留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2个杜仲无性系光合能力比较

朱景乐 杨超伟 杜红岩 李芳东 孙志强 杜兰英

吕渊, 蒋文伟, 过萍艳. 浙江省慈溪市附海镇生态用地研究[J]. 浙江农林大学学报, 2014, 31(2): 196-203. DOI: 10.11833/j.issn.2095-0756.2014.02.006
引用本文: 朱景乐, 杨超伟, 杜红岩, 等. 2个杜仲无性系光合能力比较[J]. 浙江农林大学学报, 2014, 31(5): 704-709. DOI: 10.11833/j.issn.2095-0756.2014.05.007
LÜ Yuan, JIANG Wenwei, GUO Pingyan. Ecological land use in Fuhai Town, Cixi City[J]. Journal of Zhejiang A&F University, 2014, 31(2): 196-203. DOI: 10.11833/j.issn.2095-0756.2014.02.006
Citation: ZHU Jingle, YANG Chaowei, DU Hongyan, et al. Photosynthetic capacity of two Eucommia ulmoides clones[J]. Journal of Zhejiang A&F University, 2014, 31(5): 704-709. DOI: 10.11833/j.issn.2095-0756.2014.05.007

2个杜仲无性系光合能力比较

DOI: 10.11833/j.issn.2095-0756.2014.05.007
基金项目: 

"十二五"国家科技支撑计划项目 2012BAD21B0502

农业科技成果转化资金项目 2012GB24320591

详细信息
    作者简介: 朱景乐, 从事杜仲高产栽培技术研究。E-mail:zhujingle1982@126.com
    通信作者: 杜红岩, 研究员, 博士生导师, 从事杜仲栽培育种研究。E-mail:dhy515@126.com
  • 中图分类号: S718.5

Photosynthetic capacity of two Eucommia ulmoides clones

  • 摘要: 为了揭示杜仲Eucommia ulmoides不同无性系光合特性变异规律, 以杜仲2个观赏型无性系的苗期叶片为材料, 分别采用Li-6400和PAM2500测定其传统光响应曲线、快速光曲线及不同温度条件下的传统光响应曲线, 通过直角双曲线模型计算其光合作用参数。结果表明:‘红叶’杜仲Eucommia elmoides ‘Hongye’的光补偿点为23.960 μmol·m-2·s-1, 光饱和点为495.940 μmol·m-2·s-1, 最大净光合速率为16.907 μmol·m-2·s-1, 暗呼吸速率为1.666 μmol·m-2·s-1, 初始斜率为0.078;‘小叶’杜仲Eucommia elmoides ‘Xiaoye’的光补偿点为26.487 μmol·m-2·s-1, 光饱和点为521.920 μmol·m-2·s-1, 最大净光合速率为18.502 μmol·m-2·s-1, 暗呼吸速率为1.674 μmol·m-2·s-1, 初始斜率为0.070;‘红叶’杜仲温度和各光合参数间存在显著的线性回归关系, 回归方程的决定系数为0.479~0.959。杜仲2个无性系的光合作用参数表明, ‘红叶’杜仲更适宜在中强光环境中生长, ‘小叶’杜仲则在强光环境下生长状况优于‘红叶’杜仲。研究揭示的2个杜仲无性系的光合作用参数及变异规律为杜仲后期生理生化特性及生态适应性研究提供了依据。
  • 生态用地研究是景观生态学重要的研究内容,其理论方法强调土地利用的合理性,目的在于阐明土地生态评价单元与其土地利用方式之间的协调程度和发展趋势[1]。综合考虑景观生态和环境要素的生态用地研究是目前城市规划、土地利用规划以及环境影响评价等研究的热点及难点问题[2-3]。景观生态安全格局是判别和建立生态基础设施的重要途径,并以景观生态学理论和方法为基础,从生态过程与格局的功能关系研究出发,判别对这些生态过程的健康与安全有着关键意义的景观格局[4]。多年来,景观格局研究都是停留在景观格局特征的描述方面[5-6],由于未能深入反映生态过程研究而受到质疑。因此,应用生态敏感性评价方法与景观生态安全理论相结合的途径,必将在未来成为研究区域生态用地格局的发展趋势。本研究以浙江省慈溪市附海镇为研究对象,应用生态敏感性评价方法和景观生态安全理论,借助地理信息空间分析技术,在研究各类生态用地合理配置及区域生态可持续发展的基础上,提出了基于生态用地评价的规划和建设目标,并试图为相关研究提供研究思路和方法。

    附海镇位于慈溪市东南部,中心位于30°07′N,121°03′E,南与观海卫镇、桥头镇接壤,西与新浦镇交界,北枕杭州湾,距离慈溪市中心15 km,总面积约为22 km2。南北约为11 km,东西在中部宽约6 km,整个区域地势平坦,呈长条状,系海洋沉积平原。母质为海积物,由长江口涌入的海泽泥沙和钱塘江下冲泥沙在潮汐动力作用下堆积而成,南部地势略高于北部。附海镇属亚热带南缘季风气候区,全年以东南风为主。气温受冷暖气团交替控制和杭州湾海水调节,气候温和湿润,平均气温为17.9 ℃。辖区自然条件独具特色,栽有大量的花卉植物,素有“花卉之乡”美誉。随着慈溪市交通干道中横线和杭州湾跨海大桥南岸连接线的开通,附海镇现已融入宁波“半小时”经济圈和上海“两小时”经济圈。

    1.2.1   数据来源与预处理

    本研究以附海镇2009年高空间分辨率航空影像(1 ∶ 5 000)为主要数据源,结合土地利用现状图、城市绿地系统规划总图及相关部门的现状调查资料作为空间信息提取的基本信息源。首先利用ENVI 4.3图像处理软件对图像进行几何校正,转换成Xian_1980坐标体系,并对图像进行拼接裁剪处理,获得研究区的影像图[7]。利用ArcGIS 9.2进行人工目视解译,结合实地调查对研究区土地利用类型分布进行矢量化,并将矢量文件通过空间分析模块(conversion tools)转换成大小为5 m × 5 m的栅格数据,最后利用ArcGIS 9.2软件的数据管理功能,将属性数据与图层数据相结合进行管理。

    景观格局指数分析景观格局指数是景观空间分析的重要方法,使生态过程与空间格局相互关联的度量成为可能,在景观格局分析与功能评价、景观规划、设计与管理等领域都具有重要作用[8-10]。景观分类是景观格局定量分析的基础,目前,有关城镇景观类型分类尚存在着不同的分类体系。本研究的景观分类,主要参照GB 50137-2011《城市用地分类与规划建设用地标准》,结合附海镇的用地特点,将研究区分为建设用地、交通用地、农田、城镇绿地、滩涂湿地、水域6种类型(表 1),以此6种类型作为城镇景观类型的基本单元,研究城镇景观生态安全和可持续发展的生态功能[11-13]。将处理过的航片栅格图导入Fragstats 3.3 软件中进行景观指数计算。根据本研究区域的特点,选择的景观格局指数有斑块数(NP),斑块类型面积(CA),斑块面积比例(PLAND),斑块密度(PD),边缘密度(ED),最大斑块指数(LPI),斑块形状指数(LSI),平均斑块面积(AREA_MN),面积加权平均形状指数(SHAPE_AM),面积加权平均分维数(FRAC_AM),景观聚集度指数(AI)等[14-18]指标对研究区整体景观格局进行初步分析。

    表  1  附海镇景观类型分类
    Table  1.  Landscape types of Fuhai Town
    序号景观类型特征
    1建设用地主要是城镇建设用地,包括居住用地、工业用地、仓储用地、广场用地和一些未利用的裸露地面等
    2交通用地主要是高速公路和一、二级公路等
    3农田主要是耕地、农田等
    4城镇绿地主要是公园绿地、附属绿地、生产绿地、防护绿地等
    5湿地及滩涂主要是滩涂、湿地
    6水域主要是江、河等水系
    下载: 导出CSV 
    | 显示表格
    1.2.3   生态敏感性评价

    生态敏感性指生态系统对人类活动干扰和自然环境变化的反应程度,可表征区域生态环境遇到干扰时产生生态环境问题的难易程度和可能性大小[19-20]。在生态敏感程度较高的区域,当受到人类不合理活动影响时,更易产生生态环境问题,应划分区域生态环境保护重点。生态敏感性评价中的指标选取是生态用地评价的核心[20],指标体系的选取应反映研究区域最主要的生态问题。通过调查与研究区域生态环境现状、主要生态问题,咨询相关专家以及参考已有类似研究指标权重体系的基础上[21-22],本研究选取对研究区生态敏感性影响较大的生态因素,即土地利用类型、距环境敏感区距离和区域开发强度3大类进行生态敏感性分析(表 2)。①土地利用类型评价因子。不同生态系统类型对区域生态环境的影响程度不同,其生态敏感性也有所差异。土地利用类型是不同生态系统的最直接表征[23]。因此,本研究选择土地利用类型作为生态敏感性评价因子之一,结合航片高清影像解译数据及区域土地利用特征,将附海镇土地利用类型划分为建设用地、交通用地、农田、城镇绿地、滩涂湿地、水域6类,依据不同土地利用类型对生态敏感性的影响大小进行分类并赋值。②区域开发强度评价因子。人类的区域开发活动对当地生态敏感性影响程度较大。工业区、居民点等建设用地,以及道路、交通等建设用地程度,是区域开发强度的主要表现。在空间距离上,越是靠近区域开发强度高的地区,则生态敏感度越低。因此,本研究将距建设用地的距离、距交通用地的距离作为生态敏感性评价因子。划分距建设用地的距离大于200 m为高度敏感区,大于100 m小于200 m为中度敏感区,大于50 m小于100 m为低度敏感区,小于50 m为非敏感区;划分距交通用地距离大于300 m为高度敏感区,大于100 m小于300 m为中度敏感区,大于50 m小于100 m为低度敏感区、小于50 m为非敏感区。③环境敏感区评价因子。环境敏感性指生态系统对人类活动反应的敏感程度,用来反映产生生态失衡与生态环境问题的可能性大小。根据附海镇生态环境特征,其环境敏感区包括主要水域、湿地和滩涂等,上述环境敏感区对附海镇生态环境保护具有重要意义。划分距环境敏感区的距离小于100 m为高度敏感区;大于100 m小于200 m为中度敏感区;大于200 m小于300 m为低度敏感区,大于300 m为非敏感区。④综合评价。通过ArcGIS 9.2 软件的空间分析(spatial analysis)功能,进行生态敏感性各因子评价以及加权综合评价(表 2)。各评价因子赋值、敏感性分级和权重分配反映了各评价因子内部以及总体权重的相对趋势。根据各个评价因子权重及敏感性分级,计算附海镇生态敏感性综合评价值,并将生态敏感区分为高度敏感区、中度敏感区、低度敏感区和非敏感区4种等级。

    表  2  生态敏感性评价因子等级及权重
    Table  2.  Grades and weights of ecological sensibility factors
    评价因子亚项生态敏感性重分类分值权重/%
    土地利用类型高度敏感水域1040
    滩涂、湿地8
    中度敏感农田6
    城镇绿地4
    低度敏感交通用地2
    非敏感建设用地1
    距环境敏感区距离高度敏感<100m1020
    中度敏感100~200m6
    低度敏感200~300m3
    非敏感>300m1
    区域开发强度距道路距离高度敏感>300m1020
    中度敏感100~300m6
    低度敏感50~100m3
    非敏感<50m1
    距建筑距离高度敏感>200m1020
    中度敏感100~200m6
    低度敏感50~100m3
    非敏感<50m1
    下载: 导出CSV 
    | 显示表格
    2.1.1   城镇景观斑块组成结构

    从附海镇景观要素斑块组成可以看出(图 1表 3),城镇绿地的斑块面积最大,达到767.31 hm2,面积所占比例也最高为35.27%;其次是建设用地和农田,两类斑块面积都处于中等水平,面积分别为591.29 hm2和497.83 hm2,占总面积的27.18%和22.88%;交通用地和滩涂湿地面积较小,分别为128.75 hm2和103.17 hm2,占总面积的5.92%和4.74%;斑块总面积最小的为水域,仅为87.37 hm2,占总面积的4.02%。从附海镇景观格局分类图(图 1)可以看出:附海镇建设用地类型主要分布在中部成片的居住区以及南部工业园区;农田类型主要分布在镇北部、西南以及东南区域;由于苗木产业发达,城镇绿地类型所占比率最大,其生产绿地基本上为大型斑块,连接成片,所占比率最高,主要分布在附海镇北部和东南部的苗木栽植区。景观类型斑块数和平均斑块面积,在一定意义上可揭示城镇景观破碎化程度。从附海镇景观类型斑块组成上来看,滩涂湿地类型的斑块数量最小,是以2个特大型斑块形式存在,平均斑块面积最大,受到人为活动的干扰最小,斑块破碎化程度最低;交通用地与水域类型的斑块数量最多,分别为495个和506个,其平均斑块面积最小,斑块破碎化程度最大;其原因在于附海镇形成了较好的公路交通网,城镇主要道路连通性及完整性较好。同时,乡镇村庄众多,村级道路网络复杂多样,破碎化程度较高;另外,乡镇区域三塘横江、四塘横江、蛟门浦、八塘横江等水系通道显著,河流水系分支较多,并大量被交通道路景观要素分割,城镇景观总体呈现出“树枝”状形态,破碎化程度很高。

    图  1  附海镇景观格局分类
    Figure  1.  Landscape pattern classification of Fuhai Town
    表  3  附海镇不同景观类型的斑块组成
    Table  3.  Patch structure of different landscape types in Fuhai Town
    斑块类型斑块数/个面积/hm2占总数/%平均斑块面积/hm2最大斑块指数
    建设用地292591.2927.182.033.34
    交通用地495128.755.920.263.60
    农田218497.8322.882.282.22
    城镇绿地460767.3135.271.672.63
    湿地及滩涂2103.174.7451.592.98
    水域50687.374.020.170.49
    合计19732175.72100
    下载: 导出CSV 
    | 显示表格
    2.1.2   城镇景观类型尺度分析

    景观类型的斑块密度可揭示某一区域景观被该类型斑块分割的程度,其对境域生物物种保护、物质和能量分布具有重要影响。各个景观组分的斑块密度(PD)则直接地反映了斑块组分的破碎化程度,而斑块形状指数(LSI)则反映斑块聚合和离散程度。从表 4可见:斑块密度指数(PD)排序为水域>交通用地>城镇绿地>建设用地>农田>滩涂及湿地;斑块形状指数的排序为交通用地>水域>城镇绿地>建设用地>农田>滩涂及湿地。上述结果表明:交通用地和水域破碎化最为严重,景观类型复杂,尤其是南部水域支流更为明显;湿地及滩涂类型斑块的形状较规则,斑块成片集中分布在镇域北部,完整性较好。因此,其斑块密度和斑块形状指数都最小。同样从面积加权平均形状指数(SHAPE_AM)和面积加权平均分维数(FRAC_AM)的数值上可见:交通用地和水域均为较高的数值,而农田及生态涵养用地景观类型的面积加权形状指数和面积加权平均分维数都比较低。从景观聚集度指数上则也反映出,滩涂及湿地类型具有最高的景观聚集度指数(AI),其次是城镇绿地和农田,最小的是交通用地。同样也表明湿地及滩涂景观破碎化较低,而交通用地类型破碎化最为严重,受人为活动的影响最大。

    表  4  附海镇景观类型特征
    Table  4.  Characteristics of landscape types in Fuhai Town
    斑块类型斑块密度
    (PD)
    边缘密度
    (ED)
    斑块形状指数(LSI) 面积加权平均形状指
    数(SHAPE_AM)
    面积加权平均形状指
    数(FRAC_AM)
    景观聚集度指
    数(AI)
    建设用地13.4293.1528.804.281.2294.27
    交通用地22.75105.6772.0428.421.5168.55
    农田10.0263.9524.873.091.1794.64
    城镇绿地21.1492.4028.882.651.1594.95
    湿地及滩涂0.091.802.111.501.0699.45
    水域23.2657.7349.224.471.3074.06
    下载: 导出CSV 
    | 显示表格
    2.2.1   单因子评价

    在附海镇生态敏感性评价的4个因子中,土地利用类型因子最为敏感,其高度敏感区和中度敏感区面积比例分别为8.68% 和57.24%,其次为环境敏感区因子,其高度敏感区和中度敏感区面积比例分别为64.75% 和24.53%(图 2)。在土地利用类型评价因子中,其结果显示高度敏感区主要分布在七塘公路以北沿海滩涂湿地、三塘横江和八塘横江一带;中度敏感区主要分布在镇域北部苗圃地和农耕用地;低度敏感区和非敏感区主要集中于镇区南部以及中部的建成区、村落和工业片区。附海镇北部为沿海滩涂区,其良好的自然环境和丰富的食物生境已成为鸟类迁徙必经的中转站。同时,它在维护生态平衡、降解污染、调节气候及控制土壤侵蚀等方面均起到重要作用,是镇域环境敏感区的重要组成部分。环境敏感区影响因子分析结果表明:该因子高度敏感区主要分布在七塘公路以北沿海滩涂湿地,以及八塘横江、三塘横江、蛟门浦、四塘横江等主干水系区域。区域开发强度因子的生态敏感度分析表明:距建筑的距离,以及距主要交通道路的距离越大,则该因子的生态敏感度越高,其结果显示出低度敏感区主要集中在观附公路、高速连接线、中横线、韩家路、郑家浦路、建附公路等镇域主要交通道路以及镇域中南部的居住、工业建筑片区。

    图  2  生态敏感性单因子评价结果
    Figure  2.  Results of single factor ecological sensitivity assessment in Fuhai Town
    2.2.2   综合评价

    根据上述各评价因子权重及敏感性分级,综合加权得到附海镇生态敏感性综合评价值为1.2 ~10.0,采用自然裂段法(natural breaks)将生态敏感区分为4类,即高度敏感区、中度敏感区、低度敏感区和非敏感区(表 5)。由图 3综合分析得出:附海镇生态高度敏感区、中度敏感区、低度敏感区和非敏感区面积分别为155.78,593.75 ,662.73 和763.46 hm2,分别占总面积的7.16%,27.29%,30.46%和35.09%。生态高度敏感区主要分布于北部沿海滩涂湿地,以及三塘横江、八塘横江、蛟门浦等河流水系等区域。该区域生态最为敏感,应加强湿地水体的保护,禁止在该区域内开发建设用地,巩固和保护好现有的生态屏障。中度敏感区主要分布于镇域北部经济林种植片区、农耕地,以及区域中部、南部居民点附近零星的农耕地片区,该区域处于湿地水体与道路建筑之间,具有一定的植被资源,属于生态环境保护较好的区域。由于受周边人类区域开发活动强度的影响,其生态敏感性综合评价为中度,但考虑区域的生态安全,中度敏感区的开发建设活动应严格控制其规模和强度。低度敏感区主要分布于中部建成区以及南部工业建筑区域,该类区域受人类活动影响较大,其生态敏感度综合评价较低,该区域的建设用地布局和规模,应该加强控制保护好周围生态资源,减弱对周边生态环境安全的影响。非敏感区主要集中于西部居民村落片区,以及中部居住、工业建筑片区。该片区距湿地水域等环境敏感区较远,并且受到人类区域开发活动影响最大,因而生态敏感性最低。附海镇区生态敏感度大体呈现从水体、滩涂湿地到居住、工业建设用地逐步降低的趋势。

    表  5  生态敏感性综合评价结果
    Table  5.  Results of ecological sensitivity comprehensive assessment
    生态敏感性类别面积/hm2百分比/%利用类型利用类型面积/hm2利用类型百分比/%
    高度敏感区155.787.16核心保护区155.787.16
    中度敏感区593.7527.29控制发展区593.7527.29
    一般敏感区662.7330.46适宜发展区1426.1965.55
    非敏感区763.4635.09
    下载: 导出CSV 
    | 显示表格
    图  3  生态敏感性综合评价结果
    Figure  3.  Results of ecological sensitivity comprehensive assessment

    本研究利用生态敏感性评价方法与景观生态安全理论相结合的分析途径,研究浙江省慈溪市附海镇生态敏感性程度及其空间分布状况。结果表明:从景观生态安全格局评判可以发现,道路景观的破碎化程度最高,受人为影响严重。滩涂湿地景观破碎化程度较低,没有受到大量的人为干扰影响。从生态敏感性评价可知,生态敏感性综合评价结果与生态环境现状基本一致,反映本研究所筛选的生态敏感性评价指标较为合理,其评价结果也具有客观性。生态高度敏感区最集中于北部沿海滩涂湿地等区域,与景观安全格局分析中破碎化程度越低,受到人为影响越小,生态敏感度越高的结果相符合。基于2种分析方法的融合研究,较以往单一研究方法所分析的结果更具有科学性。同时,还具有一定的客观性和可操作性等特点,将为乡镇区域建设规划方案调整与优化提供科学依据。通过上述研究,以此划分出促进本地区景观生态安全的核心保护区、控制发展区、适宜发展区3类区域利用类型,并提出相应的管护措施。

    本研究选择建设用地、交通用地和环境敏感区影响因子等指标,研究开发活动对乡镇区域生态环境的影响程度,并结合土地利用类型影响因子,试图深入探讨镇域土地资源合理利用时所表证的生态用地特征,可为同类型区域开发及生态评价提供借鉴和参考。当然,也应该根据不同地区的特点,选用适宜的评判方法,并结合时间动态变化,综合分析城镇生态用地的发展趋势。

  • 图  1  杜仲2个无性系的传统光响应曲线

    Figure  1  Light-response curve of 2 Eucommia ulmoides clones

    图  2  杜仲2个无性系叶绿素焚光快速响应曲线

    Figure  2  Chlorophyll fluorescence rapid light-response curve of 2 Eucommia ulmoides clones

    图  3  '红叶'杜仲在不同温度下的传统光响应曲线

    Figure  3  Light-response curve of Eucommia ulmoide 'Hongye' under different tempreatures

    图  4  ‘红叶’杜仲温度与光合作用参数关系

    Figure  4  R elationship between tempreatures and photosynthesis parameter of Eucommia ulmoides 'Hongye'

    表  1  杜仲2个无性系光合作用参数值

    Table  1.   Photosynthesis parameter of 2 Eucommia ulmoides clones (mean±sd)

    无性系叶片编号PLCP /(μmol·m-2·s-1)PLSP /(μmol·m-2·s-1)Pmax /(μmol·m-2·s-1)PAQER /(μmol·m-2·s-1)初始斜率
    118.000±5.000453.000±19.00015.350±0.9400.037±0.0011.290±0.3300.080±0.003
    325.000±6.000536.000±53.00018.420±1.1100.038±0.0021.700±0.3900.075±0.004
    ‘红叶’杜仲529.000±7.000499.000±9.00016.950±0.8800.038±0.0032.010±0.5000.078±0.005
    平均24.000±6.000496.000±41.00016.910±1.5400.038±0.0011.670±0.3600.078±0.003
    228.000±15.000593.000±57.00021.780±2.4900.039±0.0021.530±1.0400.055±0.015
    ‘小叶’杜仲430.000±13.000521.000±35.00018.430±1.6500.039±0.0031.940±0.9900.072±0.012
    621.000±2.000451.000±15.00015.300±0.6700.037±0.0011.560±0.0500.082±0.007
    平均26.000±5.000522.000±7.00018.500±3.2400.039±0.0011.670±0.2300.070±0.014
    下载: 导出CSV

    表  2  ‘红叶’杜仲在不同温度下的光合作用参数

    Table  2.   Photosynthesis parameter of Eucommia ulmoides 'Hongye' under different tempuretures (mean±sd)

  • [1] 武维华.植物生理学[M]. 2版.北京:科学出版社, 2008:130-190.
    [2] 李鹏民, 高辉远, STRASSER R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理学与分子生物学学报, 2005, 31(6):559-566.

    LI Pengmin, GAO Huiyuan, STRASSER R J. Application of the fast chlorophyll fluorescence Induction dynamics analysis in photosynthesis study[J]. J Plant Physiol Mol Biol, 2005, 31(6):559-566.
    [3] 李芳东, 杜红岩.杜仲[M].北京:中国中医药出版社, 2001:232-256.
    [4] 杜红岩, 胡文臻, 俞锐.杜仲产业绿皮书:中国杜仲橡胶资源与产业发展报告(2013)[M].北京:社会科学文献出版社, 2013:114-132.
    [5] 李淑容, 谈锋.杜仲对不同光强度的适应性研究[J].西南师范大学学报:自然科学版, 1995, 20(3):293-296.

    LI Shurong, TAN Feng. Studies on the adaptation of Eucommia ulmoides to light intensity[J]. J Southwest China Norm Univ Nat Sci, 1995, 20(3):293-296.
    [6] 郭连旺, 沈允钢, 武海, 等.杜仲光合特性的研究[J].植物学报, 1996, 38(4):283-286.

    GUO Lianwang, SHEN Yungang, WU Hai, et al. Study on the photosynthetic characteristics of Eucommia ulmoides leaves[J]. Acta Bot Sin, 1996, 38(4):283-286.
    [7] 刘淑明, 梁宗锁, 董娟娥.水分对杜仲截干萌条光合特性及生长的影响[J].西北农林科技大学学报:自然科学版, 2008, 36(4):89-93.

    LIU Shuming, LIANG Zongsuo, DONG Juane. Photosynthetic characteristics and growth of sprout of Eucommia ulmoides under different water conditions[J]. J Northwest A & F Univ Nat Sci Ed, 2008, 36(4):89-93.
    [8] 高超, 闫文德, 田大伦, 等.杜仲光合速率日变化及其与环境因子的关系[J].中南林业科技大学学报, 2011, 31(5):100-104.

    GAO Chao, YAN Wende, TIAN Dalun, et al. Diurnal change in photosynthetic rate of Eucommia ulmoides and its relationship with environmental factors[J]. J Cent South Univ For & Technol, 2011, 31(5):100-104.
    [9] 李蕾.四倍体杜仲光合特性的研究[D].河北农业大学, 2012.

    LI Lei. Study on Photosynthetic Characteristics of Tetraploid Eucommia ulmoides Oliv.[D]. Baoding:Agricultural University of Hebei, 2012.
    [10] LEAKEY A D B, URIBELARREA M, AINSWORTH E A, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J]. Plant Physiol, 2006, 140(2):779-790.
    [11] 叶子飘, 于强.光合作用光响应模型的比较[J].植物生态学报, 2008, 32(6):1356-1361.

    YE Zipiao, YU Qiang. Compatision of new and several classical models of photosynthesis in response to irradiance[J]. J Plant Ecol, 2008, 32(6):1356-1361.
    [12] 黄秦军, 黄国伟, 丁昌俊, 等.美洲黑杨杂种不同生长势无性系光合特征[J].林业科学, 2013, 49(3):56-62.

    HUANG Qinjun, HUANG Guowei, DING Changjun, et al. Comparative analysis of photosynthetic characteristics of Populus deltoides clones with different growth vigor[J]. Sci Silv Sin, 2013, 49(3):56-62.
    [13] 王玉涛, 马志波, 马钦彦, 等.北京地区4种阔叶树光合作用对CO2浓度及温度变化的响应[J].河北农业大学学报, 2006, 29(6):39-43.

    WANG Yutao, MA Zhibo, MA Qinyan, et al. Photosynthesis response to variation of CO2 concentration and temperature of four broad-leaved trees in Beijing region[J]. J Agric Univ Hebei, 2006, 29(6):39-43.
  • [1] 周文玲, 魏洪玲, 李德文, 唐中华, 刘英, 解胜男, 田叙晨, 储启明.  植物生长调节剂对杜仲叶片主要次级代谢产物的影响 . 浙江农林大学学报, 2023, 40(5): 999-1007. doi: 10.11833/j.issn.2095-0756.20220705
    [2] 刘俊, 李龙, 陈玉龙, 陈随清.  杜仲WOX家族基因鉴定及在叶片发育中的表达 . 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
    [3] 刘俊, 李龙, 陈玉龙, 刘燕, 吴耀松, 任闪闪.  杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析 . 浙江农林大学学报, 2022, 39(3): 475-485. doi: 10.11833/j.issn.2095-0756.20210385
    [4] 尹焕焕, 刘青华, 周志春, 万雪琴, 余启新, 丰忠平.  马尾松无性系木材基本密度和纤维形态的变异及选择 . 浙江农林大学学报, 2020, 37(6): 1186-1192. doi: 10.11833/j.issn.2095-0756.20190720
    [5] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [6] 杨标, 刘壮壮, 彭方仁, 曹凡, 陈涛, 邓秋菊, 陈文静.  干旱胁迫和复水下不同薄壳山核桃品种的生长和光合特性 . 浙江农林大学学报, 2017, 34(6): 991-998. doi: 10.11833/j.issn.2095-0756.2017.06.004
    [7] 国靖, 汪贵斌, 曹福亮.  施肥对银杏叶片光合作用及营养元素质量分数的影响 . 浙江农林大学学报, 2016, 33(6): 969-975. doi: 10.11833/j.issn.2095-0756.2016.06.007
    [8] NGUYENThiHuongGiang, 张齐生.  竹集成材高频热压过程中板坯内温度的变化趋势 . 浙江农林大学学报, 2015, 32(2): 167-172. doi: 10.11833/j.issn.2095-0756.2015.02.001
    [9] 哀建国, 杜江丽, 周爱存, 金松恒, 宋新章.  双波长HPLC同时测定氮沉降处理下杜仲皮和叶中的5种成分 . 浙江农林大学学报, 2015, 32(1): 60-66. doi: 10.11833/j.issn.2095-0756.2015.01.009
    [10] 刘攀峰, 乌云塔娜, 杜兰英, 吴敏, 黄海燕, 杜红岩.  杜仲2-甲基-D-赤藓糖醇-2,4-环焦磷酸合酶基因全长cDNA克隆与序列分析 . 浙江农林大学学报, 2014, 31(3): 410-416. doi: 10.11833/j.issn.2095-0756.2014.03.013
    [11] 赵巍巍, 江洪, 马元丹.  模拟酸雨胁迫对樟树幼苗光合作用和水分利用特性的影响 . 浙江农林大学学报, 2013, 30(2): 179-186. doi: 10.11833/j.issn.2095-0756.2013.02.004
    [12] 隋德宗, 王保松, 施士争, 教忠意.  盐胁迫对灌木柳无性系幼苗生长及光合作用的影响 . 浙江农林大学学报, 2010, 27(1): 63-68. doi: 10.11833/j.issn.2095-0756.2010.01.010
    [13] 朱澜, 李雪芹, 贾晓琳, 王斌, 金松恒.  高温胁迫对高羊茅光合作用的影响 . 浙江农林大学学报, 2009, 26(5): 652-655.
    [14] 吴根良, 何勇, 王永传, 孙瑶, 朱祝军.  不同光照强度下卡特兰和蝴蝶兰光合作用和叶绿素荧光参数日变化 . 浙江农林大学学报, 2008, 25(6): 733-738.
    [15] 陆道调, 蔡会德, 张旭, 牟继平.  桉树无性系速生丰产林生长及经济效益评价 . 浙江农林大学学报, 2008, 25(1): 65-68.
    [16] 龚伟, 宫渊波, 胡庭兴, 陈林武, 张发会, 王景燕, 朱志芳.  湿地松幼树冠层光合作用日变化及其影响因素 . 浙江农林大学学报, 2006, 23(1): 29-34.
    [17] 项文化, 田大伦, 闫文德, 罗勇.  白栎光合特性对二氧化碳浓度增加和温度升高的响应 . 浙江农林大学学报, 2004, 21(3): 247-253.
    [18] 高建社, 符军, 刘永红, 陈竹君.  氮磷肥配施效应对杜仲光合与蒸腾特性的影响 . 浙江农林大学学报, 2004, 21(3): 254-257.
    [19] 余树全, 付达荣, 李翠环, 刘军, 刘大健.  康定杨优树无性系苗期测定 . 浙江农林大学学报, 2003, 20(3): 245-248.
    [20] 童再康, 郑勇平, 罗士元, 杨惠平, 史红正.  黑杨派南方型新无性系纸浆材材性变异与遗传 . 浙江农林大学学报, 2001, 18(1): 21-25.
  • 期刊类型引用(6)

    1. 李瑞连,王玉倩,母德锦,徐骏飞,蔡年辉,许玉兰,陈林. 云南松GA20氧化酶基因的克隆与表达分析. 西南林业大学学报(自然科学). 2025(01): 55-67 . 百度学术
    2. 桑娟,王艺程,李玺,张世杰,朱盛杰,席志俊,张琼,张志国,秦巧平,刘翔. 萱草海水胁迫相关WRKY转录因子密码子偏向性分析. 应用技术学报. 2024(02): 245-253 . 百度学术
    3. 侯哲,娄晓鸣,李昂,黄长兵. 11种唐松草属(Thalictrum)rbcL基因的密码子偏好性研究. 江苏农业科学. 2023(03): 46-53 . 百度学术
    4. 高守舆,李钰莹,杨志青,董宽虎,夏方山. 白羊草叶绿体基因组密码子使用偏好性分析. 草业学报. 2023(07): 85-95 . 百度学术
    5. 韩春丽,杨果豪,李天香,王健宇,熊忠萍,许尤厚,朱鹏,杨家林,王鹏良. 方格星虫线粒体全基因组密码子偏好性分析. 南方农业学报. 2023(09): 2604-2613 . 百度学术
    6. 刘璐,武志博,李晓佳,海春兴,姜洪涛,郝思鸣,刘世英. 干旱胁迫对千屈菜种子萌发和幼苗生长的影响. 草原与草坪. 2022(03): 139-145 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.05.007

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2014/5/704

图(4) / 表(2)
计量
  • 文章访问数:  3077
  • HTML全文浏览量:  532
  • PDF下载量:  547
  • 被引次数: 6
出版历程
  • 收稿日期:  2013-11-28
  • 修回日期:  2014-04-21
  • 刊出日期:  2014-10-20

2个杜仲无性系光合能力比较

doi: 10.11833/j.issn.2095-0756.2014.05.007
    基金项目:

    "十二五"国家科技支撑计划项目 2012BAD21B0502

    农业科技成果转化资金项目 2012GB24320591

    作者简介:

    朱景乐, 从事杜仲高产栽培技术研究。E-mail:zhujingle1982@126.com

    通信作者: 杜红岩, 研究员, 博士生导师, 从事杜仲栽培育种研究。E-mail:dhy515@126.com
  • 中图分类号: S718.5

摘要: 为了揭示杜仲Eucommia ulmoides不同无性系光合特性变异规律, 以杜仲2个观赏型无性系的苗期叶片为材料, 分别采用Li-6400和PAM2500测定其传统光响应曲线、快速光曲线及不同温度条件下的传统光响应曲线, 通过直角双曲线模型计算其光合作用参数。结果表明:‘红叶’杜仲Eucommia elmoides ‘Hongye’的光补偿点为23.960 μmol·m-2·s-1, 光饱和点为495.940 μmol·m-2·s-1, 最大净光合速率为16.907 μmol·m-2·s-1, 暗呼吸速率为1.666 μmol·m-2·s-1, 初始斜率为0.078;‘小叶’杜仲Eucommia elmoides ‘Xiaoye’的光补偿点为26.487 μmol·m-2·s-1, 光饱和点为521.920 μmol·m-2·s-1, 最大净光合速率为18.502 μmol·m-2·s-1, 暗呼吸速率为1.674 μmol·m-2·s-1, 初始斜率为0.070;‘红叶’杜仲温度和各光合参数间存在显著的线性回归关系, 回归方程的决定系数为0.479~0.959。杜仲2个无性系的光合作用参数表明, ‘红叶’杜仲更适宜在中强光环境中生长, ‘小叶’杜仲则在强光环境下生长状况优于‘红叶’杜仲。研究揭示的2个杜仲无性系的光合作用参数及变异规律为杜仲后期生理生化特性及生态适应性研究提供了依据。

English Abstract

吕渊, 蒋文伟, 过萍艳. 浙江省慈溪市附海镇生态用地研究[J]. 浙江农林大学学报, 2014, 31(2): 196-203. DOI: 10.11833/j.issn.2095-0756.2014.02.006
引用本文: 朱景乐, 杨超伟, 杜红岩, 等. 2个杜仲无性系光合能力比较[J]. 浙江农林大学学报, 2014, 31(5): 704-709. DOI: 10.11833/j.issn.2095-0756.2014.05.007
LÜ Yuan, JIANG Wenwei, GUO Pingyan. Ecological land use in Fuhai Town, Cixi City[J]. Journal of Zhejiang A&F University, 2014, 31(2): 196-203. DOI: 10.11833/j.issn.2095-0756.2014.02.006
Citation: ZHU Jingle, YANG Chaowei, DU Hongyan, et al. Photosynthetic capacity of two Eucommia ulmoides clones[J]. Journal of Zhejiang A&F University, 2014, 31(5): 704-709. DOI: 10.11833/j.issn.2095-0756.2014.05.007
  • 光合作用是植物最主要的生理活动,是植物生长发育的基础[1],除了直接测定叶片净光合速率外,叶绿素荧光也往往被用来反映其光合能力的强弱[2]。杜仲Eucommia ulmoides是中国特有的经济树种,也是分布范围最广的胶原植物[3],‘红叶’杜仲Eucommia ulmoides ‘Hongye’和‘小叶’杜仲Eucommia ulmoides ‘Xiaoye’是中国林业科学研究院经济林研究开发中心选育的优良杜仲无性系。‘小叶’杜仲叶片形态优美,‘红叶’杜仲颜色鲜红,且此2个杜仲无性系叶片有效活性成分均远超其他无性系,观赏和药用价值均较高,发展前景广阔[4]。近年来,前人[5-9]对杜仲叶片的光合作用及叶绿素荧光参数进行初步研究,但采用的研究材料均为实生苗,试验误差控制不严格,以至于研究的重复性及可比性均较差。本研究以‘红叶’杜仲和‘小叶’杜仲2个无性系苗期成熟叶片为研究材料,通过对其叶片传统光响应曲线、快速光曲线及不同温度条件下‘红叶’杜仲叶片的传统光响应曲线的测定,探寻2个杜仲无性系叶片光合能力的差异,以期为其高效栽培技术提供理论依据。

    • 实验材料为‘红叶’杜仲和‘小叶’杜仲无性系幼苗,2011年播种,当年7月下旬嫁接,2012年12月平茬,测定时苗高121.0~157.0 cm,地径1.0~1.3 cm。每个无性系随机选择3个生长状况良好的单株,每个单株选择1片朝向东南方位的叶片,位于从顶芽开始第15~20片叶(约生长30 d,位于4/5苗高处)。将‘红叶’杜仲依次编号为1,3,5;‘小叶’杜仲依次编号为2,4,6,灌透水后进行叶片光合特性和叶绿素荧光特性测定。测定期间大气中二氧化碳摩尔分数为364.000~391.000 μmol· mol-1,气温32~38 ℃。

    • 2013年8月24日-26日,每天早上9:00-11:00进行杜仲叶片传统光响应曲线测定。测定方法为:用Li-6400光合分析仪在0~2 000 μmol·m-2·s-1光合有效辐射(PPAR)范围内,利用人工光源设定光合有效辐射分别为2 000,1 800,1 600,1 400,1 200,1 000,800,600,400,200,100,50,30,0 μmol·m-2·s-1,从强光到弱光依次测定各叶片的净光合速率(Pn),测定1次·d-1,连续测定3 d。第1天按照1—2—3—4—5—6顺序测定,第2天按照6—5—4—3—2—1顺序测定,第3天按照4—5—6—1—2—3顺序测定。分别计算各条传统光响应曲线的光合作用参数,以每个无性系的光合有效辐射及对应的净光合速率的平均值绘制其传统光响应曲线。

    • 2013年8月24上午9:00-11:00,用便携式调制荧光仪PAM-2500(德国)按照6—5—4—3—2—1的顺序进行杜仲2个无性系快速光响应曲线(EETR-PPAR)测定。EETR为光合电子传递的相对速率,光合有效辐射设定为2,52,133,236,407,659,998,1 386,1 973,2 845 μmol·m-2·s-1

    • 2013年8月27-29日上午9:00-11:30,以‘红叶’杜仲叶片为研究对象,用Li-6400光合分析仪测定20,23,25,28,30,32和35 ℃温度下的传统光响应曲线,光合有效辐射依次为0,20,50,100,200,400,600,800,1 000,1 500,1 800,2 000,2 500 μmol·m-2·s-1,叶片按照1—3—5测定,测定1片·d-1

    • 使用Spss 16.0和Excel 2007软件进数据处理。杜仲叶片PnPPAR的响应关系采用直角双曲线模型[10-11]进行拟合:

      $$ {P_{\rm{n}}}=\left({\alpha {\rm{ \times }}{P_{{\rm{PAR}}}}{\rm{ \times }}{P_{\max }}} \right)/\left({\alpha {\rm{ \times }}{P_{{\rm{PAR}}}}{\rm{+}}{P_{\max }}} \right)- R. $$ (1)

      其中:Pn为特定PPAR条件下的净光合速率。PPAR为光合有效辐射,α为初始量子斜率,即植物光合作用对传统光响应曲线在PPAR=0时的斜率。Pmax代表最大净光合速率,R为暗呼吸速率。

      令式(1)中Pn=0,可得光补偿点(PLCP)为:

      $$ {P_{{\rm{LCP}}}}=\frac{{R \cdot {P_{\max }}}}{{\alpha \left({{P_{\max }} - R} \right)}}. $$ (2)

      利用光能能力(Pa)为最大净光合速率与暗呼吸速率之和,即:

      $$ {P_{\rm{a}}}={P_{\max }}+R. $$ (3)

      根据经验公式,光饱和点计算公式为:

      $$ {P_{{\rm{LSP}}}}=\left({{P_{\max }}+R} \right)/{P_{{\rm{AQE}}}}={P_{\rm{a}}}/{P_{{\rm{AQE}}}}. $$ (4)

      式(4)中PAQE为弱光合有效辐射条件下(≤200 μmol·m-2·s-1)用直线方程拟合光响应数据得到表观量子效率。

    • 杜仲2个无性系的传统光响应曲线如图 1所示,净光合速率随着光合有效辐射的增加而升高,不过前期增幅较大,后期增幅较小。在0~1 200 μmol·m-2·s-1的光合有效辐射范围内,‘红叶’杜仲的净光合速率略高于‘小叶’杜仲,而在1 400~2 000 μmol·m-2·s-1的范围内,‘红叶’杜仲净光合速率随着光合有效辐射的增加没有显著变化,而‘小叶’杜仲的净光合速率则随着光合有效辐射的增加继续升高,且超过‘红叶’杜仲。2个杜仲无性系的光合作用参数如表 1所示,‘小叶’杜仲的光补偿点和最大净光合速率分别高于‘红叶’杜仲10.55%和9.47%,2个无性系的暗呼吸速率几乎相同,而初始斜率则是‘红叶’杜仲高于‘小叶’杜仲11.43%。2个杜仲无性系的传统光响应曲线及光合参数值均说明‘红叶’杜仲利用弱光至中强光能力较强,而‘小叶’杜仲利用强光的能力较强。

      图  1  杜仲2个无性系的传统光响应曲线

      Figure 1.  Light-response curve of 2 Eucommia ulmoides clones

      表 1  杜仲2个无性系光合作用参数值

      Table 1.  Photosynthesis parameter of 2 Eucommia ulmoides clones (mean±sd)

      无性系叶片编号PLCP /(μmol·m-2·s-1)PLSP /(μmol·m-2·s-1)Pmax /(μmol·m-2·s-1)PAQER /(μmol·m-2·s-1)初始斜率
      118.000±5.000453.000±19.00015.350±0.9400.037±0.0011.290±0.3300.080±0.003
      325.000±6.000536.000±53.00018.420±1.1100.038±0.0021.700±0.3900.075±0.004
      ‘红叶’杜仲529.000±7.000499.000±9.00016.950±0.8800.038±0.0032.010±0.5000.078±0.005
      平均24.000±6.000496.000±41.00016.910±1.5400.038±0.0011.670±0.3600.078±0.003
      228.000±15.000593.000±57.00021.780±2.4900.039±0.0021.530±1.0400.055±0.015
      ‘小叶’杜仲430.000±13.000521.000±35.00018.430±1.6500.039±0.0031.940±0.9900.072±0.012
      621.000±2.000451.000±15.00015.300±0.6700.037±0.0011.560±0.0500.082±0.007
      平均26.000±5.000522.000±7.00018.500±3.2400.039±0.0011.670±0.2300.070±0.014
    • 杜仲2个无性系的快速光曲线如图 2所示,在250~1 400 μmol·m-2·s-1,‘红叶’杜仲EETR高于‘小叶’杜仲,而2 000 μmol·m-2·s-1以上,‘小叶’杜仲EETR则超过‘红叶’杜仲,说明‘红叶’杜仲利用中强光的能力高于‘小叶’杜仲,而‘小叶’杜仲利用强光的能力优于‘红叶’杜仲。该结果与通过Li-6400得到的结果类似。

      图  2  杜仲2个无性系叶绿素焚光快速响应曲线

      Figure 2.  Chlorophyll fluorescence rapid light-response curve of 2 Eucommia ulmoides clones

    • 温度对‘红叶’杜仲光合作用的影响如图 3表 2所示。由图 3可知:不同温度条件下的净光合速率在0~2 500.000 μmol·m-2·s-1的范围内均随着光合有效辐射的增加而增加,但在0~1 000.000 μmol·m-2·s-1范围内,增幅较大,而在1 000.000~2 500.000 μmol·m-2·s-1范围内,增幅明显降低。在35 ℃条件下,任何光照下的净光合速率均低于其他温度水平。20 ℃时的净光合速率在0~100 μmol·m-2·s-1光合有效辐射的范围内高于其他水平,在200~1 000 μmol·m-2·s-1居中,在1 500 μmol·m-2·s-1以上又达到最高。

      图  3  '红叶'杜仲在不同温度下的传统光响应曲线

      Figure 3.  Light-response curve of Eucommia ulmoide 'Hongye' under different tempreatures

      表 2  ‘红叶’杜仲在不同温度下的光合作用参数

      Table 2.  Photosynthesis parameter of Eucommia ulmoides 'Hongye' under different tempuretures (mean±sd)

      ‘红叶’杜仲的光合作用参数与温度的关系如图 4所示。温度与各光合作用参数间存在较强的线性回归关系,回归方程的决定系数为0.790~0.959,‘红叶’杜仲的光合效率、暗呼吸速率及光补偿点均随着温度的上升而升高。‘红叶’杜仲叶片利用光能能力在随着温度的升高出现先升后降的趋势。由于光合参数与温度存在显著的关系,描述光合参数时有必要同时描述其特定的温度条件。

      图  4  ‘红叶’杜仲温度与光合作用参数关系

      Figure 4.  R elationship between tempreatures and photosynthesis parameter of Eucommia ulmoides 'Hongye'

    • 本研究在前人研究的基础上,选用了2个杜仲无性系为研究材料,由于排除了以前研究中实生苗之间的遗传差异,测定时又通过固定叶片及2个无性系交替测量的方法,有效地控制试验误差,准确地反映2个无性系的光合能力。研究得到‘红叶’杜仲的光补偿点为24.000 μmol·m-2·s-1,光饱和点为496.000 μmol·m-2·s-1,最大净光合速率为16.910 μmol·m-2·s-1,暗呼吸速率1.670 μmol·m-2·s-1,初始斜率为0.078;‘小叶’杜仲的光补偿点为26.000 μmol·m-2·s-1,光饱和点为521.000 μmol·m-2·s-1,最大净光合速率为18.500 μmol·m-2·s-1,暗呼吸速率为1.670 μmol·m-2·s-1,初始斜率为0.070;‘小叶’杜仲和‘红叶’杜仲的光补偿点、光饱和点和暗呼吸速率高于黄秦军[12]选择的3个杨树无性系。最大净光合速率高于杨树L3无性系,却均低于杨树H4无性系。说明了杜仲是强阳性树种,‘小叶’杜仲在强光环境下生长状况优于‘红叶’杜仲。

      本研究以Li-6400光合仪和PAM-2500荧光仪研究2个杜仲无性系的光合能力,通过对2个杜仲无性系传统光响应曲线和快速光曲线异同之处的剖析,解释了不同之处的根本原因。研究表明杜仲2个无性系快速光曲线虽然和传统光响应曲线相似,但仍有不同。传统光响应曲线在0~1 000 μmol·m-2·s-1的光合有效辐射范围内,净光合速率随光照增加增幅明显,但1 000 μmol·m-2·s-1以后增幅逐渐减小。而快速光曲线则表现为,0~1 000 μmol·m-2·s-1范围内光合电子传递相对速率(EETR)随光合有效辐射增加而增加,但其增加幅度小于净光合速率增幅,但光合有效辐射在1 000 μmol·m-2·s-1之后,光合电子传递相对速率随着光合有效辐射的增加,仍保持相对较高的增幅。该结果与2种仪器的测定原理有关,Li-6400测定的是实际固定的二氧化碳量,受植物光合能力和呼吸作用的双重影响,叶绿素荧光测定的是叶片利用光能的能力,由于在1 000 μmol·m-2·s-1之后,光合有效辐射的增加会引起叶片温度的迅速上升,而叶片温度的上升除了能提高光能利用能力,同时也导致暗呼吸速率的升高,两者有一定的抵消,所以才产生了在较强光照条件下,净光合速率增加幅度降低,最终致使2种方法得到的光曲线形状略有不同。

      本研究以‘红叶’杜仲为对象,研究了不同温度对杜仲光合参数的影响,结果表明,‘红叶’杜仲不同温度水平下的传统光响应曲线特征也略有不同,在35 ℃条件下,任何光照下的净光合速率均低于其他温度水平,这是因为温度与暗呼吸速率存在显著的正相关。该温度条件下,暗呼吸速率高于其他水平,甚至达到20 ℃下暗呼吸速率的298.5%,较高的暗呼吸速率使得净光合速率低于其他温度水平。20 ℃温度条件下的净光合速率在0~100 μmol·m-2·s-1光合有效辐射的范围内高于其他水平,在200~1 000 μmol·m-2·s-1居中,在1 500 μmol·m-2·s-1以上又达到最高。该现象的产生可能是在0~100 μmol·m-2·s-1的弱光条件下,碳同化效率均较低。此时,对净光合速率影响最大的因素为暗呼吸速率,温度越低,暗呼吸速率越小,所以此时20 ℃的净光合速率高于其他水平;当光合有效辐射超过1 500 μmol·m-2·s-1时,较强的光合有效辐射使得叶片温度迅速上升,有可能超过叶片的最适温度而使得碳同化能力有所下降,最主要的是增强暗呼吸速率,而将叶室温度控制在较低温度时,又可以一定程度上的降低叶片温度,使得暗呼吸速率降低,所以20 ℃最终净光合速率在强光下达到最大。

      开展的‘红叶’杜仲光合参数随温度变化规律的研究,得到温度和‘红叶’杜仲各光合参数间的线性方程的决定系数为0.479~0.959。随着温度的增加,‘红叶’杜仲的光合能力和净光合速率呈现先升高后降低的趋势,而暗呼吸速率、光补偿点、初始斜率则是呈直线上升,上升幅度在33.8%~198.5%。温度对光合作用的影响主要是因为影响了酶促反应速度。温度低时,光合酶活性低,二氧化碳同化慢,淀粉与蔗糖的合成减少,对磷酸丙糖的需求量下降,进入叶绿体的无机磷酸减少,同化力的合成受到限制[1]。温度高时,酶钝化,光合机构受损,而导致光合速率迅速下降。同时由于暗呼吸速率的最适温度比光合作用的高,当光合作用不再升高时,暗呼吸速率继续升高,而使净光合速率下降。温度对‘红叶’杜仲叶片净光合速率的影响主要为在弱光和强光条件下影响大,在中等强度光照条件下影响小,该研究结论与王玉涛[13]等的研究结果相似。根据研究结果,在光热可控条件下栽培杜仲,可将温度控制在23~25℃,‘红叶’杜仲光照条件控制在为1 000~1 500 μmol·m-2·s-1,‘小叶’杜仲的光合有效辐射可适当提高至1 200~1 800 μmol·m-2·s-1,此时既能达到较高的净光合速率,也不会浪费大量能源。研究结论为杜仲光合特性的深入研究提供了理论依据,但不足之处是仅针对‘红叶’杜仲1个无性系开展研究,如果能由多个无性系共同研究,则结论会更具有说服性。

参考文献 (13)

目录

/

返回文章
返回