留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凤阳山4种森林土壤在不同温度培养下活性有机碳的变化

张勇 胡海波 王增 黄玉洁 吕爱华 张金池 刘胜龙

张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙. 凤阳山4种森林土壤在不同温度培养下活性有机碳的变化[J]. 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
引用本文: 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙. 凤阳山4种森林土壤在不同温度培养下活性有机碳的变化[J]. 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
ZHANG Yong, HU Haibo, WANG Zeng, HUANG Yujie, LÜ Aihua, ZHANG Jinchi, LIU Shenglong. Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain[J]. Journal of Zhejiang A&F University, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
Citation: ZHANG Yong, HU Haibo, WANG Zeng, HUANG Yujie, LÜ Aihua, ZHANG Jinchi, LIU Shenglong. Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain[J]. Journal of Zhejiang A&F University, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007

凤阳山4种森林土壤在不同温度培养下活性有机碳的变化

doi: 10.11833/j.issn.2095-0756.2018.02.007
基金项目: 

浙江省森林生态效益补偿基金公共管护支出项目 2013-10

江苏省高校优势学科建设工程和长江三角洲森林生态站资助项目 2017-LYPT-155

浙江省林业科技项目 2012B17

详细信息
    作者简介: 张勇, 博士研究生, 从事林业应对气候变化研究。E-mail:zhangyong8182@163.com
    通信作者: 胡海波, 教授, 博士, 从事水土保持与林业生态工程研究。E-mail:huhb2000@aliyun.com
  • 中图分类号: S714.5

Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain

  • 摘要: 以浙江凤阳山国家级自然保护区典型常绿阔叶林、杉木Cunninghamia lanceolata林、针阔混交林、柳杉Cryptomeria fortunei林为研究对象,采用室内培养试验,研究10,20,30℃条件下4种森林土壤微生物量碳(MBC)和可溶性有机碳(DOC)的动态。结果表明:4种森林类型中,土壤总有机碳(SOC)和DOC质量分数以柳杉林为最高,MBC则以常绿阔叶林为最高,3种形态有机碳质量分数均以杉木林为最低。随着培养时间的延长,10℃下,不同森林土壤的MBC质量分数总体上呈前期下降快、后期下降慢,DOC质量分数呈先上升后下降;20℃下,不同森林土壤MBC和DOC质量分数均呈相对缓慢下降;30℃下,不同森林土壤MBC质量分数先上升后下降,DOC质量分数前期下降快、后期下降慢的趋势。同一森林土壤在不同温度条件下,土壤MBC质量分数大小顺序为30℃ > 20℃ > 10℃,土壤DOC质量分数则表现为10℃ > 20℃ > 30℃。培养56 d后,常绿阔叶林、针阔混交林土壤的MBC和DOC质量分数的下降幅度高于杉木林、柳杉林。柳杉林和常绿阔叶林SOC和DOC质量分数显著高于杉木林(P < 0.05),在较高温度条件下培养的土壤DOC质量分数较低,而MBC质量分数则较高。
  • 图  1  不同森林土壤总有机碳、微生物量碳、可溶性有机碳质量分数

    Figure  1  Contents of soil total organic carbon, microbial biomass carbon and soluble organic carbon under various stand types

    图  2  不同温度培养下森林土壤微生物量碳质量分数的动态

    Figure  2  Content dynamics of forest soil microbial biomass carbon at different temperatures

    图  3  不同温度培养下森林土壤可溶性有机碳质量分数的动态

    Figure  3  Content dynamics of forest soil soluble organic carbon at different temperatures

    图  4  土壤活性有机碳对不同温度的响应(56 d)

    Figure  4  Contents of soil soluble organic carbon at different temperatures

    表  1  各林分类型的基本情况

    Table  1.   Basic information of various stand types

    森林类型 海拔/m 坡向 坡度/(°) 林龄/a 郁闭度 平均胸径/cm 平均树高/m
    常绿阔叶林 1 390 30 46 0.85 12.0 12.0
    杉木林 1 400 28 42 0.80 20.0 14.0
    针阔混交林 1 570 26 45 0.75 16.0 9.0
    柳杉林 1 550 28 42 0.90 32.0 15.0
    下载: 导出CSV
  • [1] 刘绍辉, 方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 1997, 17(5):469-476.

    LIU Shaohui, FANG Jingyun. Effect factors of soil respiration and the temperature's effection in the global scale[J]. Acta Ecol Sin, 1997, 17(5):469-476.
    [2] 徐秋芳. 森林土壤活性有机碳库的研究[D]. 杭州: 浙江大学, 2003.

    XU Qiufang. Study on Labile Organic Carbon Pool in Forest Soils[D]. Hangzhou: Zhejiang University, 2003.
    [3] ELLERT B H, GREGORICH E G. Management-induced changes in the actively cycling fractions of soil organic matter[G]//MCFEE W W, KELLY J M. Carbon Forms and Functions in Forest Soils. Madison: Soil Science Society of America, 1995: 119-138.
    [4] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils:a review[J]. Soil Sci, 2000, 165(4):277-304.
    [5] 赵劲松, 张旭东, 袁星, 等.土壤溶解性有机质的特性与环境意义[J].应用生态学报, 2003, 14(1):126-130.

    ZHAO Jinsong, ZHANG Xudong, YUAN Xing, et al. Characteristics and environmental significance of soil dissolved organic matter[J]. Chin J Appl Ecol, 2003, 14(1):126-130.
    [6] 陈涵贞, 苏德森, 吕新, 等.武夷山常绿阔叶林土壤有机碳和微生物量碳的动态特征[J].农学学报, 2011, 1(12):38-42.

    CHEN Hanzhen, SU Desen, LÜXin, et al. Dynamic characteristics of soil organic carbon and microbial biomass carbon of evergreen broad-leaved forest in Wuyi Mountain[J]. J Agric, 2011, 1(12):38-42.
    [7] 漆良华, 范少辉, 杜满义, 等.湘中丘陵区毛竹纯林、毛竹-杉木混交林土壤有机碳垂直分布与季节动态[J].林业科学, 2013, 49(3):17-24.

    QI Lianghua, FAN Shaohui, DU Manyi, et al. Vertical distribution and seasonal dynamics of soil organic carbon in Phyllostachys edulis plantations and Ph. edulis-Cunninghamia lanceolata mixed forests in the hilly region of central Hunan, Southern China[J]. Sci Silv Sin, 2013, 49(3):17-24.
    [8] 曹建华, 潘根兴, 袁道先, 等.岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境, 2005, 14(2):224-229.

    CAO Jianhua, PAN Genxing, YUAN Daoxian, et al. Seasonal changes of dissolved organic carbon in soil:its environmental implication in karst area[J]. Ecol Environ, 2005, 14(2):224-229.
    [9] 汪伟, 杨玉盛, 陈光水, 等.罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J].生态学杂志, 2008, 27(6):924-928.

    WANG Wei, YANG Yusheng, CHEN Guangshui, et al. Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China[J]. Chin J Ecol, 2008, 27(6):924-928.
    [10] 何云, 周义贵, 李贤伟, 等.台湾桤木林草复合模式土壤微生物量碳季节动态[J].林业科学, 2013, 49(7):26-33.

    HE Yun, ZHOU Yigui, LI Xianwei, et al. Seasonal dynamics of soil microbial biomass carbon in Alnusfor mosana forest-grass compound models[J]. Sci Silv Sin, 2013, 49(7):26-33.
    [11] 刘帅, 陈玥希, 孙辉, 等.西南亚高山-高山海拔梯度上森林土壤水溶性有机碳时间动态[J].西北林学院学报, 2015, 30(1):33-38.

    LIU Shuai, CHEN Yuexi, SUN Hui, et al. Temporal dynamics of DOC in forest soil along an elevation algradient of subalpine-alpine in the southwestern China[J]. J Northwest For Univ, 2015, 30(1):33-38.
    [12] RINNAN R, STARK S, TOLVANEN A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J]. J Ecol, 2009, 97(4):788-800.
    [13] 刘荣杰, 李正才, 王斌, 等.浙西北丘陵地区次生林与杉木林土壤水溶性有机碳季节动态[J].生态学杂志, 2013, 32(6):1385-1390.

    LIU Rongjie, LI Zhengcai, WANG Bin, et al. Seasonal dynamics of soil water-soluble organic carbon in secondary forests an Chinese fir plantations in hilly region of northwest Zhejiang Province, East China[J]. Chin J Ecol, 2013, 32(6):1385-1390.
    [14] 刘纯, 刘延坤, 金光泽.小兴安岭6种森林类型土壤微生物量的季节变化特征[J].生态学报, 2014, 34(2):451-459.

    LIU Chun, LIU Yankun, JIN Guangze. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing'an Mountains, China[J]. Acta Ecol Sin, 2014, 34(2):451-459.
    [15] 王学娟, 周玉梅, 王秀秀, 等.长白山苔原生态系统土壤酶活性及微生物生物量对增温的响应[J].土壤学报, 2014, 51(1):166-175.

    WANG Xuejuan, ZHOU Yumei, WANG Xiuxiu, et al. Responses of soil enzymes in activity and soil microbes in biomass to warming in tundra ecosystem on Changbai Mountains[J]. Acta Pedol Sin, 2014, 51(1):166-175.
    [16] 周运超, 潘根兴, 李恋卿, 等.太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的响应[J].环境科学, 2003, 24(1):46-51.

    ZHOU Yunchao, PAN Genxing, LI Lianqing, et al. Change of organic carbon pools and the responses to soil warming during laboratory incubations under different temperatures of 3 kinds of paddy soils in Tai Lake region, China[J]. Environ Sci, 2003, 24(1):46-51.
    [17] 王清奎, 汪思龙, 于小军, 等.常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响[J].生态学杂志, 2007, 26(12):1918-1923.

    WANG Qingkui, WANG Silong, YU Xiaojun, et al. Soil carbon mineralization potential and its effect on soil active organic carbon in evergreen broadleaved forest and Chinese fir plantation[J]. Chin J Ecol, 2007, 26(12):1918-1923.
    [18] 王莲阁, 高岩红, 丁长欢, 等.变温环境对典型石灰土有机碳矿化的影响[J].环境科学, 2014, 35(11):4291-4297.

    WANG Liange, GAO Yanhong, DING Changhuan, et al. Effects of variable temperature on organic carbon mineralization in typical limestone soils[J]. Environ Sci, 2014, 35(11):4291-4297.
    [19] 洪起平, 丁平, 丁炳扬.凤阳山自然资源考察与研究[M].北京:中国林业出版社, 2007.
    [20] 陈琴, 方升佐, 田野.杨树和桤木落叶混合分解对土壤微生物生物量的影响[J].应用生态学报, 2012, 23(8):2121-2128.

    CHEN Qin, FANG Shengzuo, TIAN Ye. Effects of the decomposition of poplar and alder mixed leaf litters on soil microbial biomass[J]. Chin J Appl Ecol, 2012, 23(8):2121-2128.
    [21] VANCE E D, BROOKS P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Boil Biochem, 1987, 19(6):703-707.
    [22] 李忠佩, 张桃林, 陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报, 2004, 41(4):544-552.

    LI Zhongpei, ZHANG Taolin, CHEN Biyun. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedol Sin, 2004, 41(4):544-552.
    [23] 刘荣杰, 吴亚丛, 张英, 等.中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较[J].植物生态学报, 2012, 36(5):431-437.

    LIU Rongjie, WU Yacong, ZHANG Ying, et al. Comparison of soil labile organic carbon in Chinese fir plantations and natural secondary forests in north subtropical areas of China[J]. Chin J Plant Ecol, 2012, 36(5):431-437.
    [24] 闫恩荣, 王希华, 陈小勇.浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响[J].生态学报, 2007, 27(4):1646-1655.

    YAN Enrong, WANG Xihua, CHEN Xiaoyong. Impacts of evergreen broad-leaved forest, degradation on soil nutrients and carbon pools in Tiantong, Zhejiang Province[J]. Acta Ecol Sin, 2007, 27(4):1646-1655.
    [25] 杨玉盛, 郭剑芬, 陈光水, 等.森林生态系统DOM的来源、特性及流动[J].生态学报, 2003, 23(3):547-558.

    YANG Yusheng, GUO Jianfen, CHEN Guangshui, et al. Origin, property and flux of dissolved organic matter in forest ecosystems[J]. Acta Ecol Sin, 2003, 23(3):547-558.
    [26] 李岩, 方晰, 项文化, 等.湘中丘陵区4种森林土壤水溶性有机碳含量及其与土壤养分的关系[J].土壤通报, 2014, 45(6):1483-1490.

    LI Yan, FANG Xi, XIANG Wenhua, et al. Contents of soil dissolved organic carbon and its relationships withsoil nutrients in four subtropical forests in central southern China[J]. Chin J Soil Sci, 2014, 45(6):1483-1490.
    [27] 张勇, 胡海波, 黄玉洁, 等.不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J].环境科学研究, 2015, 28(12):1870-1878.

    ZHANG Yong, HU Haibo, HUANG Yujie, et al. Effect of different vegetation restoration models on molecular structure and stability of soil organic carbon[J]. Res Environ Sci, 2015, 28(12):1870-1878.
    [28] 马丽娜, 王喜明, 代万安, 等.西藏高原日光温室菜地土壤碳、氮矿化特征研究[J].中国生态农业学报, 2013, 21(11):1340-1349.

    MA Lina, WANG Ximing, DAI Wanan, et al. Comparative analysis of carbon and nitrogen mineralization in soils under alpine meadow, farmland and greenhouse conditions in Tibet[J]. Chin J Eco-Agric, 2013, 21(11):1340-1349.
    [29] 苏冬雪, 王文杰, 邱岭, 等.落叶松林土壤可溶性碳、氮和官能团特征的时空变化及与土壤理化性质的关系[J].生态学报, 2012, 32(21):6705-6714.

    SU Dongxue, WANG Wenjie, QIU Ling, et al. Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties[J]. Acta Ecol Sin, 2012, 32(21):6705-6714.
    [30] LOVELL R D, JARVIS S C. Soil microbial biomass and activity in soil from different grassland management treatments stored under controlled conditions[J]. Soil Biol Biochem, 1998, 30(14):2077-2085.
    [31] 蔡晓布, 彭岳林, 于宝政, 等.不同状态高寒草原主要土壤活性有机碳组分的变化[J].土壤学报, 2013, 50(2):93-101.

    CAI Xiaobu, PENG Yuelin, YU Baozheng, et al. Changes in major fractions of active soil organic carbon in alpine steppes different in states[J]. Acta Pedol Sin, 2013, 50(2):93-101.
    [32] GREGORICH E G, LIANG B C, DRURY C F. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agriculture soils[J]. Soil Biol Biochem, 2000, 32(5):581-587.
    [33] 赵满兴, KALBITZ K, 周建斌.黄土区几种土壤培养过程中可溶性有机碳、氮含量及特性的变化[J].土壤学报, 2008, 45(3):476-484.

    ZHAO Manxing, KARSTEN K, ZHOU Jianbin. Variation of content and structural characteristics of dissolved organic carbon and nitrogen in soluble organic matter during mianeralization of several soils in the loess region[J]. Acta Pedol Sin, 2008, 45(3):476-484.
    [34] ZOGG G P, ZAK D R, RINGELBERG D B, et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Sci Soc Am J, 1997, 61(2):475-481.
    [35] 李恋卿, 潘根兴, 龚伟, 等.太湖地区几种水稻土的有机碳储存及其分布特性[J].科技通报, 2000, 16(6):421-426.

    LI Lianqing, PAN Genxing, GONG Wei, et al. Organic carbon storage in selected paddy soils in Taihu Lake region and their occurrence[J]. Bull Sci Technol, 2000, 16(6):421-426.
    [36] 王翠萍.不同土壤微生物量碳与有机碳矿化的关系研究[J].广东农业科学, 2013(11):52-54.

    WANG Cuiping. The relationship of soil organic carbon andmineralization to themicrobial biomass content (MBC) under the conditions of different utilization types with soil[J]. Guangdong Agric Sci, 2013(11):52-54.
    [37] 石玲, 戴万宏.宣城红壤微生物量碳含量及其与土壤有机碳矿化的关系[J].土壤通报, 2009, 40(3):547-551.

    SHI Ling, DAI Wanhong. Microbial biomass carbon content and its relations to soil organic carbon mineralization in red soils in Xuancheng, Anhui Province[J]. Chin J Soil Sci, 2009, 40(3):547-551.
    [38] KIRSCHBAUM M U F. Will changes in soil organic matter act as a positive or negative feedback on global warming[J]. Biogeochemistry, 2000, 48(1):21-51.
  • [1] 金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁.  浙江省公益林生物多样性和立地对生物量的影响 . 浙江农林大学学报, 2021, 38(6): 1083-1090. doi: 10.11833/j.issn.2095-0756.20200696
    [2] 朱荣玮, 葛之葳, 阮宏华, 徐瑾, 彭思利.  外源氮输入下土壤有机碳与土壤微生物生物量碳分形特征 . 浙江农林大学学报, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
    [3] 王艳芳, 刘领, 悦飞雪, 李冬, 上官周平.  退耕还林工程对河南省森林地上碳储量的影响 . 浙江农林大学学报, 2019, 36(3): 507-514. doi: 10.11833/j.issn.2095-0756.2019.03.011
    [4] 施健健, 蔡建国, 刘朋朋, 魏云龙.  杭州花港观鱼公园森林固碳效益评估 . 浙江农林大学学报, 2018, 35(5): 829-835. doi: 10.11833/j.issn.2095-0756.2018.05.006
    [5] 杨杰, 项婷婷, 姜培坤, 吴家森, 柯和佳.  绿竹生态系统植硅体碳积累与分布特征 . 浙江农林大学学报, 2016, 33(2): 225-231. doi: 10.11833/j.issn.2095-0756.2016.02.006
    [6] 袁振花, 张茂震, 郭含茹, 秦立厚.  基于空间协同仿真模拟的开化县森林碳估计 . 浙江农林大学学报, 2016, 33(3): 384-393. doi: 10.11833/j.issn.2095-0756.2016.03.003
    [7] 何涛, 孙玉军.  基于InVEST模型的森林碳储量动态监测 . 浙江农林大学学报, 2016, 33(3): 377-383. doi: 10.11833/j.issn.2095-0756.2016.03.002
    [8] NGUYENThiHuongGiang, 张齐生.  竹集成材高频热压过程中板坯内温度的变化趋势 . 浙江农林大学学报, 2015, 32(2): 167-172. doi: 10.11833/j.issn.2095-0756.2015.02.001
    [9] 郭含茹, 张茂震, 徐丽华, 袁振花, 陈田阁.  基于地理加权回归的区域森林碳储量估计 . 浙江农林大学学报, 2015, 32(4): 497-508. doi: 10.11833/j.issn.2095-0756.2015.04.002
    [10] 郑世伟, 江洪, 唐敏忠.  天目山地区大气酸沉降的动态特征 . 浙江农林大学学报, 2015, 32(2): 188-194. doi: 10.11833/j.issn.2095-0756.2015.02.004
    [11] 张洋, 慎佳泓, 张方钢.  西湖风景名胜区森林群落结构特征与动态 . 浙江农林大学学报, 2014, 31(4): 589-596. doi: 10.11833/j.issn.2095-0756.2014.04.015
    [12] 张佳佳, 傅伟军, 杜群, 张国江, 姜培坤.  浙江省森林凋落物碳密度空间分布的影响因素 . 浙江农林大学学报, 2013, 30(6): 814-820. doi: 10.11833/j.issn.2095-0756.2013.06.003
    [13] 杜群, 徐军, 王剑武, 张峰, 季碧勇.  浙江省森林碳分布与地形的相关性 . 浙江农林大学学报, 2013, 30(3): 330-335. doi: 10.11833/j.issn.2095-0756.2013.03.004
    [14] 孙翀, 刘琪璟.  北京主要森林类型碳储量变化分析 . 浙江农林大学学报, 2013, 30(1): 69-75. doi: 10.11833/j.issn.2095-0756.2013.01.010
    [15] 徐秋芳, 姜培坤, 陆贻通.  不同施肥对雷竹林土壤微生物功能多样性影响初报 . 浙江农林大学学报, 2008, 25(5): 548-552.
    [16] 杨芳, 吴家森, 钱新标, 吴丽君.  不同施肥雷竹林土壤微生物量碳的动态变化 . 浙江农林大学学报, 2006, 23(1): 70-74.
    [17] 姜培坤, 徐秋芳, 俞益武.  土壤微生物量碳作为林地土壤肥力指标 . 浙江农林大学学报, 2002, 19(1): 17-19.
    [18] 姜培坤, 徐秋芳, 钱新标, 张瑞华, 杨飞峰.  雷竹林地覆盖增温过程中土壤化学性质的动态变化 . 浙江农林大学学报, 1999, 16(2): 123-130.
    [19] 黄坚钦.  鹅掌楸雌配子体发育及淀粉动态观察 . 浙江农林大学学报, 1998, 15(2): 164-169.
    [20] 陈国瑞, 叶林, 王伟, 俞益武, 李天佑.  浙北不同森林类型调温调湿效应的异同性 . 浙江农林大学学报, 1994, 11(2): 143-150.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.02.007

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2018/2/243

图(4) / 表(1)
计量
  • 文章访问数:  2793
  • HTML全文浏览量:  539
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-25
  • 修回日期:  2017-05-19
  • 刊出日期:  2018-04-20

凤阳山4种森林土壤在不同温度培养下活性有机碳的变化

doi: 10.11833/j.issn.2095-0756.2018.02.007
    基金项目:

    浙江省森林生态效益补偿基金公共管护支出项目 2013-10

    江苏省高校优势学科建设工程和长江三角洲森林生态站资助项目 2017-LYPT-155

    浙江省林业科技项目 2012B17

    作者简介:

    张勇, 博士研究生, 从事林业应对气候变化研究。E-mail:zhangyong8182@163.com

    通信作者: 胡海波, 教授, 博士, 从事水土保持与林业生态工程研究。E-mail:huhb2000@aliyun.com
  • 中图分类号: S714.5

摘要: 以浙江凤阳山国家级自然保护区典型常绿阔叶林、杉木Cunninghamia lanceolata林、针阔混交林、柳杉Cryptomeria fortunei林为研究对象,采用室内培养试验,研究10,20,30℃条件下4种森林土壤微生物量碳(MBC)和可溶性有机碳(DOC)的动态。结果表明:4种森林类型中,土壤总有机碳(SOC)和DOC质量分数以柳杉林为最高,MBC则以常绿阔叶林为最高,3种形态有机碳质量分数均以杉木林为最低。随着培养时间的延长,10℃下,不同森林土壤的MBC质量分数总体上呈前期下降快、后期下降慢,DOC质量分数呈先上升后下降;20℃下,不同森林土壤MBC和DOC质量分数均呈相对缓慢下降;30℃下,不同森林土壤MBC质量分数先上升后下降,DOC质量分数前期下降快、后期下降慢的趋势。同一森林土壤在不同温度条件下,土壤MBC质量分数大小顺序为30℃ > 20℃ > 10℃,土壤DOC质量分数则表现为10℃ > 20℃ > 30℃。培养56 d后,常绿阔叶林、针阔混交林土壤的MBC和DOC质量分数的下降幅度高于杉木林、柳杉林。柳杉林和常绿阔叶林SOC和DOC质量分数显著高于杉木林(P < 0.05),在较高温度条件下培养的土壤DOC质量分数较低,而MBC质量分数则较高。

English Abstract

张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙. 凤阳山4种森林土壤在不同温度培养下活性有机碳的变化[J]. 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
引用本文: 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙. 凤阳山4种森林土壤在不同温度培养下活性有机碳的变化[J]. 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
ZHANG Yong, HU Haibo, WANG Zeng, HUANG Yujie, LÜ Aihua, ZHANG Jinchi, LIU Shenglong. Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain[J]. Journal of Zhejiang A&F University, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
Citation: ZHANG Yong, HU Haibo, WANG Zeng, HUANG Yujie, LÜ Aihua, ZHANG Jinchi, LIU Shenglong. Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain[J]. Journal of Zhejiang A&F University, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
  • 土壤有机碳分解并释放二氧化碳的过程是土壤重要的生物化学过程,对维持土壤碳库的动态平衡和温室气体的形成起着重要作用[1],并直接关系到养分循环及土壤质量。土壤微生物呼吸是由微生物活动利用有机碳引起的,作为原始驱动力,微生物量碳(MBC)含量的动态和周转与微生物呼吸有着密切关系[2]。微生物呼吸主要以可溶性有机碳(DOC)为碳源,有机碳的解聚和溶解是微生物呼吸的先决条件,有机碳在转化为二氧化碳(CO2)前通常必须先进入溶液中形成DOC[3]。可以说,在土壤微生物呼吸过程中DOC同样起着关键作用[4-5]。温度是影响土壤MBC和DOC含量重要的外部环境因子。大量研究表明:在自然条件下的季节性升温后森林土壤MBC含量显著升高[6-7],而DOC则明显降低[8-9],但也有部分研究得出相反的结果[10-11]。RINNAN等[12]通过对样地实施增温处理时发现在增温到第9年,土壤MBC相比对照地降低,而到第12年却又显示没有明显差异。由于野外土壤生态系统是一个复杂环境体系,且不同研究区域、林分类型[13-14]、处理时间及取样尺度都有可能导致两者对温度的响应方向和程度不同[15]。因此,要进一步理清森林土壤MBC和DOC含量与温度变化的关系机制,还需要结合室内培养实验,排除和控制一些不必要的影响因素。目前,一些学者在这方面进行过一定的探索研究[16-18],但各研究的侧重点有所不同,涵盖的内容还不尽全面。调查结果显示:浙江凤阳山国家级自然保护区原生地带性常绿阔叶林遭受过大规模“判青山”毁林破坏,现存的人工林是由植被破坏后种植的杉木Cunninghamia lanceolata和柳杉Cryptomeria fortunei等针叶树种形成,同时还存在大面积通过自然飞籽传播形成的黄山松Pinus taiwanensis针阔混交林和自然恢复形成的次生常绿阔叶林。上述林分类型在浙江、福建、江西等中国东部中亚热带地区广泛分布,具有一定的区域典型性和代表性。本研究通过室内不同温度培养实验,重点研究微生物呼吸过程中该4种林分土壤MBC和DOC质量分数的动态,明确温度及林分因子对两者的影响程度,并分析因果机理。在当前全球变暖的大背景下,为揭示森林土壤碳循环对气候变化的响应特征及环境驱动机制提供科学参考。

    • 研究区位于浙江省龙泉市凤阳山国家级自然保护区(27°46′~27°58′N, 119°06′~119°15′E),属于武夷山脉东伸的洞宫山系。保护区属亚热带湿润季风气候,雨水充沛,四季分明。年平均气温为12.3 ℃,年均降水量2 325.0 mm[19],雨季集中在4-6月。土壤为黄壤,质地为中壤土,土层厚度为60~80 cm。

    • 在研究区分别选取典型的常绿阔叶林(主要树种有木荷Schima superba, 甜槠Castanopsis eyrei,光皮桦Betula luminfera,短尾柯Lithocarpus brevicaudatus),杉木林,针阔混交林(主要树种有黄山松Pinus taiwanensis,中华石楠Photinia beauverdiana,亮叶水青冈Fagus lucida,华东山柳Clethra barbinervis,木荷)与柳杉林为研究对象。4种不同森林的林龄、气候、立地条件及恢复前植被等基本一致,且在生长过程中未受到人为干扰,即4种不同森林是在相同条件下进行演替的。在每种森林内设置3个20 m × 20 m的重复固定样地,共计12个固定样地,对样地进行植物本底调查(表 1)。

      表 1  各林分类型的基本情况

      Table 1.  Basic information of various stand types

      森林类型 海拔/m 坡向 坡度/(°) 林龄/a 郁闭度 平均胸径/cm 平均树高/m
      常绿阔叶林 1 390 30 46 0.85 12.0 12.0
      杉木林 1 400 28 42 0.80 20.0 14.0
      针阔混交林 1 570 26 45 0.75 16.0 9.0
      柳杉林 1 550 28 42 0.90 32.0 15.0
    • 于2014年8月,在各个样地内按S型设置4个采集点,取0~20 cm表层土,混合后作为该样地的土壤样品。土样用冷藏箱迅速带回实验室后,剔除石砾、植物残根等。新鲜土样过2 mm筛后直接用于室内培养及活性有机碳的测定;另一部分风干后用于土壤有机碳的测定。

    • 将相当于干质量120 g的新鲜土样分别装入高14.3 cm内径10.7 cm的圆柱状塑料瓶中,调整土壤水分含量至80%。瓶口采用组培所用的封口膜进行封口,以减少水分散失,同时在每个瓶的封口膜上扎15个左右细孔,保证空气的自由流通[20]。先将装有土样的塑料瓶在20 ℃中预备培养3 d,然后分别放入10 ℃,20 ℃,30 ℃的3个培养箱中进行暗培养,培养期间通过称量法定期补充水分以保持土壤含水量不变。在培养后的第7天、第14天、第28天、第56天取样,测定土壤微生物量碳、可溶性有机碳质量分数。另外,在培养前还需先测定土样的微生物量碳和可溶性有机碳的初始质量分数。

    • 土壤有机碳(SOC)采用硫酸重铬酸钾-外加热法;微生物量碳(MBC)采用氯仿熏蒸浸提法[21],用0.5 mol·L-1硫酸钾浸提熏蒸和未熏蒸土样,m(水):m(土)比为4:1,后在有机碳自动分析仪(TOC-2500,日本)上直接测定浸提液中有机碳质量分数。微生物量碳质量分数=CE/0.45,其中,0.45为转换系数,CE为熏蒸和未熏蒸土样浸提液中的有机碳质量分数的差值;可溶性有机碳(DOC)质量分数=未熏蒸土样浸提液中的有机碳质量分数[22]

    • 采用SPSS 13. 0对数据进行描述统计,然后进行单因素方差分析,并用最小显著差法(LSD)进行多重比较。

    • 图 1可见:不同森林类型土壤SOC,MBC和DOC质量分数存在着一定的差异。4种森林类型中,土壤SOC和DOC质量分数以柳杉林为最高,MBC则以常绿阔叶林为最高,3种形态有机碳质量分数均以杉木林为最低。常绿阔叶林和柳杉林土壤SOC和DOC质量分数显著高于杉木林(P<0.05),常绿阔叶林土壤MBC质量分数显著高于杉木林(P<0.05)。针阔混交林土壤SOC,MBC和DOC质量分数处于中等水平,土壤SOC和MBC质量分数与其他森林类型之间没有显著性差异(P>0.05),而DOC质量分数显著高于杉木林(P<0.05),但明显低于柳杉林(P<0.05)。

      图  1  不同森林土壤总有机碳、微生物量碳、可溶性有机碳质量分数

      Figure 1.  Contents of soil total organic carbon, microbial biomass carbon and soluble organic carbon under various stand types

    • 在不同温度培养下,土壤MBC质量分数的动态变化并不一致(图 2)。10 ℃条件下,土壤MBC质量分数随着培养时间的延长总体呈下降趋势,前期降幅大,后期降幅小(图 2A);20 ℃条件下,土壤MBC质量分数缓慢下降(图 2B);30 ℃条件下,土壤MBC质量分数先上升后下降,常绿阔叶林于第7天达到峰值,其余3种森林类型于第14天达到峰值(图 2C)。与初始土壤相比,培养56 d后,常绿阔叶林、杉木林、针阔混交林、柳杉林土壤MBC质量分数,在10 ℃培养中,降低了49.3%,48.2%,56.2%和44.8%;在20 ℃培养中,降低了33.3%,27.1%,33.7%和16.2%,在30 ℃培养中则降低了25.6%,20.8%,20.1%和12.6%。

      图  2  不同温度培养下森林土壤微生物量碳质量分数的动态

      Figure 2.  Content dynamics of forest soil microbial biomass carbon at different temperatures

    • 图 3可见:土壤DOC质量分数在不同温度条件下的动态变化也不同。10 ℃条件下,土壤DOC质量分数随培养时间的延长先上升后下降,并保持相对稳定,常绿阔叶林于第7天达到峰值,其余3种森林于第14天达到峰值;20 ℃和30 ℃条件下,土壤DOC质量分数逐渐下降,至28 d后保持相对稳定。在培养过程中,不同时间点森林土壤DOC质量分数大小顺序总体为柳杉林>针阔混交林>常绿阔叶林>杉木林。与初始土壤相比,培养56 d后,常绿阔叶林、杉木林、针阔混交林、柳杉林土壤DOC质量分数,在10 ℃培养中,降低了18.7%,6.5%,2.2%和7.0%;在20 ℃培养中,降低了46.5%,31.1%,31.8%和27.4%,在30 ℃培养中则降低了62.8%,55.0%,61.8%和49.4%。

      图  3  不同温度培养下森林土壤可溶性有机碳质量分数的动态

      Figure 3.  Content dynamics of forest soil soluble organic carbon at different temperatures

    • 相同森林土壤活性有机碳质量分数在不同温度培养下差异较大(图 4)。在培养过程中,相同时间点的土壤MBC质量分数均表现为30 ℃>20 ℃>10 ℃,而土壤DOC质量分数则表现为10 ℃>20 ℃>30 ℃。培养56 d后,针阔混交林、常绿阔叶林土壤MBC质量分数在3种温度之间均达显著水平(P<0.05),柳杉林和杉木林土壤MBC质量分数在20 ℃与30 ℃之间的差异不显著(P>0.05),但却显著高于10 ℃(P<0.05)(图 4A);针阔混交林、常绿阔叶林和柳杉林土壤DOC质量分数在3种温度之间的差异显著(P<0.05),10 ℃条件下的杉木林土壤DOC质量分数也显著高于30 ℃(P<0.05)(图 4B)。

      图  4  土壤活性有机碳对不同温度的响应(56 d)

      Figure 4.  Contents of soil soluble organic carbon at different temperatures

    • 土壤SOC质量分数的大小顺序为柳杉林>常绿阔叶林>针阔混交林>杉木林,其中柳杉林和常绿阔叶林显著高于杉木林。引起这种差异的主要原因是柳杉林和常绿阔叶林的凋落物归还量大(凋落物层厚达10~15 cm),林下灌草相对丰富(柳杉林和常绿阔叶林灌草盖度为40%~50%,杉木林为5%~8%),灌草在生长过程中分泌更多的含碳有机物[23],较厚的凋落物层还能大幅减轻土壤侵蚀强度,有效防止了表土有机碳的流失。另外,杉木造林时,采用全垦种植,且幼龄期采取过抚育间伐、枯木清理等措施,这在一定程度上造成了杉木林地有机碳的丧失[24]。土壤微生物以异养型为主,土壤中可利用碳源是调节其消长的主要因子,因而MBC质量分数与SOC总有机碳关系十分密切,并往往呈很好的正相关[2];DOC主要源于凋落物及土壤腐殖质的分解,根系分泌物和土壤微生物亦是重要来源[25],其较易为微生物所利用,很大程度上也依赖于SOC,一般随SOC质量分数的增加而增加[26]。常绿阔叶林、柳杉林DOC质量分数分别显著高于杉木林。

    • 与初始土壤相比,在3种温度条件下培养56 d后,土壤MBC和DOC质量分数下降的幅度总体表现为常绿阔叶林≈针阔混交林>杉木林>柳杉林。凤阳山常绿阔叶林、针阔混交林土壤有机碳比杉木林、柳杉林易分解,稳定性差,能较易转化为活性有机碳[27],在培养过程中,常绿阔叶林、针阔混交林土壤MBC和DOC质量分数下降幅度较大;同时杉木、柳杉等针叶林土壤中的DOC组分中含有较多复杂结构的芳香碳,而中间产物和小分子结构较少[28],生物有效性较低,导致该2种森林类型土壤DOC质量分数下降幅度较少;周运超等[16]认为土壤MBC的变化可能与不同林分微生物本身变化难易有关。同一温度培养过程中,不同森林土壤MBC和DOC质量分数在相同时间点的大小关系基本没有改变,主要原因是DOC溶出量与初始SOC质量分数有关[29],而MBC又受制于DOC。王清奎等[17]也发现室内培养前后常绿阔叶林的MBC和DOC质量分数均高于杉木林。

    • 在室内培养中,温度主要通过影响土壤微生物和酶活性对土壤MBC和DOC的产生、分解和转化起调节作用[4, 30]。8月份采样地点的平均温度在19.9 ℃左右[19],将采集的土壤在10 ℃下培养,温度的大幅降低抑制了微生物的生长繁殖,并可能使已适应当时野外环境温度条件所形成的微生物的结构与功能发生紊乱[31],其周转平衡被打破,导致培养前期各林分的MBC急剧下降,微生物对碳源的利用效率也随之降低;同时大量死亡的微生物部分转化为DOC,导致前期不同森林土壤DOC呈上升趋势。GREGORICH等[32]研究表明:土壤微生物残体是DOC的重要来源。室内培养由于缺少凋落物和根系分泌物等碳源的补充,培养后期,微生物呼吸只能依靠土壤中现存有机碳的分解来维持,DOC质量分数随着SOC质量分数下降而不断下降,当碳源不能满足微生物需求时,MBC也会逐渐下降。在20 ℃下,即在基本未改变野外温度条件下,随着微生物利用有机碳的持续进行,碳源供应成为首要限制因子,不同森林土壤MBC和DOC表现出缓慢下降趋势。赵满兴等[33]研究证明:微生物呼吸过程中,DOC中结构相对复杂、难被分解的疏水性和酚类组分比例在增加,使微生物可利用的有效成分减少,这也可能是MBC不断下降的原因。当在30 ℃下,由于温度大幅升高产生的激发效应,增强了微生物的生长繁殖能力,微生物将DOC同化为自身的碳,造成培养前期不同森林土壤MBC呈上升趋势;同时高温导致土壤酶活性提高,使低温下不能分解的有机碳得以分解[34-35],即升温也促进了DOC的析出。但从本研究结果看,还不足以弥补微生物呼吸消耗,前期不同森林土壤DOC快速下降。培养后期,随着DOC来源不足,MBC呈现下降趋势。这与王翠萍[36]、石玲等[37]采用28 ℃恒温培养研究不同土地利用方式下土壤微生物量碳的动态结论类似。

      在低于最适温度(35~45 ℃)时,许多模型都预测随温度上升,土壤微生物活性及生长繁殖能力迅速增加,吸收代谢DOC就越强[38]。本研究中同一森林土壤在不同温度下培养,相同测定时间点的MBC质量分数均为高温大于低温,而DOC质量分数均高温小于低温。

    • 4种森林类型中,土壤SOC和DOC质量分数以柳杉林为最高,MBC则以常绿阔叶林为最高,3种形态有机碳质量分数均以杉木林为最低。

      不同温度培养下土壤MBC和DOC质量分数的动态不同。10 ℃下,土壤MBC质量分数呈前期下降快、后期下降慢的趋势,DOC质量分数则先上升后下降;20 ℃下,土壤MBC和DOC质量分数均呈相对缓慢下降;30 ℃下,土壤MBC质量分数先上升后下降,DOC质量分数前期下降快、后期下降慢。同一森林土壤在不同温度条件下,MBC质量分数大小为30 ℃>20 ℃>10 ℃,DOC质量分数则表现为10 ℃>20 ℃>30 ℃。

      同一温度条件下,经过56 d的培养,常绿阔叶林、针阔混交林土壤MBC和DOC质量分数下降幅度均高于杉木林、柳杉林。

参考文献 (38)

目录

    /

    返回文章
    返回