Volume 41 Issue 3
May  2024
Turn off MathJax
Article Contents

YU Yadi, ZHANG Xi, WANG Hao, BAI Jian, LAI Xiaoqin, LUO Laicong, WANG Shuli, ZHANG Ling. Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism[J]. Journal of Zhejiang A&F University, 2024, 41(3): 659-668. doi: 10.11833/j.issn.2095-0756.20230501
Citation: YU Yadi, ZHANG Xi, WANG Hao, BAI Jian, LAI Xiaoqin, LUO Laicong, WANG Shuli, ZHANG Ling. Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism[J]. Journal of Zhejiang A&F University, 2024, 41(3): 659-668. doi: 10.11833/j.issn.2095-0756.20230501

Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism

doi: 10.11833/j.issn.2095-0756.20230501
  • Received Date: 2023-10-11
  • Accepted Date: 2024-03-18
  • Rev Recd Date: 2024-03-13
  • Available Online: 2024-05-22
  • Publish Date: 2024-05-22
  • In the context of global change, research on greenhouse gas emission and sink in forest soil, especially on the response of soil greenhouse gas emission in Phyllostachys edulis expansion forests, is increasing. This paper reviews the soil greenhouse gas response and mechanism in P. edulis expansion forest. P. edulis relies on its powerful bamboo whips to grow rapidly and continuously expand into the surrounding stands, completing its growth within a short time. Due to its unique reproductive mode and strong expansion ability, many adjacent native forests are invaded by P. edulis expansion to form mixed forests, which gradually evolve into pure P. edulis forests. The expansion of P. edulis has an increasing impact on the native ecosystem, changing the material cycling process of the ecosystem, leading to an imbalance in soil carbon and nitrogen input and transformation, and thus affecting greenhouse gas emissions. Nitrous oxide (N2O) and carbon dioxide (CO2) are two important greenhouse gases. Soil is an important carbon and nitrogen pool related to CO2 and N2O emissions. Soil physiochemical properties, litter decomposition and soil microbial community structure jointly determine soil greenhouse gas emissions. In recent years, the expansion area of P. edulis has been increasing, resulting in continuous changes in the soil environment in the expansion area, which has affected N2O and CO2 emissions to a certain extent. The results showed that after P. edulis expansion, soil pH increased, litter decomposition rate accelerated, and soil carbon and nitrogen increased. P. edulis expansion promoted soil CO2 emission, increased the abundance of soil arbuscular mycorrhizal fungi (AMF) in the expanded forest and affected nitrification and denitrification by regulating the abundance of N2O related functional genes such as amoA in ammonia-oxidizing archaea (AOA), nitrite reductase gene (nirK) and nitrous oxide reductase gene (nosZ), thereby further affecting soil N2O emissions. Future research should further explore its internal mechanism to provide theoretical support for the scientific management of P. edulis expansion forest and greenhouse gas emission reduction. [Ch, 79 ref.]
  • [1] SHAO Shuai, WANG Zhongqian, PAN Lingqiang, ZHENG Yunyou, ZHENG Xuli, TIAN Libin, XU Qiufang.  Effects of Phyllostachys edulis expansion on soil microbial residue carbon accumulation in evergreen broad-leaved forests . Journal of Zhejiang A&F University, 2024, 41(5): 1005-1012. doi: 10.11833/j.issn.2095-0756.20230626
    [2] PENG Lindi, WANG Qiong, ZHANG Hongli, ZHENG Chengjie, WANG Nanyuan, PAN Qubo.  Ecological risk assessment of alien landscaping plants in wetland parks on the west bank of Dianchi Lake . Journal of Zhejiang A&F University, 2023, 40(1): 217-226. doi: 10.11833/j.issn.2095-0756.20220301
    [3] ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin.  On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis . Journal of Zhejiang A&F University, 2021, 38(4): 703-711. doi: 10.11833/j.issn.2095-0756.20200542
    [4] TONG Liang, LI Pingheng, ZHOU Guomo, ZHOU Yufeng, LI Chong.  A review of research about rhizome-root system in bamboo forest . Journal of Zhejiang A&F University, 2019, 36(1): 183-192. doi: 10.11833/j.issn.2095-0756.2019.01.023
    [5] PENG Xinyi, LI Yongchun, WANG Xiuling, LI Yongfu, CHEN Zhihao, XU Qiufang.  Effects of invasive plants on soil microbial communities: a review . Journal of Zhejiang A&F University, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
    [6] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [7] XU Weijie, GUO Jia, ZHAO Min, WANG Renyuan, HOU Shuzhen, YANG Yun, ZHONG Bin, GUO Hua, LIU Chen, SHEN Ying, LIU Dan.  Research progress of soil plant root exudates in heavy metal contaminated soil . Journal of Zhejiang A&F University, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [8] CUI Jing, WU Jigui, HUANG Bogao, JIANG Wanjie, FAN Yaqian, CHENG Jin.  The mechanisms of reproductive isolation in orchids . Journal of Zhejiang A&F University, 2016, 33(4): 695-702. doi: 10.11833/j.issn.2095-0756.2016.04.020
    [9] ZHONG Bin, CHEN Junren, PENG Danli, LIU Chen, GUO Hua, WU Jiasen, YE Zhengqian, LIU Dan.  Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil . Journal of Zhejiang A&F University, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [10] YE Lisha, CHEN Shuanglin, GUO Ziwu.  Research on nitrogen circulation and management of bamboo: a review . Journal of Zhejiang A&F University, 2015, 32(4): 635-642. doi: 10.11833/j.issn.2095-0756.2015.04.021
    [11] WU Xue, DU Changxia, YANG Bingbing, FAN Huaifu.  Research progress in plant aquaporins . Journal of Zhejiang A&F University, 2015, 32(5): 789-796. doi: 10.11833/j.issn.2095-0756.2015.05.020
    [12] MENG Cifu, JIANG Peikun, XU Qiufang, ZHOU Guomo, SONG Zhaoliang, HUANG Zhangting.  PhytOC in plant ecological system and its important roles in the global soil carbon sink . Journal of Zhejiang A&F University, 2013, 30(6): 921-929. doi: 10.11833/j.issn.2095-0756.2013.06.018
    [13] ZHANG Tao, LI Yongfu, JIANG Peikun, ZHOU Guomo, LIU Juan.  Research progresses in the effect of land-use change on soil carbon pools and soil respiration . Journal of Zhejiang A&F University, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [14] CHENG Jian-zhong, YANG Ping, GUI Ren-yi.  Research progress on speciation of selenium compounds in plants . Journal of Zhejiang A&F University, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [15] CHENG Ying, LI Gen-you, XIA Guo-hua, HUANG Shang-jue, HUANG Yu-feng.  Review on tissue culture of Aralia plants . Journal of Zhejiang A&F University, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [16] ZHANG Hui-ling, SONG Xin-zhang, AI Jian-guo, JIANG Hong, YU Shu-quan.  A review of UV-B radiation and its influence on litter decomposition . Journal of Zhejiang A&F University, 2010, 27(1): 134-142. doi: 10.11833/j.issn.2095-0756.2010.01.022
    [17] WANG Hang-jun, ZHANG Guang-qun, QI Heng-nian, LI Wen-zhu.  A review of research on wood recognition technology . Journal of Zhejiang A&F University, 2009, 26(6): 896-902.
    [18] GONG Zhi-wen, KANG Xin-gang, GU Li, ZHAO Jun-hui, ZHENG Yan-feng, YANG Hua.  Research methods on natural forest stand structure:a review . Journal of Zhejiang A&F University, 2009, 26(3): 434-443.
    [19] ZHANG Lan, GAO Su-ping.  Review of researches on allelopathy of ornamental plants . Journal of Zhejiang A&F University, 2007, 24(4): 497-503.
    [20] DAI Jian-bing, YU Yi-wu, CAO Qun.  Summary of research on wetland protection and management . Journal of Zhejiang A&F University, 2006, 23(3): 328-333.
  • [1]
    WANG Zhengping, GENG Bojie. Notes of editorial-work in the flora of P. R. China, Vol. 9, Part 1 (Graminesubfam, Bambusoiedae) [J]. Journal of Bamboo Research, 1996, 15(1): 77 − 79.
    [2]
    CAI Liang, ZHANG Ruilin, LI Chunfu, et al. A method to inhibit the expansion of Phyllostachys pubescens based on the analysis of underground rhizome [J]. Journal of Northeast Forestry University, 2003, 31(5): 68 − 70.
    [3]
    KLEINHENZ V, MIDMORE D J. Aspects of bamboo agronomy [J]. Advances in Agronomy, 2001, 74: 99 − 153.
    [4]
    LI Yumin, FENG Pengfei. Bamboo resources in China based on the ninth national forest inventory data [J]. World Bamboo and Rattan, 2019, 17(6): 45 − 48.
    [5]
    PAN Jun, LIU Yuanqiu, NIU Jiehui, et al. Moso bamboo expansion reduced soil N2O emissions while accelerated fine root litter decomposition: contrasting non-additive effects [J/OL]. Plant and Soil, 2022[2023-09-11]. doi: 10.1007/s11104-022-05785-8.
    [6]
    LI Chao, LIU Yuanqiu, WANG Hankun, et al. Effects of moso bamboo (Phyllostachys edulis) expansion and simulate nitrogen deposition on emission of soil N2O and CO2 in Lushan Mountain [J]. Acta Pedologica Sinica, 2019, 56(1): 146 − 155.
    [7]
    OKUTOMI K, SHINODA S, FUKUDA H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan [J]. Journal of Vegetation Science, 1996, 7(5): 723 − 728.
    [8]
    HUANG Ru, QI Daihua, TAO Jianping, et al. Effects of bamboo-invasion disturbance on the spatial distribution of Alsophila spinulosa population [J]. Journal of Sichuan Normal University (Natural Science), 2009, 32(1): 106 − 111.
    [9]
    BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Plant species diversity and dynamics in forests invaded by moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve [J]. Biodiversity Science, 2013, 21(3): 288 − 295.
    [10]
    WU Jiasen, JIANG Peikun, WANG Zuliang. The effects of Phyllostachys pubescens expansion on soil fertility in National Nature Reserve of Mount Tianmu [J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(4): 689 − 692.
    [11]
    ZHAO Yuhong, FAN Shaohui, LUO Jiadong. The influence of Phyllostachys edulis expanding into evergreen broadleaf forest on soil property and its related analysis [J]. Forest Research, 2017, 30(2): 354 − 359.
    [12]
    LI Yongchun, LI Yongfu, CHANG S X, et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production [J]. Plant and Soil, 2017, 418(1): 507 − 521.
    [13]
    SONG Qingni, OUYANG Ming, YANG Qingpei, et al. Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China [J]. Plant and Soil, 2016, 404(1): 113 − 124.
    [14]
    LUAN Junwei, LIU Silong, LI Siyu, et al. Functional diversity of decomposers modulates litter decomposition affected by plant invasion along a climate gradient [J]. Journal of Ecology, 2021, 109(3): 1236 − 1249.
    [15]
    ZHANG Ling. Bamboo Expansion: Processes, Impacts, and Management[M]. Singapore: Springer, 2023.
    [16]
    IPCC. Climate Change 2022: Mitigation of Climate Change[R]. New York: Cambridge University Press, 2022.
    [17]
    BOSSIO D A, COOK-PATTON S C, ELLIS P W, et al. The role of soil carbon in natural climate solutions [J]. Nature Sustainability, 2020, 3(5): 391 − 398.
    [18]
    ZHENG Xiang, LIU Qi, CAO Minmin, et al. A review of responses of soil nitrous oxide emissions to nitrogen input in forest ecosystems [J]. Acta Pedologica Sinica, 2022, 59(5): 1190 − 1203.
    [19]
    LI Wenjuan, CAI Yanjiang, ZHU Tongbin, et al. Release of nitrous oxide from soil aggregates and its microbial mechanism [J]. Acta Pedologica Sinica, 2021, 58(5): 1132 − 1144.
    [20]
    MANGALASSERY S, SJÖGERSTEN S, SPARKES D L, et al. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases [J]. Soil and Tillage Research, 2013, 132: 39 − 46.
    [21]
    CHEN Huixian, XIAO Yi, XU Jianhong, et al. Effects of moso bamboo expansion to subtropical evergreen broad-leaved and coniferous forests on soil inorganic nitrogen contents [J]. Biological Disaster Science, 2022, 45(2): 210 − 215.
    [22]
    ZHANG Dongqiu, SHI Peili, ZHANG Xianzhou. Some advance in the main factors controlling soil respiration [J]. Advances in Earth Science, 2005, 20(7): 778 − 785.
    [23]
    SHI Yusen, WANG Binbin, FANG Wei, et al. Bamboo invades surrounding forest increased soil pH, changed soil chemical nutrient and microbial community: a meta-analysis [J/OL]. Acta Pedologica Sinica, 2023-02-28[2023-09-11]. https://kns.cnki.net/kcms/detail//32.1119.P.20230227.1944.006.html.
    [24]
    NIU Limin. Effects of Phyllostachys pubescens Invasion and Management Model on Soil Arbuscular Mycorrhizal Fungal Communities and Their Mechanisms [D]. Hangzhou: Zhejiang A&F University, 2017.
    [25]
    RUBINO M, DUNGAIT J A J, EVERSHED R P, et al. Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidence from a 13C labelled-leaf litter experiment [J]. Soil Biology and Biochemistry, 2010, 42(7): 1009 − 1016.
    [26]
    DORREPAAL E, CORNELISSEN J H C, AERTS R, et al. Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? [J]. Journal of Ecology, 2005, 93(4): 817 − 828.
    [27]
    FANG Huajun, CHENG Shulan, YU Guirui, et al. Study on the responses of nitrous oxide emission to increased nitrogen deposition in forest soils: a review [J]. Acta Pedologica Sinica, 2015, 52(2): 262 − 271.
    [28]
    MAO Xinwei, CHENG Min, XU Qiufang, et al. Effects of nitrification inhibitors on soil N2O emission and community structure and abundance of ammonia oxidation microorganism in soil under extensively managed Phyllostachys edulis stands [J]. Acta Pedologica Sinica, 2016, 53(6): 1528 − 1540.
    [29]
    LI Zhenzhen, ZHANG Ling, DENG Bangliang, et al. Effects of moso bamboo (Phyllostachys edulis) invasions on soil nitrogen cycles depend on invasion stage and warming [J]. Environmental Science and Pollution Research, 2017, 24(32): 24989 − 24999.
    [30]
    UMEMURA M, TAKENAKA C. Changes in chemical characteristics of surface soils in hinoki cypress (Chamaecyparis obtusa) forests induced by the invasion of exotic moso bamboo (Phyllostachys pubescens) in central Japan [J]. Plant Species Biology, 2015, 30(1): 72 − 79.
    [31]
    SONG Qingni. Effects of Phyllostachys edulis Expansion on Nitrogen Mineralization and Its Availability of Evergreen Broad-leaved Forest [D]. Nanchang: Jiangxi Agricultural University, 2013.
    [32]
    NICOL G W, LEININGER S, SCHLEPER C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria [J]. Environmental Microbiology, 2008, 10(11): 2966 − 2978.
    [33]
    ZOU Na, SHI Weiming, HOU Lihan, et al. Superior growth, N uptake and NH4 + tolerance in the giant bamboo Phyllostachys edulis over the broad-leaved tree Castanopsis fargesii at elevated NH4 + may underlie community succession and favor the expansion of bamboo [J]. Tree Physiology, 2020, 40(11): 1606 − 1622.
    [34]
    MAO Yinger, ZHOU Xiumei, WANG Nan, et al. Impact of Phyllostachys edulis expansion to Chinese fir forest on the soil bacterial community [J]. Biodiversity Science, 2023, 31(6): 157 − 166.
    [35]
    HE Meixia, DUAN Pengpeng, LI Dejun. Review on the pathways of soil nitrous oxide production and its research methods [J]. Chinese Journal of Ecology, 2023, 42(6): 1497 − 1508.
    [36]
    SONG Qingni, YANG Qingpei, LIU Jun, et al. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest [J]. Chinese Journal of Applied Ecology, 2013, 24(2): 338 − 344.
    [37]
    SANTONJA M, RODRÍGUEZ-PÉREZ H, NATHALIE L B, et al. Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams [J]. Ecosystems, 2020, 23(2): 400 − 416.
    [38]
    LEFF J W, WIEDER W R, TAYLOR P G, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest [J]. Global Change Biology, 2012, 18(9): 2969 − 2979.
    [39]
    ZHENG Xiang, WANG Shuli, XU Xingtong, et al. Soil N2O emissions increased by litter removal but decreased by phosphorus additions [J]. Nutrient Cycling in Agroecosystems, 2022, 123(1): 49 − 59.
    [40]
    ZHANG Ling, WANG Hong, ZOU Jianwen, et al. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland [J/OL]. PLoS One, 2014, 9(3): e92301[2023-09-11]. doi:10.1371/journal.pone.0092301.
    [41]
    BRADFORD M A, BERG B, MAYNARD D S, et al. Understanding the dominant controls on litter decomposition [J]. Journal of Ecology, 2016, 104(1): 229 − 238.
    [42]
    WANG Silong, CHEN Chuying. Forest Litter Ecology [M]. Beijing: Science Press, 2010.
    [43]
    GU Jiao, MAO Yinger, LI Xiuxiu, et al. Responses of leaf and fine root functional traits of Cunninghamia lanceolata to Phyllostachys edulis expansion and removal [J]. Acta Ecologica Sinica, 2023, 43(8): 3286 − 3294.
    [44]
    LIU Xishuai. The Effect of Phyllostachys edulis Expansion on the Content of Carbon, Nitrogen and Phosphorus in Litter and Soil and Its Microbiological Mechanism [D]. Nanchang: Jiangxi Agricultural University, 2018.
    [45]
    LEITNER S, SAE-TUN O, KRANZINGER L, et al. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest [J]. Plant and Soil, 2016, 403(1): 455 − 469.
    [46]
    WANG Lingjie, LI Qingli, GAO Peijun, et al. Activities of key enzymes involved in photosynthesis and expression patterns of corresponding genes during rapid growth of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(1): 84 − 92.
    [47]
    TIAN Ya’nan, HE Zhilong, LÜ Zhaoqi, et al. Effects of tea litter applications on N2O and CO2 fluxes from acidification of tea garde [J]. Journal of Agro-Environment Science, 2016, 35(8): 1625 − 1632.
    [48]
    DOUKALIANOU F, SPYROGLOU G, ORFANOUDAKIS M, et al. Effects of forest thinning on soil litter input nutrients in relation to soil CO2, CH4, and N2O fluxes in Greece [J/OL]. Atmosphere, 2022, 13(3): 376[2023-09-11]. doi: 10.3390/atmos13030376.
    [49]
    LI Binbin, MA Junhua, WU Lanfang. Effects of dissolved organic matter in soil on the emission of CO2 and N2O [J]. Acta Ecologica Sinica, 2014, 34(16): 4690 − 4697.
    [50]
    LI Chao. Effects of Moso Bamboo Expansion on Litter Decomposition, Soil N2O and CO2 Emissions under Simulated N Deposition [D]. Nanchang: Jiangxi Agricultural University, 2019.
    [51]
    LIN Yute, TANG Shenlin, PAI Chuangwen, et al. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo [J]. Microbial Ecology, 2014, 67(2): 421 − 429.
    [52]
    HOYWEGHEN L V, de BEER T, DEFORCE D, et al. Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species [J]. Phytochemical Analysis, 2012, 23(5): 433 − 443.
    [53]
    JOANISSE G D, BRADLEY R L, PRESTON C M, et al. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia [J]. New Phytologist, 2007, 175(3): 535 − 546.
    [54]
    PENG Xinyi, LI Yongchun, WANG Xiuling, et al. Effects of invasive plants on soil microbial communities: a review [J]. Journal of Zhejiang A&F University, 2019, 36(5): 1019 − 1027.
    [55]
    SMITH S E, DAVID J R. Mycorrhizal Symbiosis [M]. Cambridge: Academic Press, 2010.
    [56]
    BOWLES T M, JACKSON L E, CAVAGNARO T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes[J/OL]. Global Change Biology, 2018, 24(1): e171-e182[2023-09-11]. doi: 10.1111/gcb.13884.
    [57]
    ZOU Guiwu, WU Binsheng, CHEN Baodong, et al. What are the effects of moso bamboo expansion into Japanese cedar on arbuscular mycorrhizal fungi: altering the community composition rather than the diversity [J/OL]. Journal of Fungi, 2023, 9(2): 273[2023-09-11]. doi: 10.3390/jof9life12122105020273.
    [58]
    STERNGREN A E, HALLIN S, BENGTSON P. Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil [J/OL]. Frontiers in Microbiology, 2015, 6[2023-09-11]. doi: 10.3389/fmicb.2015.01350.
    [59]
    ZHOU Yan. The Effects of Moso Bamboo Invasion on Nitrogen Cycle Related Microbial Community Structure and Abundance [D]. Hangzhou: Zhejiang A&F University, 2018.
    [60]
    AAMER M, SHAABAN M, HASSAN M U, et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH [J/OL]. Journal of Environmental Management, 2020, 255: 109891[2023-09-11]. doi: 10.1016/j.jenvman.2019.109891.
    [61]
    SHEN Qiulan. Characteristics and Evolution of Ammonia-oxidizing and Nitrogen-fixing Bacteria in Moso Bamboo (Phyllostachys pubescens) Forest Soils [D]. Hangzhou: Zhejiang A&F University, 2015.
    [62]
    WANG Shuli, YUAN Xi, ZHANG Ling, et al. Litter age interacted with N and P addition to impact soil N2O emissions in Cunninghamia lanceolata plantations [J]. Journal of Plant Ecology, 2022, 15(4): 771 − 782.
    [63]
    CAO Linhua, YU Xiao, LIU Caixia, et al. Alteration of soil nitrifiers and denitrifiers and their driving factors during intensive management of moso bamboo (Phyllostachys pubescens) [J/OL]. Science of the Total Environment, 2020, 705: 135236[2023-09-11]. doi: 10.1016/j.scitotenv.2019.135236.
    [64]
    SUN Didi. Community Structure Diversity of Soil Microbes Under Phyllostachy pubescens Stands Revealed by PLFAs Analysis [D]. Hangzhou: Zhejiang A&F University, 2010.
    [65]
    DONG Huiyun. Effects of Bamboo Litter Input on Soil Enzyme Activity, Microbial Community and Soil Organic Carbon Mineralization in a Broad-leaved Forest [D]. Hangzhou: Zhejiang A&F University, 2021.
    [66]
    GRAYSTON S J, CAMPBELL C D. Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis) [J]. Tree Physiology, 1996, 16(11/12): 1031 − 1038.
    [67]
    YANG Qingpei, GUO Yingrong, LAN Wenjun, et al. Addition effects of co-expansion of two bamboos on plant diversity in broad-leaved forests [J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3155 − 3162.
    [68]
    MERILÄ P, MALMIVAARA-LÄMSÄ M, SPETZ P, et al. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest [J]. Applied Soil Ecology, 2010, 46(2): 259 − 267.
    [69]
    DOUTERELO I, GOULDER R, LILLIE M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: implications for the in situ preservation of archaeological remains [J]. Applied Soil Ecology, 2010, 44(3): 219 − 227.
    [70]
    BAI Jian, LUO Laicong, LI Aixin, et al. Effects of biofuel crop switchgrass (Panicum virgatum) cultivation on soil carbon sequestration and greenhouse gas emissions: a review [J/OL]. Life, 2022, 12(12): 2105[2023-09-11]. doi: 10.3390/life12122105.
    [71]
    LI Bocheng, WU Qifeng, ZHANG Jinlin, et al. Fungal and bacterial contribution to soil N2O production in Phyllostachys edulis and broadleaf forest ecosystems [J]. Journal of Zhejiang A&F University, 2014, 31(6): 919 − 925.
    [72]
    LUO Laicong, LAI Xiaoqin, BAI Jian, et al. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chinese Journal of Plant Ecology, 2023, 47(2): 206 − 215.
    [73]
    FOX C A, MACDONALD K B. Challenges related to soil biodiversity research in agroecosystems-Issues within the context of scale of observation [J]. Canadian Journal of Soil Science, 2003, 83: 231 − 244.
    [74]
    ROUSK J, BROOKES P C, BÅÅTH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology, 2009, 75(6): 1589 − 1596.
    [75]
    BURTON J, CHEN Cengrong, XU Zhihong, et al. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia [J]. Journal of Soils and Sediments, 2010, 10(7): 1267 − 1277.
    [76]
    WANG Xin, SASAKI A, TODA M, et al. Changes in soil microbial community and activity in warm temperate forests invaded by moso bamboo (Phyllostachys pubescens) [J]. Journal of Forest Research, 2016, 21(5): 235 − 243.
    [77]
    MA Xinru, ZHENG Xuli, ZHENG Chunying, et al. Effects of moso bamboo (Phyllostachys edulis) expansion on soil microbial community in evergreen broadleaved forest [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1091 − 1098.
    [78]
    LIU Xishuai, SIEMANN E, CUI Cheng, et al. Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests [J]. Plant and Soil, 2019, 438(1/2): 85 − 99.
    [79]
    de MARCO A, ESPOSITO F, BERG B, et al. Litter inhibitory effects on soil microbial biomass, activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. [J/OL]. Forests, 2018, 9(12): 766[2023-09-11]. doi: 10.3390/f9120766.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(301) PDF downloads(26) Cited by()

Related
Proportional views

Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism

doi: 10.11833/j.issn.2095-0756.20230501

Abstract: In the context of global change, research on greenhouse gas emission and sink in forest soil, especially on the response of soil greenhouse gas emission in Phyllostachys edulis expansion forests, is increasing. This paper reviews the soil greenhouse gas response and mechanism in P. edulis expansion forest. P. edulis relies on its powerful bamboo whips to grow rapidly and continuously expand into the surrounding stands, completing its growth within a short time. Due to its unique reproductive mode and strong expansion ability, many adjacent native forests are invaded by P. edulis expansion to form mixed forests, which gradually evolve into pure P. edulis forests. The expansion of P. edulis has an increasing impact on the native ecosystem, changing the material cycling process of the ecosystem, leading to an imbalance in soil carbon and nitrogen input and transformation, and thus affecting greenhouse gas emissions. Nitrous oxide (N2O) and carbon dioxide (CO2) are two important greenhouse gases. Soil is an important carbon and nitrogen pool related to CO2 and N2O emissions. Soil physiochemical properties, litter decomposition and soil microbial community structure jointly determine soil greenhouse gas emissions. In recent years, the expansion area of P. edulis has been increasing, resulting in continuous changes in the soil environment in the expansion area, which has affected N2O and CO2 emissions to a certain extent. The results showed that after P. edulis expansion, soil pH increased, litter decomposition rate accelerated, and soil carbon and nitrogen increased. P. edulis expansion promoted soil CO2 emission, increased the abundance of soil arbuscular mycorrhizal fungi (AMF) in the expanded forest and affected nitrification and denitrification by regulating the abundance of N2O related functional genes such as amoA in ammonia-oxidizing archaea (AOA), nitrite reductase gene (nirK) and nitrous oxide reductase gene (nosZ), thereby further affecting soil N2O emissions. Future research should further explore its internal mechanism to provide theoretical support for the scientific management of P. edulis expansion forest and greenhouse gas emission reduction. [Ch, 79 ref.]

YU Yadi, ZHANG Xi, WANG Hao, BAI Jian, LAI Xiaoqin, LUO Laicong, WANG Shuli, ZHANG Ling. Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism[J]. Journal of Zhejiang A&F University, 2024, 41(3): 659-668. doi: 10.11833/j.issn.2095-0756.20230501
Citation: YU Yadi, ZHANG Xi, WANG Hao, BAI Jian, LAI Xiaoqin, LUO Laicong, WANG Shuli, ZHANG Ling. Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism[J]. Journal of Zhejiang A&F University, 2024, 41(3): 659-668. doi: 10.11833/j.issn.2095-0756.20230501
  • 随着全球气候变化的日益严峻,温室气体排放成为研究热点。毛竹Phyllostachys edulis林是重要的森林资源,其扩张现象日趋严峻,并通过多种途径影响土壤碳氮库及温室气体排放。关于毛竹扩张过程中土壤二氧化碳(CO2)及氧化亚氮(N2O)排放的响应机制尚不明确,这对于讨论毛竹林在全球碳氮循环中的作用至关重要。本研究旨在通过分析毛竹扩张对凋落物分解、土壤理化性质及土壤微生物群落的影响,讨论毛竹扩张对土壤CO2和N2O排放的影响及其机制。

    • 毛竹属禾本科Gramineae竹亚科Bambusoideae刚竹属Phyllostachys,是一种高大散生乔木状克隆植物,广泛分布于中国南方亚热带地区。毛竹林已经成为中国南方广泛分布的一种典型森林资源。毛竹生境多样,具有产量高、生长快、用途广和可持续性强等特点[1]。毛竹属于单轴散生型竹种,是典型的无性系植物[2],最快生长速度可以达1.0~2.0 m·d−1,一般3~5个月即可完成生长[3]。由于特殊的地下茎繁殖方式,毛竹林具有强大的水平拓展能力向周围蔓延,实现种群扩张,形成混交林甚至毛竹纯林,扩张潜力巨大。

      毛竹扩张的现象最早是日本学者在日本广岛、竹原等地调查发现的。毛竹在中国属于本土物种,毛竹林面积呈持续增长趋势。第9届全国森林资源清查数据显示:全国竹林面积为641.16 万hm2,其中毛竹林面积为467.78 万hm2,占72.96%[4]。毛竹不断扩张对周边植被构成潜在威胁,已引发了多方面的生态问题,包括土壤温室气体排放增加[56]、群落结构破坏[78]、生物多样性丧失[9]、土壤质量改变[1011]等,对整个生态系统及森林资源形成巨大威胁,引起了国内外生态学家的高度关注。毛竹表现出很强的入侵性,因此被视为一种潜在的入侵物种[1213]。在相关研究中,毛竹扩张与毛竹入侵均指毛竹不断占用其他原生林分,且对原生林分造成一定影响,也称为“本地植物入侵”[14],因此,既有毛竹扩张也有毛竹入侵的说法[15]

    • 据联合国政府间气候变化专门委员会(IPCC)第6次评估报告[16], CO2和N2O是2种重要的温室气体。2019年全球人为温室气体净排放量为(590±66)亿 t CO2当量,较2010年提高约12% (65亿 t CO2当量),比1990年高54% (210 亿t CO2当量)。2010—2019年的平均排放量为(560±60)亿t CO2当量,比2000—2009年每年高91亿t CO2当量。这是有记录以来最高的10 a平均排放量增长量。到2019年,CO2的平均年排放量达590亿t,N2O的平均年排放量达2.7亿t,且N2O的百年增温潜势是CO2的273倍。森林土壤是重要的碳氮库,其与N2O和CO2排放密切相关,毛竹扩张必然会在一定程度上影响森林土壤的N2O和CO2排放[1718]

    • 毛竹扩张通过改变林分内的植被类型,影响土壤养分循环及基本理化性质。毛竹庞大的地下鞭根系统使土壤形成许多孔隙,且其生物量和周转量大,增加了地下碳氮输入[19],造成林下土壤碳素和氮素积累,影响土壤碳氮循环及温室气体排放。赵雨虹等[11]研究发现:毛竹扩张常绿阔叶林过程中,混交林林分土壤密度大于常绿阔叶林,土壤孔隙度更小,持水能力更弱。毛竹扩张会破坏原生的土壤结构和功能,对原生森林土壤结构和物理性质造成影响,从而影响土壤气体排放[20],其中土壤孔隙结构对气体排放具有一定控制作用[21]

      植物入侵会增加原生林分中的土壤有机质质量分数,其中主要是土壤有机碳。毛竹扩张显著增加了扩张区域土壤CO2的累积排放量。土壤呼吸是CO2产生的主要过程,主要由植物根系呼吸和土壤微生物的异养呼吸产生[22]。毛竹扩张至阔叶林后,混交林土壤有机碳质量分数高于原生纯林,毛竹的鞭根主要分布于0~20 cm的土层内,表层土壤细根的生物量约是扩张前的6倍[23],庞大的根系加速毛竹对土壤养分的吸收,增加了林地内的细根生物量,增大了根系呼吸的CO2排放量[24]。此外,毛竹扩张增加了林内凋落物以及枯死根,分解形成的腐殖质不断累积,增加土壤碳输入,导致CO2排放上升[25]。凋落物类型和成分的不同,可能是毛竹入侵混交林后土壤有机碳质量分数产生差异的主要原因[26]

      毛竹扩张通过影响许多氮转化过程影响土壤N2O排放,其中硝化和反硝化作用是形成N2O的主要过程[27],凡是对这2个过程具有影响的因素(如土壤pH、碳氮底物可利用性、土壤温度、土壤水分、微生物群落结构和丰度等)发生变化均会导致土壤中N2O排放通量的变化[28]。土壤中的铵态氮(NH4 +-N)和硝态氮(NO3 -N)作为土壤硝化作用与反硝化作用的反应底物,与土壤N2O排放量密切相关。毛竹扩张对土壤N2O排放具有不同的影响,包括促进、抑制或没有显著影响[5, 8, 29]

      毛竹向针阔混交林扩张的过程中,土壤化学性质的变化,导致土壤碳氮循环过程发生改变。相对于原生纯林,NH4 +-N质量分数升高,NO3 -N质量分数降低[3031],碳质量分数因林分类型不同而有所差异。毛竹扩张改变了原生林分的pH,与原生纯林相比,混交林的土壤pH升高,原因是毛竹凋落物通过增加土壤中钙离子等碱性阳离子从而影响土壤pH变化[32]。毛竹扩张提高了土壤固氮菌群落多样性,这可能会影响硝化及反硝化过程中的微生物活性[33],从而影响土壤氮循环过程。有研究指出:竹子扩张导致土壤氮素矿化加速,氨化作用加强,且NH4 +可能是引起土壤细菌群落变化的主要环境因子[34],但毛竹扩张后导致的pH升高会影响一些与硝化作用有关的微生物群落,抑制氨氧化细菌的活性,导致硝化作用减弱[35]。同时,还会降低反硝化细菌活性,抑制反硝化作用[36],进而影响土壤N2O的排放。

      LI等[29]和PAN等[5]针对毛竹扩张对温室气体排放的影响研究表明:毛竹扩张后土壤养分发生改变,且阔叶林土壤较毛竹林土壤净硝化速率和氮矿化速率更低,N2O排放速率更低,混交林土壤N2O排放速率显著低于原生林分。

    • 凋落物分解是森林生态系统养分循环的重要过程[37]。作为植物和土壤的重要连接纽带,凋落物提供了土壤碳氮和其他化学成分,改变土壤理化性质、微生物生物量、微生物活性[38],在维持生态系统养分平衡中发挥着重要作用。此外,凋落物释放的化学物质也会影响温室气体排放[3940]。植物扩张或外来植物入侵带来的一系列变化,如凋落物的数量和质量[41],以及土壤微生物群落结构和多样性[42],影响凋落物分解和养分输入土壤,同时影响土壤养分循环。毛竹扩张过程中会与原生林分进行空间和资源竞争[43],改变林分类型,导致林分内凋落物组成发生改变,进一步影响土壤养分和微生物多样性[44]

      毛竹纯林和混交林凋落物全碳质量分数在针叶林基础上分别降低了21.98%和13.70%,说明毛竹扩张会降低森林凋落物全碳质量分数[45]。凋落物分解为土壤中的异养微生物呼吸提供有机物,促进CO2产生。同时,凋落物层产生的隔热效应会影响土壤温度进而影响CO2的产生。

      此外,毛竹快速生长期茎秆通过C4途径利用碳水化合物快速生长[46],扩张后显著增加土壤中的细根生物量,进而增大根系呼吸的CO2产生量。毛竹扩张进入日本柳杉Cryptomeria japonica纯林后,其凋落物分解加快,能释放更多的养分到土壤中,促进微生物对凋落物的分解,增加土壤的碳输入,从而增加混交林土壤CO2的排放。一般来说,土壤氮循环受土壤性质(包括土壤碳、氮质量分数及其有效性)、有机质输入和微生物特性影响。凋落物通过改变土壤微生物活性和土壤矿化作用影响硝化及反硝化作用,进而对土壤N2O排放产生影响[47]。凋落物层分解会产生大量可溶性有机碳,其向下渗透进入矿质土壤,为土壤微生物提供碳源[4849],促进反硝化微生物的活性,进而提高反硝化速率,促进N2O的产生。凋落物中含有丰富的木质素和多酚类化合物,可以抑制氮转化过程中一些关键酶的活性,如抑制硝化菌中的氨氧化酶和反硝化菌中的N2O还原酶,从而抑制N2O的产生[50]

      李超[50]研究发现:毛竹与日本柳杉地上部分凋落物混合显著促进了日本柳杉凋落物的分解,即2种凋落物混合分解会产生非加和效应。在分解前期,混合分解的凋落物氮残留量低于单独分解,说明前期相比于单独分解,混合分解更有利于毛竹凋落物氮素的释放。混合凋落物分解的CO2累积排放量显著高于单独毛竹和日本柳杉分解,但N2O累积排放并无显著差异。PAN等[5]研究毛竹凋落物、日本柳杉凋落物、毛竹-日本柳杉混合凋落物的分解情况发现:混合凋落物分解后的残留生物量、总有机碳、全氮残留量均低于单独的毛竹和日本柳杉凋落物,混合凋落物加速分解,说明毛竹-日本柳杉凋落物混合分解具有协同非加和效应,加速了土壤养分归还。混合凋落物的物理和化学变化可能直接影响凋落物分解速率或通过微生物及其活性间接加速分解速率[51]

      混合凋落物N2O累积排放量低于单独毛竹或日本柳杉凋落物处理。混合凋落物处理土壤N2O排放量比日本柳杉或毛竹单一凋落物处理低16.8%和24.4%[5]。SONG等[13]研究发现:毛竹扩张到邻近森林导致土壤氮矿化率降低。一方面,凋落物分解直接调节土壤N2O的排放。另一方面,凋落物分解通过释放出有效碳和有效氮,间接影响土壤N2O排放量。分解期间,毛竹凋落物向周围环境释放次生代谢产物酚类和黄酮,逐渐显示出很强的他感作用[52],抑制了微生物的酶活性,进而减缓土壤氮转化率[53]

    • 李超等[6]对毛竹扩张日本柳杉林的研究发现:毛竹扩张对土壤N2O和CO2排放产生影响,表现为混交林土壤N2O累积排放高于其他林分类型,且3种林分的土壤CO2累积排放量从高到低依次为混交林、毛竹纯林、日本柳杉纯林,说明毛竹扩张至日本柳杉林的过程中增大了土壤N2O和CO2的排放量。毛竹凋落物较低的碳氮比(C/N)可能会激发混交林土壤的微生物活性,从而影响土壤有机碳分解,同时提高土壤微生物异养呼吸产生的CO2,进而增大土壤CO2排放量。

      毛竹扩张通过改变土壤细菌和真菌群落进而改变由土壤微生物驱动的碳氮循环过程[54]。丛枝菌根真菌是 80% 以上维管植物的专性共生体[55],与植物根系形成互利共生关系,它们可以在正常和胁迫条件下为植物提供养分并改善土壤结构,从而有利于植物生长[56]。ZOU等[57]对毛竹向日本柳杉林扩张过程中的3种林分内丛枝菌根真菌进行研究,发现丛枝菌根真菌群落组成在不同森林类型中有显著差异,毛竹扩张增加了丛枝菌根真菌丰度。由于毛竹在地下部分生长投入更多,其庞大的细根生物量反过来又可以促进毛竹中菌根共生。因此,毛竹林和混交林的丛枝菌根真菌丰度显著高于日本柳杉纯林,高丰度丛枝菌根真菌反过来通过促进营养吸收和耐受性来增强毛竹竞争力,从而加速毛竹扩张[34]

      氮素转化的生理群包括氨氧化古菌、氨氧化细菌和反硝化细菌等。氨氧化古菌和氨氧化细菌通过影响氨氧化过程影响土壤N2O的产生[58]。毛竹扩张过程中NH4 +-N和pH的升高导致了氨氧化古菌丰度下降[25, 59],而氨氧化细菌丰度因入侵情况及地理位置不同而呈现出上升或下降的差异[6061]。在土壤氮转化过程中,亚硝酸还原酶基因和N2O还原酶基因丰度影响土壤反硝化过程,从而影响N2O排放,pH升高会导致亚硝酸还原酶基因和N2O还原酶基因丰度增加,进而影响N2O排放[60, 62]。CAO等[63]通过研究毛竹集约化经营发现:经营年限的增加会改变硝化和反硝化作用基因的丰度、多样性和群落组成,其中氨氧化古菌中的氨单加氧酶以及亚硝酸还原酶基因丰度显著增加,而亚硝酸还原酶基因丰度显著下降,从而会导致N2O排放增加。此外,出笋期人为挖笋等活动会对土壤产生扰动,对微生物群落产生影响。大量研究表明:土壤微生物与土壤有机质呈现相同的变化趋势,说明土壤碳的活性和有效性对毛竹扩张中的影响更为重要[64]。磷脂脂肪酸测定[5] 表明:毛竹-日本柳杉混交林内革兰氏阳性菌(G+)和革兰氏阴性菌(G)的生物量低于日本柳杉纯林和毛竹纯林,G+主要影响硝化作用,而G则主要影响反硝化作用,因此减缓了硝化作用和反硝化作用,降低了N2O排放。

      凋落物是土壤有机质的重要来源,凋落物输入通过改变土壤有效态养分影响土壤微生物群落结构[65]。植被类型在土壤微生物群落结构中发挥着重要作用[6667]。毛竹向周围林分的扩张将减少物种多样性、改变植被类型[68]。土壤微生物是森林生态系统的重要组成部分,在土壤有机质的矿化和营养循环中发挥着重要作用[69],土壤微生物活动通过影响土壤硝化和反硝化作用影响N2O排放[7071]。土壤微生物群落结构可能会随入侵植物发生改变[72],真菌和细菌是土壤微生物群落的组成部分,其丰度和多样性直接影响土壤特性和环境因素[73],对能量转换和物质循环具有重要意义[74]。不同的环境条件和植被类型可以改变土壤微生物群落的结构和功能[7576]。WANG等[76]研究发现:毛竹向原生林分扩张可能改变土壤环境和凋落物化学成分从而影响细菌生物量。

      植被类型的变化会改变土壤微生物群落。在不同的林分类型中,毛竹扩张带来的影响有所不同,毛竹向针叶林扩张的过程中增加了土壤微生物群落多样性[22],而在毛竹向阔叶林扩张的过程中情况有所不同,既存在逐渐减少的趋势[77],也存在不断增加的趋势[64, 78]。目前的研究中,不同地区以及不同森林群落环境,毛竹扩张及对原有林分所产生的影响有所不同。不同的林分类型中土壤结构及林分内凋落物类型等均有所不同[64],针叶林较阔叶林具有较多的木质素、单宁等更难分解的物质[5]。毛竹扩张也与植物生物量的输入和输出有关,从而影响土壤微生物群落的组成[79]

    • 综上所述,毛竹扩张导致土壤结构发生改变,土壤pH上升,土壤微生物群落结构发生改变,进而影响土壤CO2和N2O排放。扩张林分内丛枝菌根真菌群落丰度更高,加速毛竹生长,促进根系呼吸产生更多的CO2,且毛竹扩张改变了林分内凋落物类型,加速土壤碳、氮循环,为异养微生物呼吸提供有机质,促进CO2排放。扩张林分内氮矿化速率加快,为氨氧化古菌、氨氧化细菌等菌群提供碳源,提高反硝化作用速率,增加N2O排放,但毛竹的化感作用会产生部分杀菌物质,对氮转化过程中部分关键酶的活性具有抑制作用从而抑制N2O的产生。

      在“碳达峰,碳中和”目标下,毛竹林面积增加有利于林业固碳。如何通过合理的管理措施,挖掘温室气体减排增汇潜力,值得深入研究。未来需要进一步提高毛竹林管理水平,保障毛竹林碳汇功能,实现持续固碳,并通过优化林分结构,营造疏密适宜的毛竹林,加强毛竹碳汇功能监测与评估,在降低毛竹扩张生态学负效应的前提下逐步提升毛竹林碳库,助力“双碳”战略实施。

Reference (79)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return