Volume 37 Issue 2
Apr.  2020
Turn off MathJax
Article Contents

XIANG Yuyong, SUN Xing, YIN Peifeng. Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae[J]. Journal of Zhejiang A&F University, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016
Citation: XIANG Yuyong, SUN Xing, YIN Peifeng. Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae[J]. Journal of Zhejiang A&F University, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016

Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae

doi: 10.11833/j.issn.2095-0756.2020.02.016
  • Received Date: 2019-05-02
  • Rev Recd Date: 2019-07-05
  • Publish Date: 2020-04-20
  •   Objective  This research aims to study the effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae, and lay a foundation for further research on their physiological and biochemical mechanism of environmental adaptation.  Method  Effects of these factors on digestive enzyme activities in H. jinyinhuaphaga larvae were studied through ultraviolet spectrophotometry and burette in laboratory by using 3, 5-dinitrosalicylic acid method, fulin-phenolic method, and standard sodium hydroxide solution titration method.  Result  Digestive enzyme activities of each H. jinyinhuaphaga larva differed after feeding on 'Jiufeng No. 1', 'Xiangshui No. 1', 'Xiangshui No. 2' and a wild variety of Lonicera japonica. The H. jinyinhuaphaga larvae feeding on the wild variety had the highest amylase, sucrase and protease activities, and the lowest lipase activity. The activities in the 1st instar larva were 18.37, 26.45, 22.31 and 5.54 mmol·g-1·min-1 respectively. The four digestive enzyme activities all increased with larval ages. Compared with the 1st instar larvae, the 5th instar larvae, after feeding on the four cultivars, displayed an increase in amylase activities by 33.39%, 27.48%, 33.31% and 45.29%, an increase in sucrase activities by 19.12%, 15.02%, 14.64% and 29.64%, an increase in protease activities by 25.55%, 18.69%, 21.69% and 41.46%, and an increase in lipase activities by 84.95%, 68.04%, 68.41% and 77.80%. In the range of 16-34℃, the activities of the four digestive enzymes all showed a tendency of first increasing and then decreasing with the rise of temperature. The highest amylase activities were observed at 22℃ in the larvae of the 1st-5th instar, which were 19.95, 20.57, 21.79, 23.64 and 25.86 mmol·g-1·min-1. The sucrase activities of the 1st-5th instar larvae were the highest at 22℃, which were 27.65, 28.89, 29.85, 31.45 and 32.89 mmol·g-1·min-1. The protease activities of the 1st-5th instar larvae were the highest at 25℃, which were 21.65, 22.76, 23.43, 25.71 and 26.98 mmol·g-1·min-1. The lipase activities of the 1st-5th instar larvae were the highest at 28℃, which were 7.38, 8.49, 9.81, 11.33 and 13.21 mmol·g-1·min-1. Two-way ANOVA showed that the interaction between host plants and larval ages, as well as the interaction between temperatures and larval ages, had no significant effect on the four digestive enzyme activities.  Conclusion  Host plants and temperatures can affect digestive enzyme activities of H. jinyinhuaphaga larvae.
  • [1] SHEN Han, ZHENG Chengzhong, QIU Yongbin, WANG Qinghua, HUA Keda, MIAO Qiang, FAN Yanru, JIANG Jingmin, WEI Yi, LIU Jun.  Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis . Journal of Zhejiang A&F University, 2024, 41(3): 1-9. doi: 10.11833/j.issn.2095-0756.20230481
    [2] DU Yi, YANG Weicheng, HE Qinqin, WENG Tao, XIAO Jiaxing, YANG Jiao.  Host selection of Phthonoloba viridifasciata and analysis of chemical compounds in leaves of host plants . Journal of Zhejiang A&F University, 2023, 40(1): 89-96. doi: 10.11833/j.issn.2095-0756.20220168
    [3] ZHOU Junjie, WANG Yiguang, DONG Bin, ZHAO Hongbo.  Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans . Journal of Zhejiang A&F University, 2023, 40(1): 64-71. doi: 10.11833/j.issn.2095-0756.20220110
    [4] JIN Jing, XIE Rong, LI Xia, ZHOU Liujiang, DU Yongbin, GU Yutong, FAN Jianting.  Effects of three different host plants on the feeding preference and developmental status of Ceracris kiangsu . Journal of Zhejiang A&F University, 2020, 37(6): 1143-1148. doi: 10.11833/j.issn.2095-0756.20190723
    [5] XIANG Yuyong, TAO Qin, YU Shijun, ZHANG Yuanchang.  Analysis of nutrients in larva feces of Heterolocha jinyinhuaphaga . Journal of Zhejiang A&F University, 2020, 37(5): 971-977. doi: 10.11833/j.issn.2095-0756.20190624
    [6] ZHANG Yong, HU Haibo, WANG Zeng, HUANG Yujie, LÜ Aihua, ZHANG Jinchi, LIU Shenglong.  Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain . Journal of Zhejiang A&F University, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [7] ZHU Ning, ZHANG Dongyong, SHEN Hongxia, HU Qin, FAN Jianting.  Oviposition preferences of Anoplophora glabripennis on three host plants and composition analysis of host plant volatiles . Journal of Zhejiang A&F University, 2017, 34(6): 1059-1064. doi: 10.11833/j.issn.2095-0756.2017.06.013
    [8] XIANG Yuyong, ZHANG Zhijian, YIN Peifeng, ZHANG Yuanchang.  Antioxidant activity of raw polysaccharides from Heterolocha jinyinhuaphaga pupae in vitro . Journal of Zhejiang A&F University, 2016, 33(5): 862-868. doi: 10.11833/j.issn.2095-0756.2016.05.019
    [9] NGUYEN Thi Huong Giang, ZHANG Qisheng.  Temperature inside mats of high-frequency, hot pressed, glued and laminated bamboo . Journal of Zhejiang A&F University, 2015, 32(2): 167-172. doi: 10.11833/j.issn.2095-0756.2015.02.001
    [10] ZHU Jingle, YANG Chaowei, DU Hongyan, LI Fangdong, SUN Zhiqiang, DU Lanying.  Photosynthetic capacity of two Eucommia ulmoides clones . Journal of Zhejiang A&F University, 2014, 31(5): 704-709. doi: 10.11833/j.issn.2095-0756.2014.05.007
    [11] LIU Zhi-mei, JIANG Wen-wei, YANG Guang-yuan, HUANG Jian-rong.  Chlorophyll fluorescence parameters under drought stress in three plants of Lonicera . Journal of Zhejiang A&F University, 2012, 29(4): 533-539. doi: 10.11833/j.issn.2095-0756.2012.04.008
    [12] JIANG Ting, LIN Xia-zhen, LIU Guo-long, LI Mei-qin, LIU Sheng-long.  Seed germination of Stranvaesia davidiana var. undulata with storage methods and germination temperatures and lighting . Journal of Zhejiang A&F University, 2009, 26(5): 682-687.
    [13] YI Chuan-hui, CHEN Xiao-ming, SHI Jun-yi, ZHOUCheng-li.  Research advance in butterfly diapause . Journal of Zhejiang A&F University, 2007, 24(4): 504-510.
    [14] LI Xiao-ping, ZHOUDing-guo.  Influence of temperature on physical and chemical properties of rice straw . Journal of Zhejiang A&F University, 2007, 24(5): 528-532.
    [15] WANG Jun-hui, ZHANG Shou-gong, MA Chang-geng, LIU Jiao-mei, CHEN Yong-guo, CHEN Hai-qing.  Actualities and expectation of techniques for accelerating Picea seedling growth . Journal of Zhejiang A&F University, 2005, 22(3): 350-354.
    [16] SU Ming-shen, YE Zheng-wen, WU Yu-liang, LI Sheng-yuan, QIAN Jin, ZHANG Jun-qiang.  Effect of temperature on breaking dormancy of peach cultivars . Journal of Zhejiang A&F University, 2005, 22(1): 12-15.
    [17] XIANG Wen-hua, TIAN Da-lun, YAN Wen-de, LUO Yong.  Photosynthetic responses of Quercus fabri leaves to increase in CO2 concentration and temperature . Journal of Zhejiang A&F University, 2004, 21(3): 247-253.
    [18] ZHANG Fei-ping, CAI Qiu-Jing, LU Feng-mei, ZHONG Jing-hui.  Effect of sunshine and temperature on Aponychus corpuzae . Journal of Zhejiang A&F University, 2001, 18(1): 66-68.
    [19] Chen Guorui, Ye Lin, Wang Wei, Yu Yiwu, Li Tianyou..  Regulation Effects of Two Kinds of Forests in Northern Zhejiang on Temperature and Humidity . Journal of Zhejiang A&F University, 1994, 11(2): 143-150.
    [20] Chen Guorui Li Tianyou, Yu Yiwu, Jian Qiuyi, .  Effect of Broadleaved Evergreen Forest in Hangzhou on Temperature and Humidity in the Forest . Journal of Zhejiang A&F University, 1994, 11(2): 151-158.
  • [1]
    GU Fangyuan, CHEN Zhaoyin, SHI Jiaji, et al. Advance in cellulose and its development tendency[J]. J Microbiol, 2008, 28(1):83-87.
    [2]
    KONG Yuping, HUANG Qingchun, LIU Manhui, et al. Parametric optimization on the sensitive determination of midgut-amylase in larvae of Mythimna separata Walker[J]. Acta Entomol Sin, 2007, 50(10):981-988.
    [3]
    MORGAN E D. Biosynthesis in Insects[M]. Cambridge:Royal Society of Chemistry, 2010.
    [4]
    SUI Yiping, WANG Jinxing, ZHAO Xiaofan. Effects of classical insect hormones on the expression profiles of a lipase gene from the cotton bollworm (Helicoverpa armigera)[J]. Insect Mol Biol, 2008, 17(5):523-529.
    [5]
    ZENG F, COHEN A C. Comparison of α-amylase and protease activities of a zoophytophagous and two phytozoophagous Heteroptera[J]. Comp Biochem Physiol A Mol Integr Physiol, 2000, 126(1):101-106.
    [6]
    JIA Bin, TAN Yao, FU Xiaotong, et al. Effect of host plants on development, reproduction, and digestive enzyme activity in Lygus pratensis[J]. Pratacultural Sci, 2018, 35(8):1975-1984.
    [7]
    LI Yiqiong, YAO Yuxin, PENG Zhengqiang, et al. Effect of palm tree leaves with different growth phases on midgut digestive enzyme activity of Brontispa longissima[J]. Jiangsu Agric Sci, 2017, 45(7):94-97.
    [8]
    JIANG Lina, QIAN Lei, XI Chao, et al. Effects of elevated CO2 on the digestive enzyme activities in the adults of Frankliniella occidentalis and F. intonsa (Thysanoptera:Thripidae) on different host plants[J]. Acta Entomol Sin, 2017, 60(3):237-246.
    [9]
    LIU Feng, LIU Yangyang, LOU Bao, et al. Effect of water temperature on antioxidant and digestive enzymes activities in Larimichtys polyactis[J]. Haiyang Xuebao, 2016, 38(12):76-85.
    [10]
    ZHANG Jianping, WANG Qiang, LI Xiaolu. Effect of temperature on digestive enzyme activities in Phrynocephalus forsythii and Eremias multiocellata[J]. J Sichuan Zool, 2019, 38(2):200-205.
    [11]
    HUANG Dongke, LIANG Huafang, WEN Chongqing, et al. Effects of different temperatures on the digestive enzyme activities in the Panulirus homarus[J]. Fish Modenization, 2017, 44(6):32-36, 42.
    [12]
    JIANG Min, SHAO Mingguo, ZHAO Bolin. Biology characteristic of Heterolocha jinyinhuaphaga Chu and the control methods[J]. Shandong For Sci Technol, 2005(1):62-63.
    [13]
    ZHANG Wenran, GAO Dianhua, LIU Aihua. Relationships between honeysuckle geometrid occurrence and meteorological condition[J]. Meteo and Envi Sci, 2007, 30(4):60-62.
    [14]
    XIANG Yuyong, LIU Kezhong, YIN Peifeng, et al. The biological characteristics of honeysuckle geometrid in Anhui Province[J]. J Chuzhou Univ, 2010, 12(5):35-37.
    [15]
    WANG Guangjun, ZHANG Guoyan, WANG Jiangrong. Occuring laws of Heterolocha jinyinhuaphaga Chu and the control methods[J]. Chin Plant Prot, 2005, 25(3):22-23.
    [16]
    NI Yunxia, LIU Xintao, LIU Yuxia, et al. Pesticide control to Heterolocha jinyinhuaphaga Chu[J]. J Henan Agric Sci, 2006(12):78-79.
    [17]
    XIANG Yuyong, PENG Jingjing, ZHANG Fan, et al. Effects of temperature on the feeding capacity and food utilization efficiency of Heterolocha jinyinhuaphaga Chu larvae[J]. J Environ Entomol, 2015, 37(6):1158-1162.
    [18]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2):248-254.
    [19]
    LI Zhigang, HAN Shichou, GUO Mingfang, et al. Effects of feeding on different food plants on nutritional utilization and midgut enzyme activities in Actinote anteas (Lepidoptera:Nymphalidae)[J]. Acta Entomol Sin, 2005, 48(5):674-678.
    [20]
    WRIGHT M K, BRANDT S L, COUDRON T A, et al. Characterization of digestive protelytic activity in Lygus hesperus Knighr(Hemiptera:Miridae)[J]. J Insect Physiol, 2006, 52(7):717-728.
    [21]
    XIANG Yuyong, CHEN Yang, YIN Peifeng. Feeding preference of honeysuckle geometrid Heterolocha jinyinhuaphaga Chu to different varieties of honeysuckle[J]. J Plant Prot, 2016, 43(5):745-751.
    [22]
    KOTKAR H M, SARATE P J, TAMHANE V A, et al. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants[J]. J Insect Physiol, 2009, 55(8):663-670.
    [23]
    LI Ya, CHENG Lisheng, PENG Zhengqiang, et al. Influence of developmental stage of host plant leaves on the larval development and survival of Brontispa longissima(Gestro)[J]. Trop Agric Sci, 2006, 26(5):17-20.
    [24]
    XIANG Xiao, ZHOU Xinghua CHEN Jian, et al. Effect of temperature on the activities of digestive enzymes in catfish (Silurus asotus Linnaeus) in the Jialing River[J]. J Southwest Univ Nat Sci Ed, 2013, 35(11):67-73.
    [25]
    RU Xiaoshang, GAO Tianxiang, LIU Shilin, et al. Effects of temperature on digestive and metabolic enzymes activities of sea cucumber (Apostichopus japonicus) broodstock[J]. Mar Sci, 2015, 39(3):1-6.
    [26]
    ZHANG Wenhui, LIU Guangjie. A review on plant secondary substances in plant resistances to insect pest[J]. Chin Bull Bot, 2003, 20(5):552-530.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article views(1293) PDF downloads(21) Cited by()

Related
Proportional views

Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae

doi: 10.11833/j.issn.2095-0756.2020.02.016

Abstract:   Objective  This research aims to study the effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae, and lay a foundation for further research on their physiological and biochemical mechanism of environmental adaptation.  Method  Effects of these factors on digestive enzyme activities in H. jinyinhuaphaga larvae were studied through ultraviolet spectrophotometry and burette in laboratory by using 3, 5-dinitrosalicylic acid method, fulin-phenolic method, and standard sodium hydroxide solution titration method.  Result  Digestive enzyme activities of each H. jinyinhuaphaga larva differed after feeding on 'Jiufeng No. 1', 'Xiangshui No. 1', 'Xiangshui No. 2' and a wild variety of Lonicera japonica. The H. jinyinhuaphaga larvae feeding on the wild variety had the highest amylase, sucrase and protease activities, and the lowest lipase activity. The activities in the 1st instar larva were 18.37, 26.45, 22.31 and 5.54 mmol·g-1·min-1 respectively. The four digestive enzyme activities all increased with larval ages. Compared with the 1st instar larvae, the 5th instar larvae, after feeding on the four cultivars, displayed an increase in amylase activities by 33.39%, 27.48%, 33.31% and 45.29%, an increase in sucrase activities by 19.12%, 15.02%, 14.64% and 29.64%, an increase in protease activities by 25.55%, 18.69%, 21.69% and 41.46%, and an increase in lipase activities by 84.95%, 68.04%, 68.41% and 77.80%. In the range of 16-34℃, the activities of the four digestive enzymes all showed a tendency of first increasing and then decreasing with the rise of temperature. The highest amylase activities were observed at 22℃ in the larvae of the 1st-5th instar, which were 19.95, 20.57, 21.79, 23.64 and 25.86 mmol·g-1·min-1. The sucrase activities of the 1st-5th instar larvae were the highest at 22℃, which were 27.65, 28.89, 29.85, 31.45 and 32.89 mmol·g-1·min-1. The protease activities of the 1st-5th instar larvae were the highest at 25℃, which were 21.65, 22.76, 23.43, 25.71 and 26.98 mmol·g-1·min-1. The lipase activities of the 1st-5th instar larvae were the highest at 28℃, which were 7.38, 8.49, 9.81, 11.33 and 13.21 mmol·g-1·min-1. Two-way ANOVA showed that the interaction between host plants and larval ages, as well as the interaction between temperatures and larval ages, had no significant effect on the four digestive enzyme activities.  Conclusion  Host plants and temperatures can affect digestive enzyme activities of H. jinyinhuaphaga larvae.

XIANG Yuyong, SUN Xing, YIN Peifeng. Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae[J]. Journal of Zhejiang A&F University, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016
Citation: XIANG Yuyong, SUN Xing, YIN Peifeng. Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae[J]. Journal of Zhejiang A&F University, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016
  • 植食性昆虫通过取食寄主植物来获取生长发育所需的糖类、蛋白质和脂肪等营养物质。昆虫中肠上皮细胞能形成和分泌消化酶,将这些营养物质消化分解成小分子物质供生长发育需要,如纤维素酶可将纤维素水解成葡萄糖[1];α-淀粉酶可将淀粉等多糖水解成为麦芽糖、葡萄糖、果糖等,参与体内的能量代谢[2];蛋白酶能将蛋白质水解为氨基酸,为昆虫的生长和繁殖提供氮源[3];脂肪酶可将三酰基甘油、磷脂、酰基甘油分解生成游离脂肪酸[4]。食性不同的昆虫消化酶种类和活性不同,食性相同的昆虫取食不同的寄主,甚至同种不同生长阶段的寄主,消化酶活性也存在差异[5]。如贾冰等[6]报道:在棉花Gossypium hirsutum和苜蓿Mdicago sativa上饲养牧草盲蝽Lygus pratensis,成虫的淀粉酶活性显著高于其他供试植物。李艺琼等[7]报道:椰心叶甲Brontispa longissima 5龄幼虫取食椰树Cocos nucifera半展叶、展叶后,中肠的蔗糖酶、淀粉酶、蛋白酶及脂肪酶活性均比取食心叶的幼虫显著下降。同时,环境因子的变化也会影响昆虫体内消化酶的活性及随后的生理过程。姜丽娜等[8]报道:随着二氧化碳浓度的升高,四季豆Phaseolus vulgaris、黄瓜Cucumis sativus、辣椒Capsicum annuum和茼蒿Chrysanthemum coronarium饲养的西花蓟马Frankliniella occidentalis和花蓟马Frankliniella intonsa成虫体内的淀粉酶活性均降低,脂肪酶和胰蛋白酶的活性则升高。然而, 有关温度对消化酶活性的影响以鱼类、爬行类、甲壳类动物研究得较多[9-11]。关于温度对昆虫消化酶活性的影响还未见相关报道。消化酶活性的高低决定了昆虫对营养物质消化、吸收的能力,从而影响昆虫生长发育速度。研究寄主植物及环境因子对昆虫消化酶活性的影响,可为深入探讨昆虫与环境适应性的生理生化机制奠定基础。金银花尺蠖Heterolocha jinyinhuaphaga属鳞翅目Lepidoptera尺蛾科Geometridae昆虫,别名拱腰虫,是金银花Lonicera japonica主要食叶害虫之一,常将金银花叶片咬成缺刻或孔洞,甚至全部吃光,常造成金银花的大面积减产,甚至成片死亡,给金银花生产带来严重损失[12-14]。目前,国内关于金银花尺蠖生物学特性及防治已有较多研究[12-16],而寄主植物及环境因子对其幼虫消化酶活性的影响还未见相关报道。本研究探讨了不同寄主植物、温度对金银花尺蠖幼虫淀粉酶、蔗糖酶、蛋白酶和脂肪酶活性的影响,分析金银花尺蠖幼虫对不同环境因子的生理生化适应性,为深入研究金银花尺蠖环境适应性的生理生化机制提供依据。

  • 金银花尺蠖幼虫采集于安徽省明光市三界镇野生金银花上,带回,在人工气候箱(RXZ-288A型,宁波江南仪器制造厂)中饲养。设置人工气候箱光周期为14 h/10 h,温度为(25±1)℃,相对湿度为70%±7%。将幼虫放在600 mL的罐头瓶内(每瓶放10头幼虫),每天采摘新鲜的金银花叶片饲养。待其化蛹后,用湿润纱布铺于瓶底,每天定期检查羽化情况,把同日羽化的雌雄成虫配对后放于同一养虫笼内,用质量分数为10%的蔗糖水作食物,让其交配产卵。

  • 取刚孵化的金银花尺蠖幼虫,单头放在罐头瓶中,然后放在人工气候箱中[光周期设置为14 h/10 h,温度设置为(25±1)℃,相对湿度设置为70%±7%],分别用4种金银花(‘九丰1号’‘Jiufeng No. 1’、‘响水1号’‘Xiangshui No. 1’、‘响水2号’‘Xiangshui No. 2’、野生种)新鲜叶片饲养,用湿棉花包裹叶片基部以保持叶片新鲜,每天9:00更换新鲜叶片,一直饲养到5龄(根据头壳宽度判断)。每种金银花1次饲养20头幼虫,重复4次。

  • 25 ℃左右是金银花尺蠖取食的最适温度[17],因此,设16、19、22、25、28、31、34 ℃等7个温度处理,设置光照周期为14 h/10 h,相对湿度为70%。取刚孵化的金银花尺蠖幼虫,单头放在各个罐头瓶中,并放入新鲜金银花(‘九丰1号’)叶片(用湿棉花包裹叶片基部以保持叶片新鲜,每天定时更换叶片),一直饲养到5龄。每个温度处理下1次饲养20头幼虫。重复4次。

  • 每处理挑取大小一致的5龄幼虫10头,用去离子水洗净,滤纸擦干,冰浴中迅速取出中肠,加入预冷的磷酸盐缓冲溶液(PBS,0.02 mol·L-1,pH 8.0)5.0 mL,迅速研磨成匀浆,离心15 min(-4 ℃,15 000 r·min-1),取上清液作酶液。以牛血清蛋白(BSA)为标准蛋白,采用考马斯亮蓝G-250染色法测定样品蛋白含量[18]

  • 采用3, 5-二硝基水杨酸法[19]。在试管中分别加入酶液80 μL、质量分数为2%淀粉0.2 mL和0.2 mol·L-1 PBS(pH 6.0)0.8 mL,摇匀,室温下反应10 min,37 ℃水浴中保温60 min,加入3, 5-二硝基水杨酸1.0 mL终止反应,沸水浴加热5 min,冷却后于550 nm波长测吸光值。空白对照用80 μL 0.2 mol·L-1 PBS(pH 6.0)代替酶液。采用麦芽糖标准曲线计算样品反应后麦芽糖的含量。淀粉酶活性以每分钟每克样品蛋白催化水解生成麦芽糖的量(mmol·g-1·min-1)表示。重复4次。

  • 采用3, 5-二硝基水杨酸法[19]。在试管中分别加入酶液80 μL、质量分数为4%蔗糖0.2 mL和0.2 mol·L-1 PBS(pH 5.8)0.8 mL,摇匀,室温下反应10 min,37 ℃水浴中保温60 min,加3, 5-二硝基水杨酸1.0 mL终止反应,沸水浴加热5 min,冷却后于550 nm波长测吸光值。用80 μL 0.2 mol·L-1 PBS(pH 5.8)代替酶液做空白对照。采用葡萄糖标准曲线计算样品反应后葡萄糖含量。蔗糖酶活性以每分钟每克样品蛋白催化水解生成葡萄糖的量(mmol·g-1·min-1)表示。重复4次。

  • 采用福林-酚法[7]。在试管中加入酶液40 μL和质量分数为0.5%酪蛋白溶液100 μL,混匀后水浴15 min(37 ℃),加入质量分数为10%三氯乙酸100 μL,混匀,离心15 min(10 000 r · min-1,4 ℃)。取上清液150 μL,分别加入0.55 mol·L-1碳酸钠溶液750 μL和Folin-酚试剂150 μL,混匀后水浴15 min(37 ℃),然后于680 nm处测量吸光值。空白对照以缓冲液代替酶液,采用酪氨酸标准曲线计算样品反应后酪氨酸含量。蛋白酶活性以每分钟每克样品蛋白催化水解生成酪氨酸的量(mmol·g-1·min-1)表示。重复4次。

  • 采用标准氢氧化钠溶液滴定法[7]。取PBS缓冲液(0.025 mol·L-1,pH 7.5)0.5 mL,放入10 mL试管中,加入聚乙烯醇橄榄油乳液0.4 mL,摇匀,40 ℃水浴加热10 min,加入酶液0.5 mL,继续加热20 min(40 ℃水浴),加入体积分数为95%乙醇1.5 mL和1滴体积分数为1%酚酞指示剂。用标准氢氧化钠溶液(0.05 mol·L-1)滴定至微红色,记录所消耗的氢氧化钠体积。脂肪酶活性以每分钟每克样品蛋白催化水解生成脂肪酸的量(mmol·g-1·min-1)表示。对照以缓冲液代替酶液。重复4次。

  • 用SPSS 11.5进行方差分析,采用Duncan氏新复极差法在P < 0.05水平上进行差异显著性检验。

  • 取食不同金银花后,金银花尺蠖各龄幼虫的消化酶活性均不相同(表 1)。取食野生金银花的淀粉酶、蔗糖酶和蛋白酶活性最高,在1龄幼虫中分别为18.37、26.45和22.31 mmol·g-1·min-1。1龄幼虫取食野生金银花、‘九丰1号’和‘响水2号’的淀粉酶活性之间差异不显著(F3, 8=3.147,P=0.954),但与响水1号差异显著(P < 0.05);1龄幼虫取食这4种寄主植物的蔗糖酶活性之间(F3, 8=1.379,P=0.317)、蛋白酶活性(F3, 8=2.455,P=0.138)之间差异不显著。取食‘响水1号’的脂肪酶活性最高,在1龄幼虫中为7.54 mmol·g-1·min-1,取食野生金银花的脂肪酶活性最低,在1龄幼虫中为5.54 mmol·g-1·min-1。1龄幼虫取食‘九丰1号’、‘响水1号’和‘响水2号’的脂肪酶活性之间,以及取食‘响水2号’与野生金银花的脂肪酶活性之间差异不显著(F3, 8=2.238,P=0.061)。

    消化酶 寄主植物 酶活性/(mmol·g-1·min-1
    1龄 2龄 3龄 4龄 5龄
    淀粉酶 ‘九丰1号’ 17.58 ± 1.23 ABc 18.28 ± 1.42 ABc 19.73 ± 1.52 Bbc 21.21 ± 1.34 Bab 23.45 ± 1.35 ABa
    ‘响水1号’ 15.43 ± 1.18 Cc 16.13 ± 0.86 Cbc 16.87 ± 1.64 Cbc 18.35 ± 1.53 Cab 19.67 ± 1.54 Ca
    ‘响水2号’ 16.24 ± 1.11 ABc 16.95 ± 0.77 Cc 18.11 ± 1.36 BCbc 19.37 ± 1.25 BCb 21.65 ± 1.45 BCa
    野生金银花 18.37 ± 1.58 Ac 19.43 ± 1.51 Ac 22.56 ± 1.24 Ab 24.32 ± 1.65 Aab 26.69 ± 2.37 Aa
    蔗糖酶 ‘九丰1号’ 25.63 ± 1.22 Ab 26.33 ± 2.21 Ab 27.37 ± 1.59 Aab 28.46 ± 1.61 ABab 30.53 ± 2.41 ABa
    ‘响水1号’ 24.16 ± 1.77 Ab 25.23 ± 1.74 Aab 26.11 ± 1.79 Aab 27.15 ± 1.89 Bab 27.79 ± 1.66 Ba
    ‘响水2号’ 24.72 ± 1.57 Ab 25.89 ± 1.66 Aab 26.75 ± 1.63 Aab 27.81 ± 1.67 Bab 28.34 ± 1.67 Ba
    野生金银花 26.45 ± 1.33 Ac 27.61 ± 2.38 Ac 29.48 ± 2.37 Abc 31.65 ± 2.43 Aab 34.29 ± 1.41 Aa
    蛋白酶 ‘九丰1号’ 21.84 ± 1.72 Ac 22.64 ± 1.43 ABbc 23.73 ± 1.61 ABbc 25.25 ± 1.88 Bab 27.42 ± 1.67 Ba
    ‘响水1号’ 19.48 ± 0.85 Aa 20.26 ± 1.79 Ba 21.32 ± 1.87 Ba 22.26 ± 1.83 Ba 23.12 ± 2.48 Ca
    ‘响水2号’ 20.33 ± 1.69 Ac 20.95 ± 1.74 ABc 22.12 ± 1.76 Bab 23.31 ± 1.84 Bab 24.74 ± 1.65 BCa
    野生金银花 22.31 ± 1.38 Ac 23.54 ± 1.42 Ac 26.72 ± 1.57 Ab 28.83 ± 1.62 Aab 31.56 ± 2.33 Aa
    脂肪酶 ‘九丰1号’ 6.18 ± 0.86 ABd 6.96 ± 0.84 ABcd 8.24 ± 0.78 ABbc 9.31 ± 0.68 Bb 11.43 ± 0.86 ABa
    ‘响水1号’ 7.54 ± 0.71 Ad 8.16 ± 0.91 Acd 9.23 ± 0.68 Ac 10.74 ± 0.56 Ab 12.67 ± 0.82 Aa
    ‘响水2号’ 6.87 ± 0.75 ABc 7.55 ± 0.79 ABbc 8.29 ± 0.92 ABbc 8.93 ± 0.76 Bb 11.57 ± 0.94 ABa
    野生金银花 5.54 ± 0.78 Bd 6.29 ± 0.71 Bcd 7.32 ± 0.87 Bbc 8.56 ± 0.81 Bab 9.85 ± 0.73 Ba
    说明:数据为平均值+标准差。同列数据后不同大写字母和同行数据后不同小写字母均表示差异显著(P < 0.05)

    Table 1.  Change of host plants on four digestive enzymes activities in H. jinyinhuphagu larva

    金银花尺蠖幼虫取食‘九丰1号’、‘响水1号’、‘响水2号’和野生金银花的淀粉酶、蔗糖酶、蛋白酶和脂肪酶活性均随着幼虫龄期的增加而增大,5龄幼虫取食这4种金银花的淀粉酶活性分别为23.45、19.67、21.65和26.69 mmol·g-1·min-1,分别比1龄幼虫增加了33.39%、27.48%、33.31%和45.29%。5龄幼虫取食这4种金银花的蔗糖酶活性分别为30.53、27.79、28.34和34.29 mmol·g-1·min-1,分别比1龄幼虫增加了19.12%、15.02%、14.64%和29.64%。5龄幼虫取食这4种金银花的蛋白酶活性分别为27.42、23.12、24.74和31.56 mmol·g-1·min-1,分别比1龄幼虫增加了25.55%、18.69%、21.69%和41.46%。5龄幼虫取食这4种金银花的脂肪酶活性分别为11.43、12.67、11.57和9.85 mmol·g-1·min-1,分别比1龄幼虫增加了84.95%、68.04%、68.41%和77.80%。方差分析显示:寄主植物、幼虫龄期对金银花尺蠖幼虫4种消化酶活性均有显著影响(P < 0.05),但寄主植物和幼虫龄期的交互作用对金银花尺蠖幼虫4种消化酶活性没有显著影响(P>0.05)。

  • 不同温度下金银花尺蠖取食‘九丰1号’鲜叶后,各龄幼虫消化酶活性均不相同(表 2),在16~34 ℃均呈先上升后下降的趋势。1~5龄幼虫的淀粉酶活性在22 ℃最高,分别为19.95、20.57、21.79、23.64和25.86 mmol·g-1·min-1,高于或低于22 ℃,淀粉酶活性均下降;1~5龄幼虫的蔗糖酶活性也在22 ℃最高,分别为27.65、28.89、29.85、31.45和32.89 mmol·g-1·min-1,高于或低于22 ℃,蔗糖酶活性均下降;1~5龄幼虫的蛋白酶活性在25 ℃时最高,分别为21.65、22.76、23.43、25.71和26.98 mmol·g-1·min-1,高于或低于25 ℃,蛋白酶活性均下降;1~5龄幼虫的脂肪酶活性在28 ℃时最高,分别为7.38、8.49、9.81、11.33和13.21 mmol·g-1·min-1,高于或低于28 ℃,脂肪酶活性均下降。方差分析显示:温度和幼虫龄期的交互作用对金银花尺蠖幼虫4种消化酶活性没有显著影响(P>0.05)。

    消化酶 温度/℃ 酶活性/(mmol·g-1·min-1
    1龄 2龄 3龄 4龄 5龄
    淀粉酶 16 15.51 ± 1.05 CDd 17.64 ± 1.13 Bcd 18.78 ± 0.72 BCbc 20.37 ± 0.73 BCab 21.76 ± 0.87 Ba
    19 17.73 ± 0.61 Bc 19.17 ± 1.39 ABbc 20.32 ± 0.85 ABb 21.53 ± 0.82 Bab 23.31 ± 0.94 ABa
    22 19.95 ± 0.83 Ac 20.57 ± 1.44 Ac 21.79 ± 0.96 Abc 23.64 ± 0.87 Aab 25.86 ± 0.89 Aa
    25 17.82 ± 1.19 Bc 18.43 ± 1.28 ABc 19.58 ± 0.84 ABCbc 21.35 ± 0.71 Bab 23.68 ± 0.83 ABa
    28 15.87 ± 0.74 Cc 16.89 ± 0.83 Bbc 17.26 ± 0.74 CDbc 18.83 ± 0.42 CDb 21.47 ± 0.78 Ba
    31 13.74 ± 1.31 Dc 14.36 ± 1.47 Cbc 15.65 ± 0.88 DEbc 16.78 ± 0.89 DEab 18.69 ± 0.77 Ca
    34 11.45 ± 1.24 Ec 12.78 ± 1.29 Cbc 13.98 ± 1.06 Ebc 15.32 ± 0.51 Eab 16.75 ± 0.88 Ca
    蔗糖酶 16 22.72 ± 0.93 Dd 24.36 ± 0.53 Ccd 25.67 ± 0.84 BCbc 26.87 ± 0.43 Cab 28.53 ± 0.76 BCa
    19 25.31 ± 0.97 BCc 26.63 ± 0.85 Bbc 28.17 ± 0.38 ABab 29.22 ± 0.70 Bab 30.65 ± 0.96 ABa
    22 27.65 ± 0.89 Ac 28.89 ± 0.45 Ac 29.85 ± 0.99 Abc 31.45 ± 0.71 Aab 32.89 ± 0.44 Aa
    25 25.78 ± 0.36 ABc 26.65 ± 0.88 Bbc 27.76 ± 0.86 ABbc 28.91 ± 0.44 Bab 30.67 ± 0.89 ABa
    28 23.45 ± 0.71 CDc 24.57 ± 0.72 BCbc 25.61 ± 0.83 BCbc 26.78 ± 0.39 Cab 28.44 ± 0.76 BCa
    31 21.36 ± 0.70 Dc 22.46 ± 0.77 CDbc 23.55 ± 0.73 CDabc 24.76 ± 0.92 Dab 26.19 ± 1.04 CDa
    34 18.93 ± 0.42 Ec 21.15 ± 0.85 Dbc 22.39 ± 0.71 Db 23.51 ± 0.74 Dab 24.79 ± 0.95 Da
    蛋白酶 16 12.22 ± 0.62 Dd 14.38 ± 0.73 Dcd 16.13 ± 0.51 Dbc 18.37 ± 0.72 Cab 19.89 ± 0.45 Ea
    19 15.61 ± 0.79 Cd 17.23 ± 0.64 Ccd 18.31 ± 0.91 CDbc 20.57 ± 0.82 CDab 22.17 ± 0.91 DEa
    22 19.32 ± 1.02 Bc 20.19 ± 1.06 Bc 21.15 ± 0.53 ABbc 23.23 ± 0.68 Bab 24.67 ± 0.86 Ba
    25 21.65 ± 0.83 Ac 22.76 ± 0.94 Ac 23.43 ± 0.75 Abc 25.71 ± 0.81 Aab 26.98 ± 0.53 Aa
    28 18.24 ± 0.65 Bd 20.48 ± 0.47 ABcd 21.79 ± 0.89 Abc 23.52 ± 0.66 ABab 24.54 ± 0.81 BCa
    31 15.81 ± 0.39 Cc 17.67 ± 0.83 Cbc 19.22 ± 0.52 BCb 21.25 ± 0.43 BCab 22.35 ± 0.70 CDa
    34 13.55 ± 1.03 CDd 15.23 ± 0.51 CDcd 16.82 ± 0.69 Dbc 18.87 ± 0.59 Dab 20.28 ± 1.01 DEa
    脂肪酶 16 2.48 ± 0.36 Dd 3.63 ± 0.45 Dcd 4.69 ± 0.48 Dbc 5.93 ± 0.43 Dab 7.05 ± 0.40 Da
    19 3.56 ± 0.47 CDd 4.72 ± 0.39 CDcd 5.88 ± 0.41 CDbc 7.19 ± 0.55 CDab 8.43 ± 0.70 CDa
    22 4.85 ± 0.42 BCd 5.91 ± 0.46 BCcd 7.17 ± 0.82 BCbc 8.31 ± 0.67 BCab 9.86 ± 0.81 BCa
    25 6.23 ± 0.39 ABd 7.11 ± 0.73 ABcd 8.46 ± 0.66 ABbc 9.52 ± 0.61 ABb 11.68 ± 0.83 ABa
    28 7.38 ± 0.59 Ad 8.49 ± 0.72 Acd 9.81 ± 0.61 Abc 11.33 ± 0.86 Aab 13.21 ± 0.79 Aa
    31 5.83 ± 0.41 Bd 6.86 ± 0.64 ABcd 8.28 ± 0.67 ABbc 9.67 ± 0.76 ABab 11.55 ± 0.76 ABa
    34 4.26 ± 0.45 Cd 5.45 ± 0.47 BCcd 6.57 ± 0.50 BCDbc 8.12 ± 0.69 BCab 9.78 ± 0.72 BCa
    说明:数据为平均值+标准差。同列数据后不同大写字母和同行数据后不同小写字母均表示差异显著(P < 0.05)

    Table 2.  Change of temperature on four digestive enzymes activities in H. jinyinhuaphaga larva

    根据不同温度下金银花尺蠖1~5龄幼虫4种消化酶活性的变化趋势进行回归分析,回归模型见表 3。对模型进行计算,得出金银花尺蠖1~5幼龄虫淀粉酶活性最高的温度分别为21.39、20.60、20.48、20.50和21.20 ℃;蔗糖酶活性最高的温度分别为21.83、21.11、20.89、20.96和21.12 ℃;蛋白酶活性最高的温度分别为24.70、24.97、25.51、25.24和24.35 ℃;脂肪酶活性最高的温度分别为28.41、28.08、27.52、28.69和29.30 ℃。

    消化酶 幼虫龄期/龄 回归模型 相关系数 酶活性最高时的温度/℃
    淀粉酶 1 y1=0.004 1x3-0.367 5x2+10.093 0x-68.973 0.986 1 21.39
    2 y2=0.003 7x3-0.325 1x2+8.683 8x-53.542 0.990 1 20.60
    3 y3=0.004 5x3-0.381 4x2+9.960 5x-61.667 0.987 5 20.48
    4 y4=0.004 6x3-0.393 4x2+10.329 0x-63.504 0.979 3 20.50
    5 y5=0.004 1x3-0.367 1x2+10.036 0x-62.049 0.980 7 21.20
    蔗糖酶 1 y1=0.004 5x3-0.400 1x2+11.034 0x-69.967 0.987 9 21.83
    2 y2=0.005 4x3-0.459 6x2+12.185 0x-75.448 0.982 5 21.11
    3 y3=0.005 7x3-0.479 7x2+12.580 0x-76.494 0.990 8 20.89
    4 y4=0.005 9x3-0.496 0x2+13.016 0x-78.943 0.981 8 20.96
    5 y5=0.005 4x3-0.460 3x2+12.218 0x-71.690 0.984 0 21.12
    蛋白酶 1 y1=0.002 3x3-0.263 7x2+8.817 4x-71.174 0.957 9 24.70
    2 y2=0.000 1x3-0.095 2x2+ 4.566 9x-35.206 0.964 9 24.97
    3 y3=-0.000 9x3-0.010 1x2+2.272 8x-14.391 0.967 1 25.51
    4 y4=-0.000 5x3-0.039 0x2+2.923 9x-16.821 0.959 3 25.24
    5 y5=0.000 3x3-0.098 6x2+ 4.268 2x-24.965 0.954 7 24.35
    脂肪酶 1 y1=-0.003 1x3+0.196 1x2-3.636 2x+23.157 0.983 8 28.41
    2 y2=-0.003 0x3+0.189 1x2-3.524 1x+23.833 0.977 0 28.08
    3 y3=-0.003 3x3+0.206 2x2-3.851 6x+26.861 0.984 7 27.52
    4 y4=-0.003 4x3+0.220 0x2-4.228 1x+31.255 0.974 0 28.69
    5 y5=-0.003 8x3+0.246 5x2-4.658 6x+34.232 0.985 3 29.30

    Table 3.  Regression model about four digestive enzymes activities (y) in H. jinyinhuaphaga larva at different temperatures (x)

  • 昆虫体内的消化酶活性与取食密切相关。昆虫取食寄主植物后依靠消化酶将其中的营养物质转化为自身所需的物质,消化酶活性的高低在一定程度上反映了昆虫所需营养的种类,以及各类营养物质被昆虫利用的状况,常可以用来表示昆虫对植物的嗜食程度[20]。在取食不同寄主植物时,昆虫可以根据自身生长发育的需求调节体内消化酶的活性[8]。本研究表明:金银花尺蠖各龄幼虫取食野生金银花的淀粉酶、蔗糖酶、蛋白酶活性均高于其他寄主,而脂肪酶活性低于其他寄主。向玉勇等[21]研究发现:金银花尺蠖幼虫对4个品种金银花的取食量大小均从高到低依次为野生品种、‘九丰1号’、‘响水2号’、‘响水1号’,野生金银花叶片可溶性糖含量、蛋白质含量均高于其他寄主,脂肪含量低于其他寄主。这说明金银花尺蠖幼虫取食营养成分含量高的寄主时,其消化酶活性会升高。这可能是金银花尺蠖对不同寄主的一种自我生理调节,取食营养成分含量高的寄主时,通过提高自身消化酶活性分解大量的营养物质,以保证机体的快速生长。但其他种类昆虫则存在不一致的现象,如棉铃虫Helicoverpa armigera幼虫在取食糖类含量较高的寄主植物时,淀粉酶活性会下降,在取食蛋白含量高的寄主植物时,中肠蛋白酶活性会下降[22];椰心叶甲Brontispa longissima 5龄幼虫取食营养丰富的叶片后,中肠的蔗糖酶、淀粉酶、蛋白酶及脂肪酶活性均显著下降[7]。这说明取食不同寄主植物时,不同昆虫的消化酶活性变化存在差异,这些昆虫体内可能存在另一种机制,当寄主植物营养成分含量高时,利用较低的消化酶活性就可以满足机体的新陈代谢[23]。金银花尺蠖幼虫取食金银花的淀粉酶、蔗糖酶、蛋白酶和脂肪酶活性均随着幼虫龄期的增加而增大。寄主植物和幼虫龄期的交互作用对金银花尺蠖幼虫4种消化酶活性没有显著影响。

    温度是影响昆虫生理代谢过程的重要环境因子。不同温度下金银花尺蠖各龄幼虫体内淀粉酶、蔗糖酶、蛋白酶和脂肪酶活性均不一样,在16~34 ℃,这4种消化酶活性均随着温度的升高表现为先上升后下降的趋势。在波纹龙虾Panulirus homarus[11]、嘉陵江鲇Silurus asotus[24]等其他变温动物也存在类似现象。这可能是低温下这些酶的活化分子数比较少,催化食物分解的反应速率低,随着温度上升,酶的活化分子逐渐增多,催化反应速率加快,酶的催化活性增强,高温下这些酶蛋白发生变性,酶的催化活性又下降。在刺参Apostichopus japonicus[25]中却存在不一致的现象,在6~21 ℃,其胰蛋白酶与淀粉酶活力随水温升高呈先升高后降低的趋势, 而脂肪酶活力随着养殖水温升高呈下降趋势。这表明:不同种类动物的消化酶对温度的耐受性存在差异。金银花尺蠖各龄幼虫体内4种消化酶的最适温度不同,淀粉酶和蔗糖酶活性在22 ℃最高,蛋白酶活性在25 ℃时最高,脂肪酶活性在28 ℃时最高。这与金银花尺蠖的生长气候条件相吻合,金银花在春夏季生长迅速,尤其在夏季多雨期,而金银花尺蠖消化酶活性恰好在22~28 ℃最高,有利于对食物的消化,加速生长发育,导致其大发生。

    总之,寄主植物、温度均对金银花尺蠖幼虫消化酶活性产生影响,不同寄主植物不仅含有不同含量的营养物质,而且还含有不同的抑制因子以及次生代谢物质,寄主植物的任何变化都会影响消化酶的活性及随后的生理过程[26, 8]。因此,还应进一步研究不同寄主植物的次生物质与金银花尺蠖幼虫体内消化酶活性的变化情况,以更深入地阐明金银花尺蠖与环境适应性的生理生化机制。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return