Volume 38 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

LI Yalin, LI Suyan, SUN Xiangyang, HAO Dan, CAI Linlin, CHANG Xiaotong. Screening and identification of a lignin degrading strain and its optimized liquid fermentation conditions[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814
Citation: LI Yalin, LI Suyan, SUN Xiangyang, HAO Dan, CAI Linlin, CHANG Xiaotong. Screening and identification of a lignin degrading strain and its optimized liquid fermentation conditions[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814

Screening and identification of a lignin degrading strain and its optimized liquid fermentation conditions

doi: 10.11833/j.issn.2095-0756.20200814
  • Received Date: 2021-01-07
  • Rev Recd Date: 2021-07-09
  • Available Online: 2021-12-08
  • Publish Date: 2021-12-08
  •   Objective  The purpose is to produce a high efficient liquid inoculum with lignin-degrading bacteria as raw materials for garden waste.  Method  The target strains were screened from 22 isolated and purified strains by the aniline blue plate fading circle method and the guaiacol plate fading circle method, and were identified by Internal Transcribed Spacer (ITS) sequencing, and then the single factor test was used to optimize the culture time, inoculum amount and medium formula (carbon and nitrogen source) of the target strains. Finally, according to the results of single factor test, the optimal fermentation conditions of the target strains were found by uniform experiment combined with artificial neural network algorithm.   Result  According to the results of plate fading and color development, strain Q01 was selected as the target strain and was identified as Trametes. According to the results of single factor test and uniform test, the optimal fermentation conditions for strain Q01 were determined as the culture time of 5 days, inoculation amount 12.5%. The medium formula was composed of sodium lignosulfonate 14.00 g·L−1, peptone 12.30 g·L−1, yeast powder 5.00 g·L−1, soybean cake powder 3.00 g·L−1, copper sulfate pentahydrate 0.12 g·L−1, sodium chloride 0.53 g·L−1, and natural pH. Under the optimized conditions, the biomass, manganese peroxidase activity and lignin peroxidase activity of strain Q01 increased by 1.27 times, 31.71 times and 19.12 times respectively. Laccase activity decreased slightly, but the total enzyme activities of three kinds of lignin enzymes increased by 4.38 times.   Conclusion  The liquid inoculum prepared by strain Q01 under optimized fermentation conditions has the characteristics of high enzyme activity and high biomass, which has certain application potential in degrading lignin in garden waste. [Ch, 6 fig. 3 tab. 29 ref.]
  • [1] HUANG Qingchen, LAI Jianxin, HUANG Lichao, LU Mengzhu.  Effects of peroxidase gene PagPRX19 on salt tolerance of poplar ‘84K’ . Journal of Zhejiang A&F University, 2022, 39(6): 1163-1172. doi: 10.11833/j.issn.2095-0756.20220387
    [2] LI Yalin, LI Suyan, SUN Xiangyang, HAO Dan, CAI Linlin, CHANG Xiaotong.  Preparation of two strains of lignin-degrading bacteria solid inoculum . Journal of Zhejiang A&F University, 2022, 39(2): 364-371. doi: 10.11833/j.issn.2095-0756.20210311
    [3] MENG Tongyao, LI Suyan, ZOU Rongsong, YU Kefei, FU Bingyan, JIE Yang.  Effect of immobilized lignin-degrading bacteria on green waste composting . Journal of Zhejiang A&F University, 2021, 38(1): 38-46. doi: 10.11833/j.issn.2095-0756.20200219
    [4] LI Chao, PEI Shunxiang, ZHANG Lianjin, GUO Jia, XIN Xuebing.  Applicability evaluation of competition indexes for Pinus tabuliformis plantations in Beijing . Journal of Zhejiang A&F University, 2019, 36(6): 1115-1124. doi: 10.11833/j.issn.2095-0756.2019.06.008
    [5] DING Tingting, LI Qian, JIN Zhenfu.  Effects of lignin and brominated lignin on the thermal properties of epoxy resin . Journal of Zhejiang A&F University, 2018, 35(3): 562-566. doi: 10.11833/j.issn.2095-0756.2018.03.023
    [6] AN Lanzhi, LU Xiang, LIU Zuguang.  Aggregation behavior of lignin-amine in a dilute hydrochloric acid aqueous solution . Journal of Zhejiang A&F University, 2017, 34(1): 7-13. doi: 10.11833/j.issn.2095-0756.2017.01.002
    [7] LI Li, SONG Shuaijie, FANG Xiaomei, YANG Lizhi, SHAO Shanlu, YING Yeqing.  Protection enzymes and lipid peroxidation in Phyllostachys edulis seedlings with temperature and water stresses . Journal of Zhejiang A&F University, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [8] CHEN Hu, JIA Jie, LUO Qunfeng, WU Dongshan, YANG Zhangqi.  Cloning and expression analysis of the PmGPX gene encoding glutathione peroxidase in Pinus massoniana . Journal of Zhejiang A&F University, 2017, 34(5): 856-863. doi: 10.11833/j.issn.2095-0756.2017.05.012
    [9] CHEN Mengyang, YAO Zexiu, LI Yongchun, WU Hantao, XU Qiufang, WEI Jian, QIN Hua.  Decolorizing synthetic dyes with fungi screened from a Phyllostachys violascens stand . Journal of Zhejiang A&F University, 2016, 33(3): 418-426. doi: 10.11833/j.issn.2095-0756.2016.03.007
    [10] JIANG Yujian, LI Xinxin, SUN Feifei, YU Xuejun.  Screening of a cellulose-decomposing strain from bamboo stand soils and optimization of its cellulase production . Journal of Zhejiang A&F University, 2015, 32(6): 821-828. doi: 10.11833/j.issn.2095-0756.2015.06.001
    [11] HE Kai, CHEN Ke-ke, GUO Ming.  Preparation,characterization,and properties of lignin based,rigid polyurethane foam materials . Journal of Zhejiang A&F University, 2012, 29(2): 203-209. doi: 10.11833/j.issn.2095-0756.2012.02.009
    [12] WU Jian-hua, ZHANG Ru-min, GAO Yan.  Membrane lipid peroxidation and protective enzyme systems with drought stressed Artemisia frigida leaves . Journal of Zhejiang A&F University, 2010, 27(3): 329-333. doi: 10.11833/j.issn.2095-0756.2010.03.002
    [13] ZHANG Hai-ping, FANG Wei-min, CHEN Fa-di, DING Yue-sheng, YANG Xue-meng.  Isozyme analysis for different organs and growth stages of water lily . Journal of Zhejiang A&F University, 2010, 27(2): 246-250. doi: 10.11833/j.issn.2095-0756.2010.02.014
    [14] MA Jin, BAO Qin-xing, TANG Geng-guo, ZHENG Gang.  Selecting salt?鄄tolerant mutants from somatic plant cells . Journal of Zhejiang A&F University, 2009, 26(2): 273-278.
    [15] ZHOU Guo-ying, LI He.  Molecular identification of the strain ZNLD-18 selectively decomposing bamboo lignin . Journal of Zhejiang A&F University, 2008, 25(4): 497-501.
    [16] SHI Chun-hua.  Filter experiment on weeding activity with eleven glyphosate adjuvants . Journal of Zhejiang A&F University, 2007, 24(1): 86-90.
    [17] ZHOU Yuan, YAO Chong-huai, WANG Cai-yun.  Study on selecting cut-flower cultivars of Osmanthus fragrans . Journal of Zhejiang A&F University, 2006, 23(6): 660-663.
    [18] YANG Xiu-yan, JI Kong-shu, WANG Zhang-rong, LAI Huan-lin.  Activity variation of superoxide dismutase and perosidase in hybrid tulip tree seedlings . Journal of Zhejiang A&F University, 2005, 22(4): 385-389.
    [19] Sun Hongyou, Yuan Wenhai, Ren Xiaorong, Xu Weinan, .  Primary Sutdies on Variations of Peroxidase-isoenzymes of Chinese Mahogany . Journal of Zhejiang A&F University, 1993, 10(2): 145-151.
    [20] Sun Hongyou, Yuan Wenhai, Jin Aiwu, Ren Xiaorong.  Study on Peroxidase Isoenzymes of Chinese Sassafras . Journal of Zhejiang A&F University, 1993, 10(1): 93-96.
  • [1]
    WANG Lin, LI Suyan, SUN Xiangyang, et al. Mixing garden wastes and spent mushroom compost of different ratios for vermicomposting [J]. J Zhejiang A&F Univ, 2019, 36(2): 326 − 334.
    [2]
    CAI Linlin, LI Suyan, GONG Xiaoqiang, et al. Composting-vermicomposting of green waste processing spiked with cow dung [J]. J Zhejiang A&F Univ, 2018, 35(2): 261 − 267.
    [3]
    HIMMEL M E, DING Shiyou, JOHNSON D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production [J]. Science, 2007, 315(5813): 804 − 807.
    [4]
    KAMIMURA N, SAKAMOTO S, MITSUDA N, et al. Advances in microbial lignin degradation and its applications [J]. Curr Opin Biotechnol, 2019, 56: 179 − 186.
    [5]
    LIU Yu, ZHAO Jiaying, ZHOU Wanlai, et al. Progress on resource utilization of urban garden waste [J]. Environ Sci Technol, 2020, 43(4): 32 − 38.
    [6]
    MENG Tongyao, LI Suyan, ZOU Rongsong, et al. Effect of immobilized lignin-degrading bacteria on green waste composting [J]. J Zhejiang A&F Univ, 2021, 38(1): 38 − 46.
    [7]
    LIANG Congying, LIN Lu. Environmental microorganisms driven lignin biodegradation and their roles in lignin utilization [J]. Microbiol China, 2020, 47(10): 3380 − 3392.
    [8]
    KANG Yue, LI Suyan, SUN Xiangyang, et al. Study on screening, identification and capability of lignin-degrading fungi for landscaping waste [J]. For Res, 2019, 32(3): 80 − 87.
    [9]
    ZHAO Kaining, ZHAO Guozhu, GUO Hui, et al. The function and role of microbial agents in composting technology of garden waste [J]. Biotechnol Bull, 2016, 32(1): 41 − 48.
    [10]
    LI Xinjun, FENG Xiaoxiao, JIN Huiqing, et al. Optimization of solid-state fermentation media for growth of two endophytic fungal strains [J]. Microbiol China, 2016, 43(3): 550 − 558.
    [11]
    WANG Dunfei, ZHU Shengnan, XIAO Qingtie, et al. Optimization of culture conditions of Cd-tolerant strain Pseudomonas TCd-1 based on response surface methodology [J]. J Zhejiang A&F Univ, 2020, 37(5): 914 − 921.
    [12]
    WANG Weile, MU Zhimei, ZHANG Shujun, et al. Optimization of fermentation conditions of Paraconiothyrium variabile GHJ-4 for laccase production by response surface methodology [J]. Chin J Appl Environ Biol, 2011, 17(3): 321 − 325.
    [13]
    HU Xinying, LI Hongjun, LI Shaobo, et al. A comparative study of the optimization of processing technology of conditioning pine board meat by response surface methodology and BP neural network-particle swarm optimization [J]. Food Ferment Ind, 2019, 45(24): 179 − 187.
    [15]
    LIU Yu, TANG Bin, LI Song, et al. Optimization of fermentation medium for laccase production by Trametes sp. LS-10C and its properties in the decolorization of azo dyes [J]. Acta Sci Circumstantiae, 2017, 37(1): 193 − 200.
    [16]
    FENG Bo, LIN Yuanshan, HU Chao, et al. Screening and Identification of a lignin degrading strain and optimization of fermentation conditions for laccase [J]. J Nat Sci Hunan Norm Univ, 2015, 38(2): 12 − 16, 73.
    [17]
    LI Xueling, YAO Yijian. Assembling phylogenetic tree of Pleurotus based on 28S rDNA sequencing [J]. Mycosystema, 2004, 23(3): 345 − 350.
    [18]
    TIAN Linshuang. Research on standard method for determining ligninolytic enzyme activity [J]. Anim Husbandry Feed Sci, 2009, 30(10): 13 − 14.
    [19]
    MIAO Xiaolei. Mutation Breeding of Trametes sp. from Bamboo Forest and Optimization of Enzyme Production Conditions [D]. Hangzhou: Zhejiang A&F University, 2019.
    [20]
    SUN Yong, YANG Gang, XU Mengxia, et al. A simple coupled ANNs-RSM approach in modeling product distribution of Fischer-Tropsch synthesis using a microchannel reactor with Ru-promoted Co/Al2O3 catalyst [J]. Int J Energy Res, 2020, 44(2): 1046 − 1061.
    [21]
    FLORENCIO F, VALENÇA T, MORENO E D, et al. Performance analysis of deep learning libraries: TensorFlow and PyTorch [J]. J Comp Sci, 2019, 15(6): 785 − 799.
    [22]
    LIU Yuliang, JIN Lianwen. Deep matching prior network: toward tighter multi-oriented text detection[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1962 − 1969.
    [23]
    AN Yang, WANG Xiaocen, CHU Ronghe, et al. Event classification for natural gas pipeline safety monitoring based on long short-term memory network and Adam algorithm [J]. Struct Health Monit, 2020, 19(4): 1151 − 1159.
    [24]
    DENG Shigui, YANG Chenjun, FENG Jiazhou, et al. Screening and intification of a lignin-degrading wite rot fungi and optimization of its laccase-producing medium [J]. Food Res Dev, 2019, 40(16): 178 − 184.
    [25]
    TANG Ju, DUAN Chuanren, HUANG Youying, et al. Characteristics of ligninolytic enzymes of white-rot fungus and their interactions in the process of lignin degradation [J]. Biotechnol Bull, 2011(10): 32 − 36.
    [26]
    XI Xingmei. Research of Lignocelluses Biodegradation by Different Microorganisms in Agriculture and Forestry Waste Composting [D]. Changsha: Hunan University, 2007.
    [27]
    YANG Liu, LÜ Dandan, DENG Jieyong, et al. Nutritional conditions for laccase production by Trametes hirsuta D2 in solid-state fermentation using hickory hull [J]. Microbiol China, 2014, 41(10): 1955 − 1960.
    [28]
    XIONG Yi. Screening and Identification of Lignocellulose Degrading Bacteria and Degradation Products Research [D]. Taigu: Shanxi Agricultural University, 2019.
    [29]
    PENG Zhini, GUO Liqiong, ZHANG Xinchao, et al. Compositions and antioxidant activities of soybean substrate during solid-state fermentation by Cordyceps militaris [J]. Mycosystema, 2011, 30(2): 338 − 342.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article views(1047) PDF downloads(81) Cited by()

Related
Proportional views

Screening and identification of a lignin degrading strain and its optimized liquid fermentation conditions

doi: 10.11833/j.issn.2095-0756.20200814

Abstract:   Objective  The purpose is to produce a high efficient liquid inoculum with lignin-degrading bacteria as raw materials for garden waste.  Method  The target strains were screened from 22 isolated and purified strains by the aniline blue plate fading circle method and the guaiacol plate fading circle method, and were identified by Internal Transcribed Spacer (ITS) sequencing, and then the single factor test was used to optimize the culture time, inoculum amount and medium formula (carbon and nitrogen source) of the target strains. Finally, according to the results of single factor test, the optimal fermentation conditions of the target strains were found by uniform experiment combined with artificial neural network algorithm.   Result  According to the results of plate fading and color development, strain Q01 was selected as the target strain and was identified as Trametes. According to the results of single factor test and uniform test, the optimal fermentation conditions for strain Q01 were determined as the culture time of 5 days, inoculation amount 12.5%. The medium formula was composed of sodium lignosulfonate 14.00 g·L−1, peptone 12.30 g·L−1, yeast powder 5.00 g·L−1, soybean cake powder 3.00 g·L−1, copper sulfate pentahydrate 0.12 g·L−1, sodium chloride 0.53 g·L−1, and natural pH. Under the optimized conditions, the biomass, manganese peroxidase activity and lignin peroxidase activity of strain Q01 increased by 1.27 times, 31.71 times and 19.12 times respectively. Laccase activity decreased slightly, but the total enzyme activities of three kinds of lignin enzymes increased by 4.38 times.   Conclusion  The liquid inoculum prepared by strain Q01 under optimized fermentation conditions has the characteristics of high enzyme activity and high biomass, which has certain application potential in degrading lignin in garden waste. [Ch, 6 fig. 3 tab. 29 ref.]

LI Yalin, LI Suyan, SUN Xiangyang, HAO Dan, CAI Linlin, CHANG Xiaotong. Screening and identification of a lignin degrading strain and its optimized liquid fermentation conditions[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814
Citation: LI Yalin, LI Suyan, SUN Xiangyang, HAO Dan, CAI Linlin, CHANG Xiaotong. Screening and identification of a lignin degrading strain and its optimized liquid fermentation conditions[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814
  • 园林绿化废弃物包括树木、花草等植物在生长过程中的自然凋落物或者人为修剪的植物残体[1],主要成分有木质素、纤维素和多糖等[2]。其中,木质素由于组分种类多样,结构复杂且无规则,降解比较困难[3-5]。堆肥是一种较好的降解园林绿化废弃物的方式[6],堆肥过程中多个微生物群体共同作用,分泌木质素降解相关酶系而使园林绿化废弃物中的木质素降解[7]。因此,通过研制微生物菌剂,使分泌木质素降解酶酶系的菌株迅速构建优势群落,能有针对性地加快园林绿化废弃物中木质素的降解,提高堆肥效率和质量[8-9]。但是,新菌剂的制备需要在选定目标菌株的条件下,对菌剂制作涉及的培养基配方和发酵条件进行优化。优化过程主要包括试验设计、数学建模和优化设计3个部分[10]。合理的试验设计能用较少的试验数据进行建模,从而获取各因素范围内的最优解。用于发酵条件优化的方法多为响应面法[11-12],但胡欣颖等[13]研究发现:人工神经网络算法比响应面法在预测实验结果方面更准确,误差更小。目前,运用人工神经网络算法对木质素降解菌发酵条件进行优化的研究鲜有报道。因此,本研究拟从北京市植物园的腐叶土和朽木中筛选木质素降解菌,对其进行鉴定,并通过单因素试验对菌株的培养时间、接种量和培养基配方(碳源和氮源)进行优化;采用均匀试验结合Python实现人工神经网络建模与优化,寻找菌株最佳发酵条件,为园林绿化废弃物中木质素的降解提供高效菌剂。

  • 腐叶土和朽木采集于北京市植物园。PDA培养基:称取200.00 g土豆,去皮去芽切成小块后加蒸馏水微沸30 min,保留滤液并用蒸馏水补足1 L,制成马铃薯浸汁;葡萄糖 20.00 g,蛋白胨15.00 g,琼脂 20.00 g,pH自然[14]。PDA-苯胺蓝培养基:称取0.10 g苯胺蓝溶于1 L PDA培养基中,pH自然。PDA-愈创木酚培养基:量取0.1 mL愈创木酚溶于1 L PDA培养基中,pH自然。PDB液体培养基:马铃薯浸汁(同PDA培养基),葡萄糖 20.00 g,蛋白胨15.00 g,pH自然。基本发酵培养基:葡萄糖10.00 g·L−1、蛋白胨5.00 g·L−1,酵母粉3.00 g·L−1、酒石酸铵10.00 g·L−1、五水合硫酸铜0.25 g·L−1、氯化钠1.00 g·L−1、pH自然[15]。所有培养基均121 ℃高压蒸汽灭菌 20 min。

  • 将采集的样品捣碎[16],称取10.00 g加入装有90 mL无菌水的三角瓶中,在28 ℃、200 r·min−1下震荡摇匀后静置1 h。取上清液1.0 mL稀释成不同质量浓度梯度(10−3~10−7 g·L−1)的溶液,取不同质量浓度稀释液0.1 mL,加入PDA培养基中涂布均匀,28 ℃下培养5~7 d,观察菌落形态,用平板划线分离法纯化菌株。将得到的纯菌株以点接法接到PDA-苯胺蓝平板和PDA-愈创木酚平板中,用苯胺蓝平板褪色圈法和愈创木酚平板变色圈法确定该菌株是否具有降解木质素的能力。

  • 观察PDA-苯胺蓝平板上菌体形态特征,并挑取少量菌丝于显微镜下拍照记录。菌株送往北京睿博兴科生物技术有限公司进行内转录间隔区(ITS)测序,测序结果与Genebank数据库中已知的真菌序列BLAST检索对比,采用 Mega 5.0 软件与相近种菌株构建系统发育树[17]

  • 将菌株接种至装有100.0 mL PDB液体培养基的三角瓶中,在IS-RDD3台式恒温振荡器中以30 ℃、200 r·min−1培养3 d,制得种子液。

  • 木质素过氧化物酶、锰过氧化物酶和漆酶活性的测定参照田林双[18]的方法。3种木质素降解相关酶酶活性总和标记为总酶活。生物量的测定用称干质量法[19]

  • 试验数据采用Excel 2007和SPSS 22.0进行处理。发酵条件优化用单因素方差分析法,平均值多重比较用LSD最小显著性差异法(P<0.05)。均匀试验利用人工神经网络[20]建模与优化(基于深度学习框架Pytorch[21])。将本实验目标建模为回归任务,并采用SmoothL1损失函数[22]以平滑训练过程。训练过程中,采用k-折交叉验证(k-fold cross-validation)和自适应矩估计(Adam)算法[23]优化神经网络。

  • PDA-苯胺蓝平板上褪色圈的出现表示该菌株具有分泌锰过氧化物酶和木质素过氧化物酶的能力,PDA-愈创木酚平板上显色圈的出现表示该菌株具有分泌漆酶的能力[24]。由表1可知:筛选得到的22株菌(分别命名为Q01~Q22)中,共有10株菌出现褪色圈或/和显色圈。其中:Q01、Q02、Q09和Q11既能出现褪色圈又能出现显色圈,说明这些菌株具备分泌3种木质素降解酶的能力。根据褪色圈和显色圈的出现时间及直径可知(表1),Q01于48 h时在PDA-苯胺蓝平板上出现褪色圈,12 h时在PDA-愈创木酚培养基上出现显色圈,在72 h时显色圈最大,因此,选定菌株Q01为目标菌株。

    菌株
    苯胺蓝褪色结果愈创木酚显色结果
    12243648721224364872 h
    Q01+++++++++++++++++
    Q02++++
    Q06+
    Q09++
    Q11+++++++++
    Q12+++++++++
    Q14++++++
    Q17++++
    Q19++++
    Q22++++++
      说明:−表示不褪色(或不显色);+、+ +、+ + +、+ + + +表示     褪色(或显色)圈逐渐增大

    Table 1.  Coloring and decoloring results of different strains on selective mediums

  • 菌株Q01在PDA-苯胺蓝平板上的菌落形态为白色圆形,菌丝为致密的短绒状,向四周扩展,紧贴平板生长(图1A图1B);前期生长较慢,1~2 d有菌丝长出,此后生长较快,3~5 d铺满整个平板。显微形态可见,菌丝较细长,有分支(图1C),孢子呈球状或柱状(图1D),菌丝可观察到隔膜和锁状联合(图1E,如箭头所示)。

    Figure 1.  Color development and fading performance of strain Q01 in selective medium and microscopic observation

  • 构建菌株Q01系统发育树(图2)可知:菌株Q01与栓菌属Trametes真菌的同源性相似度最高,达到100%。结合形态特征可确定菌株Q01为栓菌属真菌。

    Figure 2.  Phylogenetic tree of strain Q01 constructed based on ITS sequence

  • 分别在12瓶100 mL基本发酵培养基中接种体积分数为12.5%的菌株Q01种子液,于30 ℃、200 r·min−1下培养,每24 h取出1瓶,测量菌株木质素降解相关酶活性和1 mL菌液中生物量的干质量。由图3可知:3种木质素降解相关酶的酶活性达到最高值时间不同,其中漆酶活性在培养5 d时达最高(3 835.25×16.67 nkat·L−1),锰过氧化物酶活性在培养2 d时达最高(1 690.60×16.67 nkat·L−1),木质素过氧化物酶活性在培养8 d时达到最高(1 096.88×16.67 nkat·L−1)。3种木质素降解相关酶在木质素降解中具有同样重要的作用[25],但不同木质素降解酶活性最高值时间不同,因此以3种木质素降解相关酶的总酶活性作为确定培养时间的依据。随着木质素降解,真菌生物量逐渐增多[26]图3可知:菌株Q01的总酶活性与生物量均在培养5 d时最高,因此选择培养时间为5 d进行后续研究。

    Figure 3.  Changes in culture time to the enzymes and biomass related to lignin degradation produced by the strain

  • 分别在100 mL 基本发酵培养基中接种体积分数为5.0%、7.5%、10.0%、12.5%和 15.0%的种子液,于30 ℃、200 r·min−1下培养5 d,测定菌株木质素降解相关酶活性和菌株生物量。由图4可知:总酶活性在菌液体积分数为12.5%时最高,达到5 129.80×16.67 nkat·L−1。随菌液体积分数增加,菌株生物量呈先上升后下降趋势,体积分数为12.5%时达到最高。与缪晓磊[19]对竹林毛栓菌Trametes sp. 接种量优化的结果一致。可见菌株的繁殖速度受接种量影响,当接种量较少时,菌株需要更多时间适应环境后繁殖生长;而接种量较多时,大量菌株接触新环境,迅速繁殖,使液体培养基黏稠不透气,溶解氧下降,影响菌株的后续生长[19]。因此,综合总酶活性和生物量的变化,选取体积分数12.5%为最适接种量。

    Figure 4.  Changes in the amount of inoculum to produce lignin degradation related enzymes and biomass

  • 以基本发酵培养基为对照,分别用 10.00 g·L−1蔗糖、麦芽糖、木质素磺酸钠和可溶性淀粉替代对照中10.00 g·L−1的葡萄糖,接种体积分数为12.5%,于30 ℃、200 r·min−1下培养5 d。由图5可知:以葡萄糖为碳源时,菌株Q01漆酶活性达3 675.23×16.67 nkat·L−1,显著高于其他碳源(P<0.05);认为简单的糖有利于菌体生长[27],可以缩短漆酶的生产时间,与刘宇等[15]结果相似。但就总酶活性和生物量而言,以木质素磺酸钠为碳源对菌株Q01生长和木质素降解相关酶分泌效果最好,最显著(P<0.05),其中总酶活性为6 474.16×16.67 nkat·L−1,总生物量为0.065 g。可能原因是来源于木质素的木质素磺酸钠能刺激菌株Q01分泌木质素过氧化物酶和锰过氧化物酶,并促进细胞快速生长,使生物量最高,与熊乙[28]研究结果相似。综合考虑各碳源生产成本及对菌株Q01生长的促进效果,选择木质素磺酸钠为菌株Q01的液体培养基碳源。

    Figure 5.  Effect of carbon source on lignin degradation related enzymes and biomass produced by the strain

  • 以基本发酵培养基为对照,有效含氮量按1.52 g·L−1进行换算,分别用7.00 g·L−1的豆饼粉、6.50 g·L−1尿素、14.30 g·L−1硫酸铵、11.00 g·L−1硝酸钾替代对照组中的酒石酸铵,发酵培养条件为30 ℃、200 r·min−1,培养5 d。由图6可知:以豆饼粉为有机氮源发酵时,菌株Q01总酶活性最高、生物量最大,与其他无机氮源差异显著(P<0.05)。豆饼粉营养丰富,含大量碳水化合物、蛋白质及少量异黄酮类物质和可溶性多糖,可作为发酵氮源及生长因子。有研究表明[29]:在培养某些真菌时,培养基中添加豆饼粉有利于生物量的积累。综合考虑各氮源生产成本及对菌株Q01生长的促进效果,选择豆饼粉作为菌株Q01的液体培养基氮源。

    Figure 6.  Effect of nitrogen source on lignin degradation related enzymes produced by the strain and biomass

  • 均匀试验设计6因素5水平的10组试验,获取实测值,再通过基于SmoothL1损失函数的人工神经网络模型的训练及自适应矩估计(Adam)算法寻优,得到仿真值。对比实测值和仿真值(表2)可知:3种酶活性误差均小于10.0%,生物量的仿真值基本与观察值相同,可知该模型预测值可信赖。

    试验号木质素
    磺酸钠/
    (g·L−1)
    蛋白胨/
    (g·L−1)
    酵母粉/
    (g·L−1)
    豆饼粉/
    (g·L−1)
    五水合
    硫酸铜/
    (g·L−1)
    氯化钠/
    (g·L−1)
    锰过氧化
    物酶活性/
    (×16.67 nkat·L−1)
    木质素过氧
    化物酶活性/
    (×16.67 nkat·L−1)
    漆酶活性/
    (×16.67 nkat·L−1)
    总酶活性/
    (×16.67 nkat·L−1)
    生物量/
    g
    实测值16.005.003.0011.000.201.504 296.201 520.43219.196 035.830.037
    仿真值16.005.003.0011.000.201.503 186.762 888.58218.406 293.730.037
    实测值28.0010.001.0011.000.251.254 200.353 790.22252.628 243.180.055
    仿真值28.0010.001.0011.000.251.254 190.013 799.79288.918 278.710.049
    实测值310.002.504.009.000.351.004 095.773 605.59318.608 019.960.048
    仿真值310.002.504.009.000.351.004 094.323 712.88282.198 089.380.048
    实测值412.007.501.009.000.150.754 601.215 278.06313.2910 192.560.014
    仿真值412.007.501.009.000.150.754 607.234 178.73318.249 104.200.024
    实测值514.0012.504.007.000.200.505 263.505 028.28399.4410 691.230.059
    仿真值514.0012.504.007.000.200.505 290.884 799.66366.2910 456.830.062
    实测值66.002.502.007.000.301.504 453.063 746.77178.828 378.660.123
    仿真值66.002.502.007.000.301.504 446.864 033.08306.978 786.910.092
    实测值78.007.505.005.000.351.253 999.914 387.53186.138 573.570.042
    仿真值78.007.505.005.000.351.254 018.983 644.46276.897 940.330.047
    实测值810.0012.502.005.000.151.003 215.624 322.37363.367 901.340.050
    仿真值810.0012.502.005.000.151.004 289.803 890.43295.938 476.160.050
    实测值912.005.005.003.000.250.755 411.653 822.80432.669 667.110.063
    仿真值912.005.005.003.000.250.755 287.094 905.21374.4610 566.760.063
    实测值1014.0010.003.003.000.300.505 120.374 356.31385.329 862.000.060
    仿真值1014.0010.003.003.000.300.505 241.274 754.60362.8110 358.680.061

    Table 2.  Uniform test design and results

  • 根据模型预测得到最优发酵培养基组成并进行实验验证。由表3可知:优化后的发酵培养基酶活性和生物量,实测值与预测值误差约为3.0%;结合图3可知:优化前锰过氧化物酶活性为357.29×16.67 nkat·L−1、木质素过氧化物酶活性为445.27×16.67 nkat·L−1、总酶活性为4 637.81×16.67 nkat·L−1、生物量为0.071 g;即在优化培养基上生长的菌株Q01,其生物量比优化前提高1.27倍,锰过氧化物酶活性提高31.71倍,木质素过氧化物酶活性提高19.12倍,总木质素酶酶活性提高4.38倍。

    试验号木质素磺酸钠/
    (g·L−1)
    蛋白胨/
    (g·L−1)
    酵母粉/
    (g·L−1)
    豆饼粉/
    (g·L−1)
    五水合硫酸铜/
    (g·L−1)
    氯化钠/
    (g·L−1)
    锰过氧化物酶活性/
    (×16.67 nkat·L−1)
    木质素过氧化物酶活性/
    (×16.67 nkat·L−1)
    漆酶活性/
    (×16.67 nkat·L−1)
    总酶活性/
    (×16.67 nkat·L−1)
    生物量/
    g
    预测值14.0012.305.003.000.120.5311 727.398 795.36505.5621 028.310.093 7
    实测值14.0012.305.003.000.120.5311 328.738 514.41484.7320 327.870.090 0

    Table 3.  Optimization results of artificial neural network

  • 通过苯胺蓝平板褪色圈法和愈创木酚平板变色圈法筛选出目标菌株Q01。经鉴定,菌株Q01为栓菌属Trametes真菌。实验证明人工神经网络模型预测结果可值得信赖。根据单因素试验和人工神经网络算法结果,确定菌株Q01的最优发酵条件:培养时间5 d,温度30 ℃,转速200 r·min−1,接种菌液体积分数为12.5%,培养基配方为木质素磺酸钠14.00 g·L−1、蛋白胨12.30 g·L−1、酵母粉5.00 g·L−1、豆饼粉3.00 g·L−1、五水合硫酸铜0.12 g·L−1、氯化钠0.53 g·L−1、pH自然。

    菌株Q01在优化后的发酵条件下制得的液体菌剂具有高酶活性和高生物量的特点,可促进园林绿化废弃物堆体初始微生物的数量增长,提高木质素降解相关酶的酶活性,加快木质素的降解。

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return