1 800 t·a-1,产值20亿元·a-1,占全县农业总产值1/4[2]。安吉县竹林面积居全国前列,浙江首位,竹业总产值居全国之首,其中毛竹林面积为5.53×104 hm2,覆盖率达29.3%,面积占全县森林面积的41.2%[3]。土壤肥力质量的高低与土地利用方式的改变也密切相关。由于栽培毛竹和白茶的经济效益高,尤其白茶利润丰厚,致使安吉县毛竹和白茶的栽培面积逐年扩大[4],其中大部分是由常绿阔叶林改变而来,导致森林资源破坏,水土流失严重[2]。黄锦法等[5]报道了稻麦轮作田改为保护地菜田土壤肥力质量的演变,但常绿阔叶林改为毛竹林和白茶园后土壤肥力质量的演变并未有人涉及。本研究根据安吉县森林资源经营档案,在全面踏查的基础上,在该县梅溪镇钱坑桥村的3个小流域,进行了常绿阔叶林改为毛竹林和白茶园后土壤肥力质量的演变研究,以期为毛竹林、白茶园土壤肥力质量的提高和森林可持续经营提供理论依据。

  • 研究区位于安吉县东端的梅溪镇(30°28′ N, 119°24′ E),处于天目山脉在安吉境内的东支末梢,北亚热带季风气候,年平均气温为15.1 ℃,年降水量为1 286.0 mm,无霜期228.0 d。该区的原生植被为天然阔叶林,绝大部分分布于低山丘陵地带。天然植被有青冈Cyclobalanopsis glauca-苦槠Castanopsis sclerophylla常绿阔叶林、马尾松Pinus massoniana林、针阔混交林、竹林以及灌丛植被。人工植被有杉木Cunninghamia lanceolata林,湿地松Pinus elliottii林及经济林。土壤主要是发育于酸性岩浆岩和沉积岩的红壤土类。梅溪镇是安吉县主要毛竹产区,毛竹林面积为2 700 hm2;白茶栽培面积为1 300 hm2,占安吉县白茶产量的1/5。毛竹林通常每年5月上、中旬施肥1次,肥料用量控制在100~150 kg·hm-2。白茶施肥2次·a-1,修剪后施1次追肥,10月后施1次基肥。肥料以有机肥为主(30~35 t·hm-2),适量使用复合肥(300~450 kg·hm-2)。

  • 2015年7月,在梅溪镇钱坑桥村的3个小流域(区组),分别选择有代表性的10年生和40年生毛竹林和白茶园各3块(20 m × 20 m),并在样地周围选择40年生常绿阔叶林作为对照,挖土壤剖面3个·区组-1,分别采集0~10,10~30,30~60和>60 cm等4个土层样品,剔除粗大根系和砾石,同时用容重圈采集土壤。将3个剖面的土样按相同土层深度分别混匀,以四分法取500 g样品带回实验室。采回的土样经自然风干后,去除根系后,用木棍碾碎,过2 mm孔径筛子,供化学分析用。分析方法如下:土壤pH值[m(土):m(水)=1:5]用酸度计测定,有机碳采用重铬酸钾外加热法,碱解氮用碱解扩散法,有效磷采用盐酸-氟化铵(HCl-NH4F)浸提钼锑抗比色法,速效钾用醋酸铵浸提火焰光度法,土壤容重用环刀法测定[6]

  • 试验数据采用利用Excel 2003进行数据统计、相关性分析和作图,用SPSS 18.0系统进行方差分析,并采用Duncan’s新复极差法(LSR)在0.05水平下进行多重比较。

  • 常绿阔叶林改为毛竹林和白茶园并集约经营10 a和40 a后的土壤pH值(图 1)和有机碳质量分数的结果(图 2)显示,不同林地土壤pH值不同土层之间没有显著性差异,但土壤有机碳质量分数则随土层深度的增加而显著下降。不同林地土壤碱解氮、有效磷和速效钾质量分数随土层深度的增加而显著下降(图 3~5)。耕作层(0~30 cm)土壤容重低于心土层(30~60 cm),但差异没有达到5%显著水平(表 1)。

    Figure 1.  Changes of soil pH with soil depths

    Figure 2.  Changes of organic carbon contents in the soils

    Figure 3.  Changes of available N contents in soils

    Figure 4.  Changes of available P contents in soils

    Figure 5.  Changes of available K contents in soils

    土层/cm 土壤容重/(g·cm-3)
    阔叶林 10年生茶园 40年生茶园 10年生毛竹林 40年生毛竹林
    0~30 1.34 a 1.05 b 1.09 b 1.14 b 1.11 b
    30~60 1.42 a 1.26 b 1.24 b 1.24 b 1.23 b

    Table 1.  Bulk densities in the soils under different utilization ways

  • 常绿阔叶林改为白茶园和毛竹林10年生后各个土层的土壤pH值均有不同程度升高,40年生白茶园各个土层的土壤pH值与10年生白茶园各个土层的土壤pH值之间没有显著差异,但40年生毛竹林各个土层的土壤pH值比10年生毛竹林各个土层的土壤pH值提高了0.27~0.63(图 1)。

    与常绿阔叶林比较,10年生白茶园的0~10 cm土层有机碳质量分数略有降低,但其他各土层有机碳质量分数有明显增加。随着种植年限的增加,40年生白茶园的0~30 cm土层有机碳质量分数又有了明显的降低,但30 cm以下土层的有机碳质量分数并未降低;10年生毛竹林的0~10 cm土层的有机碳质量分数降低了8.97 g·kg-1,但其他各土层的有机碳质量分数基本没有下降,40年生毛竹林的各土层的有机碳质量分数维持10年生毛竹林土壤有机碳水平(图 2)。

    与常绿阔叶林相比,10年生白茶园0~10 cm和10~30 cm土层的碱解氮质量分数略有降低,40年生白茶园碱解氮质量分数进一步降低,分别降低了26.1 mg·kg-1和11.9 mg·kg-1,30 cm以下土层的碱解氮质量分数呈现先增后减的趋势(图 3)。白茶园和毛竹林0~10 cm和10~30 cm土层的有效磷和速效钾质量分数,呈现随栽培年限增加先增后减的趋势。30 cm以下土层有效磷和速效钾质量分数随有效磷和速效钾质量分数增加呈现无规律的变化(图 4~5)。

    常绿阔叶林改为白茶园后,10年生白茶园和毛竹林的土壤容重显著降低了,但40年生白茶园和40年生毛竹林的土壤容重就不再降低了。

  • 不同林地土壤有机碳质量分数与土壤速效养分质量分数之间的相关分析结果显示:土壤有机碳质量分数与土壤碱解氮质量分数(图 6A),速效钾质量分数(图 6B)之间的相关性均达到极显著水平(P<0.01),而与土壤有效磷质量分数(图 6C)的相关性未达5%显著水平。

    Figure 6.  Relationships between organic carbon contents and available nutrient contents in the soils

  • 参照林地土壤和园地土壤肥力的分级指标(表 2[7-8],安吉县不同种植年限的白茶园和毛竹林土层的有机碳质量分数分别为35.03~42.16 g·kg-1和18.24~35.03 g·kg-1,换算为有机质质量分数分别为60.39~72.68 g· kg-1和31.45~60.39 g·kg-1,属于4级水平;碱解氮质量分数分别为40.4~71.3 mg·kg-1和28.5~42.8 mg·kg-1,属于4级水平;有效磷质量分数分别为0.79~1.91 mg·kg-1和0.57~0.75 mg·kg-1,属于5级水平;速效钾质量分数分别为43.5~82.5 mg·kg-1和22.1~46.5 mg·kg-1,属于4级水平。

    指标等级 园地土壤[7] 林地土壤[8]
    有效磷/(mg·kg-1) 有效钾/(mg·kg-1) 有机质/(g·kg-1) 有效磷/(mg·kg-1) 碱解氮/(mg·kg-1) 有效钾/(mg·kg-1)
    1 > 15 > 150 > 150 > 15 > 200 > 120
    2 10-15 100-150 100-150 10-15 100-200 80-120
    3 5-10 50-100 50-100 5-10 80-100 50-80
    4 3-5 30-100 20-50 3-5 < 80 < 50
    5 < 3 < 60 < 20 < 3

    Table 2.  Fertility grading indicators of the soils under orchards and forest stands

  • 随着农林产业结构的逐步调整,浙江省以果、蔬、茶、竹为主的经济作物面积不断扩大,如由杭嘉湖平原稻麦轮作田改为蔬菜等经济作物连作的旱地和半永久性的保护地[5],浙北稻田或林地改为毛竹[9-10]、雷竹Phyllostachys violascens[11-12]和白茶等经济作物。由于改制前后的土壤类型、作物及施肥管理模式的不同,导致改制后土壤肥力质量的演变趋势产生巨大差异。例如,稻麦轮作田改为保护地菜田后,pH值大幅下降,导致土壤酸化[5],稻田改为毛竹和雷竹同样导致了土壤酸化[10-12]。但本研究常绿阔叶林改为毛竹林和白茶园后并未引起土壤酸化,甚至土壤pH值略有升高。究其原因,一是稻田改为雷竹林后的施肥量,特别是化肥用量大大高于本研究的样地,二是稻田土壤pH值高于林地[10]。基于同样的理由,稻田改为雷竹林后土壤有机质、全氮、速效磷、速效钾等均有大幅增加,尤其是速效磷超负荷累积[12-15],但本研究毛竹林和茶园的土壤有机质、速效磷、速效钾增加幅度很小,其土壤肥力指标仍属缺乏范围。

    改制后土壤肥力质量随种植时间增加的演变趋势因不同改制模式也有巨大差异。强度集约经营导致雷竹林土壤有机质质量分数和速效氮磷钾质量分数随时间推移而大幅提高[12-15]。姜培坤等[11]报道,2007年土壤有机质质量分数比1999年增加了1.00倍,平均增加3.34 g·kg-1·a-1,土壤全氮和速效氮质量分数分别增长2.47倍和2.05倍,土壤速效磷质量分数增长10.10倍,土壤速效钾提高44.0%。本研究的种植10年生和40年生的毛竹林和白茶园0~10 cm土壤的有机碳质量分数反而略有降低,土壤碱解氮、速效磷、速效钾的增加幅度也很小。与改制后强度集约经营雷竹林土壤有机质质量分数和速效氮磷钾质量分数随时间变化趋势相反,集约经营导致毛竹林土壤有机质质量分数在前20 a随时间推移而快速下降,此后趋向平衡[10, 16-17],其原因是雷竹集约经营的强度比毛竹高,而且雷竹经营过程中还采取了覆盖措施。另外相关研究表明,适量的施肥有利于土壤有机质的积累[18],一般经营毛竹林土壤有机质含量大于集约经营[19]。本研究的结果显示:常绿阔叶林改为毛竹林和白茶园后土壤肥力质量的演变趋势是土壤pH值略有升高,土壤有机碳、碱解氮和速效钾质量分数属于缺乏水平,而速效磷质量分数属于极度缺乏水平,因此,从土壤肥力质量演变趋势看来,应适当增加有机肥和化肥的用量,以确保土壤肥力质量的提高。

Reference (19)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return