Turn off MathJax
Article Contents

DU Keke, YONG Cheng, SUN Enhui, HUANG Hongying, QU Ping, XU Yueding, CHEN Ling, SUN Qian, GUAN Mingjie. Properties of bio-pretreated straw fiber and its composite materials[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210647
Citation: DU Keke, YONG Cheng, SUN Enhui, HUANG Hongying, QU Ping, XU Yueding, CHEN Ling, SUN Qian, GUAN Mingjie. Properties of bio-pretreated straw fiber and its composite materials[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210647

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Properties of bio-pretreated straw fiber and its composite materials

doi: 10.11833/j.issn.2095-0756.20210647
  • Received Date: 2021-09-22
  • Accepted Date: 2022-03-25
  • Rev Recd Date: 2022-03-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(26) PDF downloads(2) Cited by()

Related
Proportional views

Properties of bio-pretreated straw fiber and its composite materials

doi: 10.11833/j.issn.2095-0756.20210647

Abstract:   Objective  This study aims to explore the influence of biological pretreatment on the properties of straw fiber and its composites prepared with urea formaldehyde resin, so as to provide theoretical basis for the preparation and development of straw based composites.   Method  Rice (Oryza sativa) straw was treated with microbial agent for aerobic fermentation. The changes of hemicellulose, cellulose and lignin in rice straw under different treatment time were measured. The crystallinity and microscopic morphology of straw fiber without biological pretreatment (S0), straw fiber bio-pretreated for 5 days (S5) and 10 days (S10) were tested and compared. Straw fiber/urea formaldehyde resin composites (F0, F5, F10) were prepared. Then the surface properties and mechanical properties of straw based composites under different biological pretreatment time were compared.   Result  Substances such as silicon and wax on the surface of straw fiber were removed after biological pretreatment, but the longer biological pretreatment time (10 d) could destroy the structure of straw fiber itself. Compared with S0 and S10, S5 had the highest relative content of cellulose (37.99%) and best crystallinity (47.8%). In contrast, F5 had the best hydrophobicity, lowest surface energy, and highest impact toughness (7 665.64 J·m−2). F10 had the best flexural performance. The static flexural strength and flexural modulus were 27.73 and 20 354 MPa, respectively, which were 59.00% and 50.17% higher than the composites prepared by S0, respectively.   Conclusion  Biological pretreatment can improve the surface properties of straw fiber and the properties of straw fiber/urea formaldehyde resin composites. The straw fiber bio-pretreated for 5 days is better, and the properties of the composites are superior. [Ch, 4 fig. 1 tab. 28 ref.]

DU Keke, YONG Cheng, SUN Enhui, HUANG Hongying, QU Ping, XU Yueding, CHEN Ling, SUN Qian, GUAN Mingjie. Properties of bio-pretreated straw fiber and its composite materials[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210647
Citation: DU Keke, YONG Cheng, SUN Enhui, HUANG Hongying, QU Ping, XU Yueding, CHEN Ling, SUN Qian, GUAN Mingjie. Properties of bio-pretreated straw fiber and its composite materials[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210647
WeChat followshare

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return