Volume 36 Issue 5
Sep.  2019
Turn off MathJax
Article Contents

PENG Xinyi, LI Yongchun, WANG Xiuling, LI Yongfu, CHEN Zhihao, XU Qiufang. Effects of invasive plants on soil microbial communities: a review[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
Citation: PENG Xinyi, LI Yongchun, WANG Xiuling, LI Yongfu, CHEN Zhihao, XU Qiufang. Effects of invasive plants on soil microbial communities: a review[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023

Effects of invasive plants on soil microbial communities: a review

doi: 10.11833/j.issn.2095-0756.2019.05.023
  • Received Date: 2018-09-30
  • Rev Recd Date: 2019-02-24
  • Publish Date: 2019-10-20
  • Invasive plants cause great harm to the social, economic and ecological environment in the invaded areas by affecting soil microbial biomass, microbial community diversity and functional microbiota. Plant species invasion has become a global problem and one of the hotspots of current research. In this paper, we summarized the effects of plant invasion on soil microorganism, and the biological mechanism of the influence of Moso bamboo (Phyllostachys edulis) invasion on soil microorganism characteristics. Studies showed that invasive plants would increase soil microbial biomass and soil microbial diversity to create favorable soil environment for invasive plant species. Invasive plants would change nutrient cycling and other environmental conditions through changing functional groups of soil microorganisms, and in turn promote the process of plant invasion. Enhanced research on the effects of plant invasion on soil microbes and associated nutrient cycling would help clarify the "plant-soil" feedback mechanism, which could provide a basis for the prevention, control and habitat restoration of plant invasion.
  • [1] LIU Zongyue, LÜ Shixin, XU Junjie, CHEN Xu, LOU Yikai, QI Xiangbin, YU Shuquan.  Effects of clear-cutting and harvest residue of Phyllostachys edulis forests on soil quality . Journal of Zhejiang A&F University, 2022, 39(6): 1289-1295. doi: 10.11833/j.issn.2095-0756.20220122
    [2] WANG Yixiong, ZHANG Huafeng, LI Quan, ZHANG Junbo, WANG Shaoliang, SONG Xinzhang.  Effect of nitrogen addition on soil phosphorus fractions in the Phyllostachys edulis plantation . Journal of Zhejiang A&F University, 2022, 39(4): 695-704. doi: 10.11833/j.issn.2095-0756.20220236
    [3] ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin.  On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis . Journal of Zhejiang A&F University, 2021, 38(4): 703-711. doi: 10.11833/j.issn.2095-0756.20200542
    [4] JIANG Zhonglong, YE Liuxin, LIU Jun, LIN Song, XU Minyu, WU Jiasen, LIU Juan, LIU Haiying.  Effects of enclosure duration on litter and soil water holding capacity of Phyllostachys edulis forest . Journal of Zhejiang A&F University, 2020, 37(5): 860-866. doi: 10.11833/j.issn.2095-0756.20190603
    [5] GUO Jiahuan, SUN Jiejie, FENG Huili, CAO Penghe, YU Yuanchun.  Research progress on evolution trends and maintenance measures of soil fertility quality in Cunninghamia lanceolata plantations . Journal of Zhejiang A&F University, 2020, 37(4): 801-809. doi: 10.11833/j.issn.2095-0756.20190478
    [6] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [7] YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan.  Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis . Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
    [8] ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE.  Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil . Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [9] XU Weijie, GUO Jia, ZHAO Min, WANG Renyuan, HOU Shuzhen, YANG Yun, ZHONG Bin, GUO Hua, LIU Chen, SHEN Ying, LIU Dan.  Research progress of soil plant root exudates in heavy metal contaminated soil . Journal of Zhejiang A&F University, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [10] HE Shanqiong, MENG Cifu, HUANG Zhangting, JIANG Peikun, WU Qifeng, SHEN Jing.  Research progress and forecast of phytolith-occluded organic carbon stability in soil . Journal of Zhejiang A&F University, 2016, 33(3): 506-515. doi: 10.11833/j.issn.2095-0756.2016.03.020
    [11] SUN Tao, LU Kouping, WANG Hailong.  Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions . Journal of Zhejiang A&F University, 2015, 32(1): 140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
    [12] LIANG Jing, FANG Hailan, HAO Guanjun, SUN Qian.  Soil respiration for different plant communities in an urban green-belt of Shanghai . Journal of Zhejiang A&F University, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [13] MENG Cifu, JIANG Peikun, XU Qiufang, ZHOU Guomo, SONG Zhaoliang, HUANG Zhangting.  PhytOC in plant ecological system and its important roles in the global soil carbon sink . Journal of Zhejiang A&F University, 2013, 30(6): 921-929. doi: 10.11833/j.issn.2095-0756.2013.06.018
    [14] ZHANG Tao, LI Yongfu, JIANG Peikun, ZHOU Guomo, LIU Juan.  Research progresses in the effect of land-use change on soil carbon pools and soil respiration . Journal of Zhejiang A&F University, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [15] LIU Li-na, JIN Ai-wu.  Spatial variability of soil nutrients for an intensively managed Phyllostachys pubescens forest . Journal of Zhejiang A&F University, 2011, 28(5): 828-832. doi: 10.11833/j.issn.2095-0756.2011.05.025
    [16] XU Qiu-fang, JIANG Pei-kun, LU Yi-tong.  Soil microbial diversity with different fertilizer types and rates in a Phyllostachys praecox stand . Journal of Zhejiang A&F University, 2008, 25(5): 548-552.
    [17] JIANG Jun-ming, ZHU Wei-shuang, LIU Guo-hua, FEI Shi-ming, CHEN Xiu-ming.  Soil fertility in a Phyllostachys pubescens forest of southern Sichuan . Journal of Zhejiang A&F University, 2008, 25(4): 486-490.
    [18] ZHOU Guo-mo, LIU En-bin, SHE Guang-hui.  Summary of estimated methods on forest soil's carbon pool . Journal of Zhejiang A&F University, 2006, 23(2): 207-216.
    [19] XU Qiu-fang, YU Yi-wu, QIAN Xin-biao, WU Jia-sen.  Physical and chemical property difference in soil under bamboo-shoot and bamboo-timber forests in Huzhou . Journal of Zhejiang A&F University, 2003, 20(1): 102-105.
    [20] XU Qiu-fang, JIANG Pei-kun.  Effects of fertilizing on biological properties of root region soil under Phyllostachys pubescens forest . Journal of Zhejiang A&F University, 2000, 17(4): 364-368.
  • [1]
    JU Ruiting, LI Hui, SHI Zhengren, et al. Progress of biological invasions research in China over the last decade[J]. Biodiversity Sci, 2012, 20(5):581-611.
    [2]
    WU Hao, DING Jianqing. Recent progress in invasion ecology[J]. Chin Sci Bull, 2014, 59(6):438-448.
    [3]
    XU Guangyao, LI Hongyuan, MO Xunqiang, et al. Research review on the advances of the invasive plants and the ecological effects of the related factors concerned[J]. J Saf Environ, 2018, 18(1):375-380.
    [4]
    XU Chengyuan, ZHANG Wenju, LU Baorong, et al. Progress in studies on mechanisms of biological invasion[J]. Biodiverity Sci, 2001, 9(4):430-438.
    [5]
    MACK R N, SIMBERLOFF D, LONSDALE W M, et al. Biotic invasions:causes, epidemiology, global consequences, and control[J]. Ecol Appl, 2000, 10(3):689-710.
    [6]
    WANG Dali. Review of allelopathy research of Ambrosia genus[J]. Chin J Ecol, 1995, 14(4):48-53.
    [7]
    HE Jinfeng. Advance in studies on invasion mechanisms of exotic plants[J]. Chin J Appl Environ Biol, 2008, 14(6):863-870.
    [8]
    BRADLEY B A, HOUGHTON R A, MUSTARD J F, et al. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US[J]. Global Change Biol, 2006, 12(10):1815-1822.
    [9]
    ELGERSMA K J, EHRENFELD J G, YU Shen, et al. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling[J]. Oecologia, 2011, 167(3):733-745.
    [10]
    SHANNON-FIRESTONE S, REYNOLDS H L, PHILLIPS R P, et al. The role of ammonium oxidizing communities in mediating effects of an invasive plant on soil nitrification[J]. Soil Biol Biochem, 2015, 90:266-274.
    [11]
    YANG Xing, ZHANG Lihui, ZHENG Chao, et al. Effects of Flaveria bidentis invasion on soil microbial communities, enzyme activities and nutrients[J]. Plant Nutr Fert Sci, 2012, 18(4):907-914.
    [12]
    LIU Xiaowen, ZHOU Yilin, QI Chengmei, et al. Effects of Mikania micrantha invasion on soil nutrient contents and enzyme activities[J]. Ecol Environ Sci, 2012, 21(12):1960-1965.
    [13]
    ZHANG Tianrui, HUANGFU Chaohe, BAI Xiaoming, et al. Effects of Flaveria bidentis invasion on soil nutrient contents and enzyme activities[J]. Chin J Ecol, 2010, 29(7):1353-1358.
    [14]
    DUDA J J, FREEMAN D C, EMLEN J M, et al. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus[J]. Biol Fert Soils, 2003, 38(2):72-77.
    [15]
    WU Tianma, DING Hui, LIU Zhilei, et al. Effects of alien invasive plant Eupatorium adenophorum on soil nutrients[J]. J Ecol Rural Environ, 2007, 23(2):94-96.
    [16]
    NIU Hongbang, LIU Wanxue, WAN Fanghao. Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties[J]. Acta Ecol Sin, 2007, 27(7):3051-3060.
    [17]
    KOURTEV P S, EHRENFELD J G, HUANG W Z. Effects of exotic plant species on soil properties in hardwood forests of New Jersey[J]. Water Air Soil Pollut, 1998, 105(1/2):493-501.
    [18]
    LIAO Chengzhang, PENG Ronghao, LUO Yiqi, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis[J]. New Phytol, 2008, 177(3):706-714.
    [19]
    JACKSON R B, BANNER J L, JOBBÁGY E G, et al. Ecosystem carbon loss with woody plant invasion of grasslands[J]. Nature, 2002, 418(6898):623-626.
    [20]
    JOHNSON N C, WEDIN D. Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland[J]. Ecol Appl, 1997, 7(1):171-182.
    [21]
    van der PUTTEN W H, VET L E M, HARVEY J A, et al. Linking aboveand belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists[J]. Trends Ecol Evol, 2001, 16(10):547-554.
    [22]
    BISSETT A, BROWN M V, SICILIANO S D, et al. Microbial community responses to anthropogenically induced environmental change:towards a systems approach[J]. Ecol Lett, 2013, 16(suppl 1):128-139.
    [23]
    van der PUTTEN W H, BARDGETT R D, BEVER J D, et al. Plant-soil feedbacks:the past, the present and future challenges[J]. J Ecol, 2013, 101(2):265-276.
    [24]
    WOLFE B E, KLIRONOMOS J N. Breaking new ground:soil communities and exotic plant invasion[J]. Bioscience, 2005, 55(6):477-487.
    [25]
    YU Xingjun, YU Dan, LU Zhijun, et al. A new mechanism of invader success:exotic plant inhibits natural vegetation restoration by changing soil microbe community[J]. Chin Sci Bull, 2005, 50(9):896-903.
    [26]
    SONG Qingni, YANG Qingpei, LIU Jun, et al. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest[J]. Chin J Appl Ecol, 2013, 24(2):338-344.
    [27]
    LI Yongchun, LIANG Xu, LI Yongfu, et al. Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community[J]. Chin J Appl Ecol, 2016, 27(2):585-592.
    [28]
    QIN Hua, NIU Limin, WU Qifeng, et al. Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance[J]. Plant Soil, 2017, 420(1/2):407-421.
    [29]
    LI Yongchun, LI Yongfu, CHANG S X, et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production[J]. Plant Soil, 2017, 418(1/2):507-521.
    [30]
    LI Yongchun, LIANG Xue, TANG Caixian, et al. Moso bamboo invasion into broadleaf forests is associated with greater abundance and activity of soil autotrophic bacteria[J]. Plant Soil, 2018, 428(1/2):163-177.
    [31]
    SAGGAR S, MCINTOSH P D, HEDLEY C B, et al. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.)[J]. Biol Fert Soils, 1999, 30(3):232-238.
    [32]
    LI Junmin, ZHONG Zhangcheng, DONG Ming. Change of soil microbial biomass and enzyme activities in the community invaded by Mikania micrantha, due to Cuscuta campestris parasitizing the invader[J]. Acta Ecol Sin, 2008, 28(2):868-876.
    [33]
    ZHOU Jun, XIAO Wei, QIN Pei. Effect of an alien species (Spartina alterniflora) on soil microbial biomass and functional groups in salt marshes[J]. J Nanjing Univ Nat Sci, 2007, 43(5):494-500.
    [34]
    ZHAO Xiaohong, YANG Dianlin, WANG Hui, et al. Effects of Flaveria bidentis invasion on soil nitrogen cycling and soil microbial biomass in different regions[J]. Acta Pratacultural Sin, 2015, 24(2):62-69.
    [35]
    LI Yonghui, YAN Ming, LI Junmin. Effect of Alternanthera philoxeroides-primed soil on the growth of itself and congeneric native Alternanthera sessilis and the possible mechanisms[J]. J Zhejiang Univ Sci Ed, 2013, 40(3):324-329.
    [36]
    SUN Xin, GAO Cheng, GUO Liangdong. Changes in soil microbial community and enzyme activity along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest[J]. Chin Sci Bull, 2013, 58(33):4101-4108.
    [37]
    KOURTEV P S, EHRENFELD J G, HÄGGBLOM M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities[J]. Soil Biol Biochem, 2003, 35(7):895-905.
    [38]
    LI Weihua, ZHANG Congbang, JIANG Hongbo, et al. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H. B. K[J]. Plant Soil, 2006, 281(1/2):309-324.
    [39]
    ZHANG Yuman. Effects of the Invasion of Three Alien Composite Plants on the Diversity of AM Fungi and Its Feedback[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2015.
    [40]
    ZHU Xunzhi, LI Qiang, LI Yangping, et al. Eupatorium adenophorum invasion alters soil bacterial community and diversity[J]. Biodiversity Sci, 2015, 23(5):665-672.
    [41]
    VOGELSANG K M, BEVER J D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion[J]. Ecology, 2009, 90(2):399-407.
    [42]
    KOURTEV P S, EHRENFELD J G, HÄGGBLOM M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83(11):3152-3166.
    [43]
    LEI Yanbao, XIAO Haifeng, FENG Yulong. Impacts of alien plant invasions on biodiversity and evolutionary responses of native species[J]. Biodiversity Sci, 2010, 18(6):622-630.
    [44]
    CHEN Liang, LI Huina, YANG Minhe, et al. The influence of invasion of Mikania micrantha and Bidens pilosa to the bacterial community in the root soils[J]. Chin Agric Sci Bull, 2011, 27(8):63-68.
    [45]
    ZHANG Shanshan, JIN Yili, TANG Jianjun, et al. The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy[J]. Appl Soil Ecol, 2009, 41(2):215-222.
    [46]
    ZHANG Shanshan, ZHU Wenjie, WANG Bing, et al. Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum[J]. Appl Soil Ecol, 2011, 48(3):280-286.
    [47]
    EHRENFELD J G. Ecosystem consequences of biological invasions[J]. Annu Rev Ecol Evol Syst, 2010, 41(1):59-80.
    [48]
    PIPER C L, SICILIANO S D, WINSLEY T, et al. Smooth brome invasion increases rare soil bacterial species prevalence, bacterial species richness and evenness[J]. J Ecol, 2015, 103(2):386-396.
    [49]
    SONG Zhen, JI Qiaofeng, FU Weidong, et al. Effects of Flaveria bidentis invasion on the diversity of functional bacteria in rhizosphere soil[J]. Chin J Appl Ecol, 2016, 27(8):2636-2644.
    [50]
    REN Yujing. Effects of An Invasive Plant Species, Ageratina adenophora Sprenger (Compositae) on the Communities of Free Living Nitrogen Fixing Microorganism and Arbuscular Mycorrhizal Fungi[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
    [51]
    DAI Lian, LI Huina, JIANG Zhilin, et al. Invasive effects of Ageratina adenophora (Asteraceae) on the changes of effective functional bacteria, enzyme activity and fertility in rhizosphere soil ecosystem[J]. Ecol Environ Sci, 2012, 21(2):237-242.
    [52]
    YANG Qingpei, WANG Bing, GUO Qirong, et al. Niche characteristics and DCA ordination of main species of Phyllostachys edulis forests in Dagangshan Mountain, Jiangxi Province[J]. Acta Agric Univ Jiangxi, 2012, 34(6):1163-1170.
    [53]
    BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Allelopathic potential of Phyllostachys edulis on two dominant tree species of evergreen broad-leaved forest in its invasive process[J]. Environ Sci, 2013, 34(10):4066-4072.
    [54]
    OUYANG Ming, YANG Qingpei, CHEN Xin, et al. Effects of the expansion of Phyllostachys edulis on species composition, structure and diversity of the secondary evergreen broad-leaved forests[J]. Biodiversity Sci, 2016, 24(6):649-657.
    [55]
    BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve[J]. Biodiversity Sci, 2013, 21(3):288-295.
    [56]
    ZHAO Yuhong. Effect of Phyllostachys edulis Expansion to Evergreen Broadleaf Forests on Significant Ecologic Function[D]. Beijing: Chinese Academy of Forestry, 2015.
    [57]
    TOUYAMA Y, YAMAMOTO T, NAKAGOSHI N. Myrmecofaunal change with bamboo invasion into broadleaf forests[J]. J For Res, 1998, 3(3):155-159.
    [58]
    SHINOHARA Y, OTSUKI K. Comparisons of soil-water content between a Moso bamboo (Phyllostachys pubescens) forest and an evergreen broadleaved forest in western Japan[J]. Plant Species Biol, 2015, 30(2):96-103.
    [59]
    SONG Qingni, YANG Qingpei, WANG Bing, et al. Potential effects of soil moisture variation on soil nitrogen mineralization for Phyllostachys edulis forest and evergreen broadleaved forest in a subtropical region of China[J]. Chin J Ecol, 2013, 32(12):3297-3304.
    [60]
    SONG Qingni, OUYANG Ming, YANG Qingpei, et al. Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China[J]. Plant Soil, 2016, 404(1/2):113-124.
    [61]
    WU Jiasen, JIANG Peikun, WANG Zuliang. The effects of Phyllostachys pubescens expansion on soil fertility in National Nature Reserve of Mount Tianmu[J]. Acta Agric Univ Jiangxi, 30(4): 689-692.
    [62]
    LIU Jun, YANG Qingpei, YU Dingkun, et al. Contribution of fine root to soil nutrient heterogeneity at two sides of the bamboo and broad-leaved forest interface[J]. Chin J Plant Ecol, 2013, 37(8):739-749.
    [63]
    LI Zhenzhen, ZHANG Lin, DENG Bangliang, et al. Effects of moso bamboo (Phyllostachys edulis) invasions on soil nitrogen cycles depend on invasion stage and warming[J]. Environ Sci Pollut Res, 2017, 24(32):24989-24999.
    [64]
    WANG Qizan, XU Qiufang, JIANG Peikun, et al. DGGE analysis of PCR of 16s rDNA V3 fragments of soil bacteria community in soil under natural broadleaf forest invaded by Phyllostachy pubescens in Tianmu Mountain nature reserve[J]. Acta Pedol Sin, 2009, 46(4):662-669.
    [65]
    HE Donghua, SHEN Qiulan, XU Qiufang, et al. Evolvement of structure and abundance of soil nitrogen-fixing bacterial community in Phyllostachys edulis plantations with age of time[J]. Acta Pedol Sin, 2015, 52(4):934-942.
    [66]
    YANG Qingpei, YANG Guangyao, SONG Qingni, et al. Ecological studies on bamboo expansion:process, consequence and mechanism[J]. Chin J Plant Ecol, 2015, 39(1):110-124.
    [67]
    VAISAKH M N, PANDEY A. The invasive weed with healing properties:a review on Chromolaena odorata[J]. Int J Pharm Sci Res, 2012, 3(1):80-83.
    [68]
    MANGLA S, CALLAWAY R M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants[J]. J Ecol, 2008, 96(1):58-67.
    [69]
    XIAO Bo, ZHOU Wen, LIU Wanxue, et al. Feedback of Ageratina adenophora soil microbe on A. adenophora and native plants[J]. J Agric Sci Technol, 2014, 16(4):151-158.
    [70]
    LI Huina, LIU Wanxue, WAN Fanghao, et al. Effect of Ageratina adenophora (Spreng.) and Flaveria bidentis (Linn.) invasionon soil microbial community and Oryza sativa L. growth[J]. Chin J Eco-Agric, 2011, 19(6):1365-1371.
    [71]
    YU Wenqing, WAN Fanghao, HE Xinhua, et al. Soil microbes enhance competition ability of the exotic Ageratina adenophora Sprengel against native plant species[J]. J Biosaf, 2014, 23(3):156-164.
    [72]
    BENNETT J A, CAHILL J F. Fungal effects on plant-plant interactions contribute to grassland plant abundances:evidence from the field[J]. J Ecol, 2016, 104(3):755-764.
    [73]
    REINHART K O, ROYO A A, van der PUTTEN W H, et al. Soil feedback and pathogen activity in Prunus serotina throughout its native range[J]. J Ecol, 2005, 93(5):890-898.
    [74]
    BATTEN K M, SCOW K M, DAVIES K F, et al. Two invasive plants alter soil microbial community composition in serpentine grasslands[J]. Biol Invasions, 2006, 8(2):217-230.
    [75]
    NIU Hongbang, LIU Wanxue, WAN Fanghao, et al. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China:altered soil microbial communities facilitate the invader and inhibit natives[J]. Plant Soil, 2007, 294(1/2):73-85.
    [76]
    CALLAWAY R, NEWINGHAM B, ZABINSKI C A, et al. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours[J]. Ecol Lett, 2010, 4(5):429-433.
    [77]
    KLIRONOMOS J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature, 2002, 417(6884):67-70.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3552) PDF downloads(148) Cited by()

Related
Proportional views

Effects of invasive plants on soil microbial communities: a review

doi: 10.11833/j.issn.2095-0756.2019.05.023

Abstract: Invasive plants cause great harm to the social, economic and ecological environment in the invaded areas by affecting soil microbial biomass, microbial community diversity and functional microbiota. Plant species invasion has become a global problem and one of the hotspots of current research. In this paper, we summarized the effects of plant invasion on soil microorganism, and the biological mechanism of the influence of Moso bamboo (Phyllostachys edulis) invasion on soil microorganism characteristics. Studies showed that invasive plants would increase soil microbial biomass and soil microbial diversity to create favorable soil environment for invasive plant species. Invasive plants would change nutrient cycling and other environmental conditions through changing functional groups of soil microorganisms, and in turn promote the process of plant invasion. Enhanced research on the effects of plant invasion on soil microbes and associated nutrient cycling would help clarify the "plant-soil" feedback mechanism, which could provide a basis for the prevention, control and habitat restoration of plant invasion.

PENG Xinyi, LI Yongchun, WANG Xiuling, LI Yongfu, CHEN Zhihao, XU Qiufang. Effects of invasive plants on soil microbial communities: a review[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
Citation: PENG Xinyi, LI Yongchun, WANG Xiuling, LI Yongfu, CHEN Zhihao, XU Qiufang. Effects of invasive plants on soil microbial communities: a review[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
  • 作为一个生态系统多样性丰富的国家,中国面临着植物入侵概率大,入侵面积广,危害范围大的处境[1-2]。植物入侵对中国的农林业生产,地区经济社会和生态发展均有威胁[3]。事实上,防治外来植物入侵早已成为亟待解决的问题。植物入侵的机制高度复杂[4],成功入侵存在物种特异性[5]。通常认为植物进入新栖息地并成功入侵受到植物预适应机制、植物进化机制、天敌逃避机制、生物抗力机制、化感作用机制等[6-7]控制;被入侵地区的气候、土壤情况、环境扰动、入侵种与土著种之间的相互作用等是影响外来植物入侵成功的客观因素。此外,地上植被碳吸存[8]、土壤微生物群落组成和结构变化、营养物质循环改变等[9-10]也可能参与其中。入侵是这些因素综合作用产生的结果。现阶段的研究尚未能阐明植物入侵过程中入侵种与各种因素,尤其是与土壤的互作关系,这可能是一个以往被忽视但却重要的方面。入侵植物与土壤养分的相互作用是影响入侵种入侵的重要环节。研究发现:入侵植物有时会改变土著植物根表土壤中速效养分[11-12],如随着黄顶菊Flaveria bidentis入侵程度增加,土壤磷质量分数显著降低[13],而盐生草Halogeton glomeratus[14]入侵却显著提高土壤有机质、全氮、速效氮和全磷质量分数。此外,生境、入侵种的生长节律等[15]因素也会影响土壤养分。进一步研究发现:入侵植物改变了被入侵地土壤微生物群落,这种变化也导致土壤养分循环的改变[16-17]。入侵植物通过竞争养分,影响被入侵地土壤的性质及养分含量,特别是通过土壤微生物群落驱动的生物地球化学循环,对土壤养分循环起到正反馈或者负反馈[18-20]。入侵植物这种通过影响地下微生物群落,从而影响生态系统变化的机制[21]在其成功入侵生态系统中起着关键作用[22-23]。反之,入侵地微生物对入侵植物的适应性和竞争力也有影响,甚至参与或介导了植物的入侵过程[24]。于兴军等[25]发现土壤细菌群落特征的变化与当地植物的生长表现出明显的相关性,土壤微生物群落在外来植物与本地植物之间可能起到了“桥梁”作用;一些研究发现[26-30]:植物入侵时,土壤微生物及功能菌群在改变土壤养分循环、影响土壤氮素矿化过程中扮演了重要角色。对入侵植物通过改变并趋向形成有利于自身的土壤养分环境、排斥当地植物并成功入侵的研究已臻成熟;而对入侵植物如何影响其土壤微生物学机制的研究甚少报道。本研究综述了植物入侵影响土壤微生物生物量、群落结构和多样性、功能菌群的研究成果,以毛竹Phyllostachys edulis为例总结了植物入侵并影响土壤微生物的生物学机制,为明晰植物入侵及其与土壤微生物相互作用和反馈机制提供参考。

  • 多数研究表明:植物入侵会增加土壤微生物生物量。SAGGAR等[31]比较了新西兰入侵植物绿毛山柳菊Hieracium pilosella与土著植物土壤中微生物群落的生物量,发现绿毛山柳菊宿地土壤微生物生物量显著增加。李钧敏等[32]对3种薇甘菊Mikania micrantha入侵前后土壤微生物群落的特性比较分析后发现,薇甘菊入侵提高了土壤微生物生物量,改变了土壤化学特性。与未入侵地相比,互花米草Spartina alterniflora的生长会提高土壤微生物生物量,且这种效应随着植被的生长而变化[33];黄顶菊入侵样地中土壤微生物生物量碳质量分数较对照显著提高[34]。植物入侵提高土壤微生物生物量的原因,一方面可能是入侵植物根系分泌出更多有机酸和碳水化合物[35],刺激了土壤微生物的生长和繁殖;另一方面则归因于入侵植物凋落物数量与质量的改变,土壤有机质增加,土壤微生物生物量碳、氮和磷质量分数亦随之提高,最终导致土壤酶活性、微生物功能及营养循环发生改变。

    植物入侵后土壤相关微生物类群的变化,主要表现为占优势的活性微生物相对于休眠的微生物具有更高的微生物量碳氮比(C/N),而C/N的升高会使相应的微生物类群发生改变[11],从而影响土壤微生物群落的多样性与其功能菌群。

  • 植物入侵可能通过多种方式影响入侵地生态系统结构和功能,同时影响土壤微生物群落组成和酶活性[36],进而引起土壤微生物功能和多样性的改变[37-38]。张玉曼[39]发现随着菊科Compositae植物的入侵程度加剧,丛枝菌根的物种丰度和香农-威纳(Shannon-Wiener)指数也显著增加。相比之下,紫茎泽兰Eupatorium adenophora入侵地土壤的细菌多样性变化较小,酸杆菌门Acidobacteria和疣微菌门Verrucomicrobia在本地植物群落、混合群落和紫茎泽兰单优群落中的相对丰度呈现出先增加后减少的趋势[40]。有报道[41]称某些入侵物种可能会通过降低入侵地真菌的丰度,增加土壤中细菌与真菌的比率;也有研究发现:入侵物种增加真菌生物量(PLFA)[42],导致细菌与真菌比率降低。总体而言,外来植物入侵与土壤微生物的多样性之间呈负相关[43]。植物入侵造成的土壤微生物群落结构和多样性的改变,破坏了本地植物与土壤微生物之间经过长期历史形成的平衡共生关系;入侵植物通过增加有利于自身的菌群多样性,为生长创造有利的土壤环境[44]。植物入侵对土壤微生物特定类群多样性和丰度的影响[40, 43],主要体现在土壤中微生物中功能菌群的改变上[45-46];但其中功能菌群是否会对植物形成正反馈或者负反馈效应,以及相关功能菌群在植物入侵方面所发挥的功能还有待研究。

  • 入侵植物能够在不同生境下成功实现入侵,很大程度上归因于相关功能微生物类群的改变,导致入侵地土壤环境的改变。反之,土壤微生物中的功能菌群也可以随着土壤环境的改变,如氮循环、有机物降解等一系列生态过程变化而发生改变。有研究发现:植物入侵可以选择性地抑制优势细菌种类,使氨氧化细菌(AOB)相对丰度增加,从而影响或改变土壤氮循环[47-48]。宋振等[49]发现:随着黄顶菊入侵的加剧,根际土壤中固氮菌、有机磷细菌、无机磷细菌和钾细菌的数量显著增加,根际土壤中功能细菌的群落结构发生改变。任玉晶[50]采用无氮培养基及末端限制性片段长度多态性(terminal-restriction fragment length polymorphism,T-RFLP)技术研究了紫茎泽兰对入侵地土壤中自生固氮菌群落结构的影响,发现紫茎泽兰入侵不仅成倍增加了土壤中自生固氮菌的数量,而且改变了土壤中优势自生固氮菌的种类;通过改变自生固氮菌菌群的数量与种类,紫茎泽兰得到了充裕的氮源实现其迅速扩张生长。

    植物入侵程度的增加,使得根际土壤有机碳与有效氮、磷、钾发生显著变化,土壤微生物功能菌群作用机制也发生改变。随着非本土植物的侵入,某些参与氮循环的微生物类群会改变土壤有效养分含量,如通过硝态氮和铵态氮的增加为植物提供氮源[51]。即入侵植物通过与某些本地物种的相互作用,改变了土壤中微生物功能菌群数量及其多样性,也改变了土壤中各种物理化学性质,客观上创造了适合自身生长的土壤微环境,实现了进一步入侵。

  • 毛竹为禾本科Gramineae竹亚科Bambusoideae刚竹属Phyllostachys植物,主要分布在中国亚热带地区。由于生态位宽、生态位重叠度较大,是竹林中最强的优势种,具有较明显竞争优势[52]。毛竹还具有潜在的化感作用,其叶、根等器官产生的化感物质,可抑制其他树种种子的萌发与幼苗的生长,从而危害周边森林环境[53]。毛竹向天然阔叶林的扩张和入侵,近年来在地处亚热带的多个自然保护区如天目山、武夷山和井冈山等均见报道。如欧阳明等[54]发现:毛竹扩张导致次生常绿阔叶林群落组成和结构简化、物种多样性下降,对森林生态系统功能产生负面影响。白尚斌等[55]发现:毛竹入侵后森林群落的乔木层和灌木层的物种丰富度、辛普森多样性(Simpson)指数和均匀度(Pielou)指数均显著降低,对周围森林群落植物物种多样性产生了不利影响。毛竹入侵导致生物多样性锐减、森林土壤退化[56-57]、土壤水分循环改变[58],已经严重影响了亚热带自然保护区的生态安全,引发了一系列宏观生态问题。因此,开展毛竹入侵天然阔叶林的生态学和林学研究非常有必要。

    毛竹通过改变土壤的氮素矿化和养分循环等影响土壤的养分状态,从而实现入侵。宋庆妮等[59]比较了毛竹林和常绿阔叶林在不同水分条件下土壤氮素的矿化作用后发现,毛竹林土壤氮素矿化受水分变化的影响较小,向邻近的常绿阔叶林扩展时凋落物的产量和质量均下降,土壤氮的矿化速率降低,最终减慢氮循环[60];即相比常绿阔叶林,毛竹林土壤氮素更不易被矿化。毛竹入侵与土壤氮素存在一定相关性。如吴家森等[61]发现:在毛竹入侵地土壤中易分解氮含量增加,但总氮没有变化;刘骏等[62]发现:竹林土壤总氮含量高于相邻常绿阔叶林土壤;LI等[63]发现毛竹入侵阔叶林后,土壤氮转化速率和一氧化二氮(N2O)的排放量均降低,而包含有毛竹的混交林土壤氮转化速率却增加。李永春等[27]发现:毛竹入侵地土壤真菌数量与硝态氮呈显著正相关,推测真菌在阔叶林土壤中介导了异养硝化作用,并有助于毛竹入侵。还有研究发现毛竹入侵阔叶林过程中,土壤丛枝菌根真菌群落结构变化明显,生物量显著增加,土壤有机碳固存也相应增加[28],为毛竹入侵并竞争土壤养分提供了物质基础。

    毛竹入侵能够改变土壤细菌和真菌群落特征,进而改变由土壤微生物驱动的碳、氮等养分循环过程[29]。王奇赞等[64]发现:天目山自然保护区内天然林受到毛竹入侵后,土壤细菌群落结构及多样性总体变化不显著;但LI等[29]发现:随着毛竹入侵,土壤硝态氮生产速率降低,真菌群落多样性和土壤有机碳化学组分均发生改变,且两者呈显著相关。何冬华等[65]研究了由马尾松Pinus massoniana林改造成毛竹林后的土壤,发现固氮菌的多样性随种植年限呈现先明显提高、后逐渐降低、继而稳定的趋势,推测毛竹与其他林分类型的转换改变了氮素矿化过程及其有效性[26],也改变了土壤微生物数量、土壤微生物类群及多样性,那些与碳、氮循环相关的功能菌群的变化,造成了天然阔叶林地养分循环以及其他环境条件的改变。毛竹对资源的获取能力得到提高,进一步将土壤中的物理化学条件转变为有利于自身生长的环境,实现种群扩张[30, 64]。一些固碳自养细菌群落与毛竹入侵阔叶林的联系尤为紧密。研究发现[30]:入侵后形成的毛竹纯林土壤微生物固碳潜力较常绿阔叶林显著增加。

    毛竹的这种扩张现象可以用“内禀优势—资源机遇—干扰促进”的生物入侵假说来解释[66]。毛竹扩张或入侵,土壤中的微生物群落则通过改变养分循环对入侵或扩张产生反馈。总体而言,毛竹入侵不仅仅影响了土壤养分循环,也造成了土壤中细菌与真菌的群落结构差异较大[27];但土壤微生物对养分循环及土壤碳氮矿化的作用,及其对入侵的反馈和驱动机制亟待深入研究。

  • 外来植物入侵改变了土壤肥力、微生物群落及其动态结构,而土壤微生物数量与多样性的改变又会反馈到土壤环境的变化,增强外来种的扩张优势。研究发现[45-46]:加拿大一枝黄花Solidago canadensis会对根区土壤中病原菌产生抑制作用,原因是根系分泌的次生代谢产物通过化感作用,形成了入侵植物与土壤微生物互作的正反馈调节。而飞机草Eupatorium adenophorum则会富集入侵地土壤中的半裸镰刀菌Fusarium semitectum并抑制当地植物的生长,通过对本地植物进行负反馈调节,促进并巩固自身的入侵[67-68]。比较土壤微生物对紫茎泽兰和林泽兰Eupatorium lindleyanum,狗尾草Setaria viridis的生长反馈效应,肖博等[69]发现:根际土壤微生物对3种植物的生长均产生正反馈作用。收集黄顶菊和紫茎泽兰根际土壤并栽植本地植物旱稻Oryza sativa,结果发现:灭菌后土壤栽植比灭菌前土壤,更有效地促进了旱稻株高增长[70]。可见入侵植物对本地植物产生了负反馈作用。于文清等[71]研究发现,紫茎泽兰根围土壤可分离到包括丛枝菌根真菌在内的多种土壤微生物,后者可增强入侵杂草对本地植物种的竞争力。真菌可以通过影响植物—植物相互作用的方式来决定植物的群落组成[72]和相对丰度[73]

    植物入侵通过改变土壤微生物群落结构和功能影响本地植物的适合度和生态系统功能[74],改变后的土壤微生物群落通过调节反馈作用促进外来植物的入侵[75]。入侵种通过植物—土壤反馈作用,产生更有利于自身生长的正反馈,降低本地植物的多样性[76-77],形成利于其自身生长扩散的微生态环境,进一步促进了竞争性扩张。但是,土壤微生物是通过何种机制产生相应的反馈作用来影响入侵植物及当地植物的生长过程,以及哪些因素会影响反馈作用,这些问题待深入研究。

  • 土壤微生物在植物入侵过程中深刻影响着土壤环境和理化性质等[11-15]。在植物入侵过程中,受到植物根系分泌物以及凋落物等的影响[35],土壤微生物改变自身的群体数量和组分结构,从而改变相关微生物多样性[39-44]和功能菌群的作用[47-51]。土壤微生物的改变同样也反作用于环境[75],通过改变水、气、热等物理特性和土壤的理化性质,更适合入侵植物的生长和扩张。整体看来还存在以下问题:①当前研究多为野外观测实验,控制实验研究较少。今后可以通过去除或交换入侵生境地表凋落物等开展野外控制实验,以及对全球变化的响应与适应等控制实验,深入探讨植物入侵及其响应环境变化的机理。②当前研究多数针对植物入侵过程中土壤微生物的变化进行,入侵地土壤微生物改变后是否反馈植物入侵,通过何种方式进行反馈及其作用机理还有待深入研究。③土壤生物与生态系统过程之间有着密切的联系,今后的研究应该注重对入侵植物、土壤生物和土壤生态系统过程三者之间的相互关系,即在入侵过程中的三者的变化及其相互作用的全面分析研究。

Reference (77)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return