-
近年来,由于经济的快速发展,城市人口在不断地增长趋于饱和,乡村振兴战略的实施使得一部分城市人口往乡村转移,为乡村居民创建更好的人居环境是目前的一个趋势。地表温度(LST)是显示人居环境舒适度的一个重要指标,而利用遥感手段可以经济地、宏观地获取地表温度。城镇化也给村镇居住环境带来破坏,人口数量的增加,城镇覆盖面积的扩大,下垫面的破坏,使得热岛效应问题也日益严重[1-2]。LAI等[3]从昼夜温差出发探究了热岛效应,而HU等[4]通过大气剖面分析城市热岛效应问题。研究表明,下垫面上所分布的水体、植被以及建筑都对热岛效应问题有一定的影响[5-8]。目前遥感技术在热岛效应问题方面的应用很多,遥感指数由于计算量小等特点被广泛应用[9-10]。利用归一化植被指数(NDVI)、归一化建筑指数(NDBI)、不透水面信息指数(NDISI)、归一化水汽指数(NDMI)和改进型归一化差异水体指数(MNDWI)能获得大量地表信息,为分析村镇热环境的主要影响因子奠定基础[11-18]。但目前热岛效应仍存在很多问题,村镇领域的热环境研究未受到重视,遥感技术主要应用于大型城市中心或居住小区,在村镇级别上尚未开展。本研究基于单通道算法[19]对浙江平原型、山地型、滨水型等3种类型村镇进行地表温度反演的基础上,以杭州市为研究对象,分别提取各村镇相应的5类遥感指数(NDVI、NDBI、NDISI、NDMI和MNDWI),分析不同类型村镇地表温度与遥感指数的相关性,为进一步研究浙江村镇宜居热环境提供技术支撑。
HTML
-
本研究对已校正的空间分辨率为30 m的Landsat 8遥感影像进行目视判读,分别在夏、冬季节遥感影像上矩形裁剪出27个村镇。由于TIRS11热红外波段定标参数不理想,已提出的劈窗算法误差较大,选用了单通道算法单独利用TIRS10波段来反演地表温度,该算法能够减小反演后的地表温度误差[21]。
该过程主要包含3步:首先利用RIS10和RIS11叠加影像文件对选取的村镇进行裁剪,并计算光谱辐射值和亮温。然后波段叠加MODIS数据的2波段和19波段,并计算大气含水率参数。在重采样之后计算大气水汽含量的参数,最后利用JIMENEZ-MUNOZ等[22]的算法反演地表温度。
金点点等[23]将多种算法反演的地表温度与实际温度进行比较,发现基于Landsat的单通道算法具有较高的精度,且该方法也在各种应用中得到验证。由表1可见:冬季和夏季影像反演的地表温度标准差分别为0.651 和1.400 ℃,表明反演的地表温度具有较高的稳定性,该计算方法可靠性高。
季节 最低温度/℃ 最高温度/℃ 平均温度/℃ 标准差/℃ 冬 13.116 17.141 15.100 0.651 夏 35.502 43.153 38.369 1.400 Table 1. Surface temperature statistics in different seasons
-
根据植被的光谱特性,将卫星可见光和近红外波段进行组合,形成各种植被指数。NDVI是植被生长状态及植被覆盖度的最佳指示因子,一般来说,如果NDVI大于0,那么就具有植被,如果NDVI大于0.5,则具有较高的植被覆盖度。其计算公式如下:
式(1)中:INDV为归一化植被指数;ρNIR与ρR分别为近红外波段与红光波段的反射率。
-
NDBI是由查勇等[13]提出的归一化建筑指数,它能有效地提取城镇用地信息,获得城镇用地分布范围和面积资料。与传统的计算机分类和手工屏幕数字化方法相比,同时具备工作量小和精度高的特点。其计算公式如下:
式(2)中:INBV为归一化建筑指数;ρMIR与ρNIR分别为中红外波段与近红外波段的反射率。
-
MNDWI是基于MEFEETERS[14]提出的归一化差异水体指数(NDWI)修改波长组合所得到的改进型归一化差异水体指数,在提取城镇范围内水体有很好的效果。其计算公式如下:
式(3)中:IMNDW为归一化差异水体指数;ρGreen与ρMIR分别为绿光波段和中红外波段的反射率。
-
NDMI也称归一化差异湿度指数,该指数便于研究地表湿度,为地表湿度与村镇温度的关系研究提供依据。其计算公式如下:
式(4)中:INDM为归一化水汽指数;ρMIR与ρNIR分别为中红外波段与近红外波段的反射率。
-
NDISI的基本原理是在研究不透水面的电磁波谱特征的基础上,寻找不透水面最强和最弱的反射波段,然后利用强反射率热红外波段与弱反射率近红外波段建立指数,达到增强不透水面信息的目的,可以显著区分土壤与不透水面。其计算公式如下:
式(5)中:INDIS为不透水面信息指数;ρTIR、ρNIR、ρMIR和ρR分别为TIR10波段、近红外波段、中红外波段以及红光波段的反射率。
2.1. 村镇地表温度的获取方法
2.2. 村镇地表遥感指数的获取方法
2.2.1. 归一化植被指数 (NDVI)
2.2.2. 归一化建筑指数 (NDBI)
2.2.3. 改进型归一化差异水体指数 (MNDWI)
2.2.4. 归一化水汽指数 (NDMI)
2.2.5. 不透水面信息指数 (NDISI)
-
如图1所示:村镇的地表温度(y)与NDVI(x)具有较好的拟合优度,属于显著的线性负相关关系(P<0.05)。NDVI每增加0.1,地表温度就下降1.421 ℃,这与南阳市农村居民用地NDVI与地表温度[24]的研究结果相一致。可见,增加绿化对优化村镇热环境起到较为显著的作用。
-
图2显示:村镇地表温度(y)和NDBI(x)具有较好的拟合优度,村镇地表温度与NDBI呈显著正相关关系(P<0.05),NDBI每上升0.1,地表温度就上升1.302 ℃。地表温度一定程度上受建筑密度影响,建筑密度越大的地方,地表温度更容易保持高温。建筑主要由钢筋、混凝土等材料建成,密度越高,温度越容易上升,如果建筑的间距过小,那么地表的散热将更加缓慢,温度将保持在高位。建筑密度高让冬季更容易保温,却让夏季不容易降温,保持合理的间距能让人居环境更加舒适。
-
MNDWI与地表温度相关性拟合优度较差,27个村镇的MNDWI与地表温度的负相关性不显著。村镇范围的研究与市域研究的结果不一致[25],村镇内部不包含或较少包含水体,MNDWI主要分布在[−0.2,0],MNDWI在此研究区域内无法与地表温度进行较好拟合(图3)。因此,覆盖面积足够大的水域才能显著降温。现在城镇中的水体都普遍较少,本身河流湖泊的数量就不是很多,再加上城市建设填埋大量的河流湖泊,缩短河流的宽度,数据展示的正是乡村城市化所处的状态。水体的存在虽然无法让整个村镇降温,但能在小范围内发挥一定作用。
-
由图4可见:地表温度(y)与NDMI(x)具有较好的拟合优度。NDMI对以水泥、柏油为主的城乡居民建设用地具有显著的降温作用,高NDMI使得整片的建设用地地表温度下降,NDMI每上升0.1,地表温度就下降0.891 ℃。NDMI与地表温度呈显著负相关关系,且这种相关性强于NDVI与地表温度的相关性。夏季炎热,村镇内地表干燥,如果能够改善地表湿度,就能够显著降温。
从反演结果得出湿度是影响地表温度的主要因子,水分的蒸发可以使地面快速降温。但地面的蒸发速度比较快,想要在降雨之后地面的湿度维持在一个水平难度很大度。降温快,蒸发也快,水分蒸发之后地表依靠湿度的降温手段就十分有限了。目前从几个方面提供建议:①通过洒水车给地面降温,但这种方法还需要考虑村镇的经济条件。②栽植植物固定土壤中的水分,保持地面湿度。③引入大量的暗渠,保持地面或地下水分,从而保持地面的湿度。
-
如图5所示:地表温度(y)与NDISI(x)的拟合效果较差。NDISI的分布较为狭窄,近似矩形,主要集中在[0.35, 0.50],说明地表温度与NDISI的相关性不显著。村镇与市域的研究范围不同,不透水面的影响效果也有一定区别[26-27]。因此,村镇的不透水面对地表温度的影响作用较小,不作为主要的降温手段。
-
针对不同类型的村镇,随机选取了100个样本点,并按上述方法分别提取其地表温度与遥感指数,得到村镇遥感指数与地表温度的皮尔逊相关系数矩阵(表2)。
村镇类型 INDV INDM INDIS INDB IMNDW 滨水 −0.448** −0.478** −0.156 0.496** −0.176 山地 −0.325** −0.375** 0.053 0.414** −0.063 平原 −0.438** −0.536** −0.053 0.474** −0.122 说明:**表示P<0.01(双尾检验) Table 2. Pearson coefficient matrix of surface temperature and remote sensing index
从表2可见:NDISI在滨水、山地、平原3种地形下的相关系数分别为−0.156、0.053和−0.053,其双尾检验均不显著;MNDWI在滨水、山地、平原3种地形下的相关系数分别为−0.176、−0.063和−0.122,其检验也均不显著。因此,NDISI和MNDWI对地表温度的影响较小。这与上述讨论单地表遥感指数与地表温度的相关性相吻合,NDISI和MNDWI在村镇区域内对地表温度的影响较为微弱。
将NDVI、NDMI和NDBI与滨水、山地和平原地形的相关系数取绝对值。NDVI与滨水、山地和平原的相关系数分别为0.448、0.325和0.438,低于NDMI和NDBI与滨水、山地和平原的相关系数,这也与单地表遥感指数NDVI与地表温度的相关性相吻合。村镇中植被覆盖度高的地方,地表温度相对较低,植被通过蒸腾作用等手段降低地表温度,尤其对降低夏季地表温度具有较强的效果。但是植被对地表的降温需要以自身为媒介,这种降温具有间接性。因此,相对于地面本身的属性,如湿度、建筑密度等,植被对地表降温的能力相对较弱。
单独比较NDMI与NDBI,发现两者都是影响地表温度的重要指标。若要有效地控制地表温度,改变地表湿度和建筑密度是最直接有效的手段。另外,在滨水与山地的状态下,NDMI对地表温度的影响较大,而在平原状态下,NDBI对地表温度的作用明显较强。这种情况需要更多的实验进行相关分析。
从表2还可以发现:山地地形下NDVI、NDMI和NDBI的绝对值分别为0.325、0.375和0.414,均低于平原和滨水的指数。这说明了滨水与平原的地域受到城市化的影响,地表特征开始变得单一,而山地区域的地面情况明显受到更多因素的影响,地表特征更加多样化。
对于村镇建设,为了提升高温下的宜居热环境,首先应该考虑下垫面的湿度、建筑用材以及建筑密度。下垫面湿度的提升能起到一定的降温作用,缓解热岛效应问题;合理的建筑密度则能保持生活空间的合理大小,还有利于通风散热。其次可以在建筑周围种植植物,植物不仅能使建筑降温,还能促进生态环境的循环。虽然村镇中植被覆盖度普遍较低,但有限的植被仍然能够起到显著的降温作用。
-
利用夏、冬季影像对研究区域的夏、冬季地表温度进行了反演,并得到图6。图像的东北部主要是杭州城市中心,西南部是杭州城西的山区丘陵地带。从图6可以看出:夏季城市地表温度高的地方主要集中在东北部,处于杭州市的中心,该区域城市热岛效应严重。到了冬季,城市地表温度高的地方由东北方向移动到西南方向,而城市中心却是温度较低的区域。
杭州市中心城市热岛效应严重,冬季地表温度较低,居住环境较差。杭州西南部傍山、靠水,冬暖夏凉,是适宜人居的区域。因此,未来杭州市的住宅用地可以往西南方向拓展和开发。
从图7可知:夏季影像的拟合度(图1)优于冬季,夏季影像NDVI与地表温度的线性相关性比冬季更加显著。NDVI主要受绿色植物叶片的影响,当冬季许多植物的叶片掉落后,NDVI的效果将会降低。冬季的地表温度较低,不同地方的地表温度变化较小,几个地表遥感指数在冬季的使用效果均较差。因此,在进行遥感分析时,选取相应季节的影像是需要考虑的一项重要举措。