留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杜仲WOX家族基因鉴定及在叶片发育中的表达

刘俊 李龙 陈玉龙 陈随清

刘俊, 李龙, 陈玉龙, 陈随清. 杜仲WOX家族基因鉴定及在叶片发育中的表达[J]. 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
引用本文: 刘俊, 李龙, 陈玉龙, 陈随清. 杜仲WOX家族基因鉴定及在叶片发育中的表达[J]. 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
LIU Jun, LI Long, CHEN Yulong, CHEN Suiqing. Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
Citation: LIU Jun, LI Long, CHEN Yulong, CHEN Suiqing. Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725

杜仲WOX家族基因鉴定及在叶片发育中的表达

doi: 10.11833/j.issn.2095-0756.20210725
基金项目: 河南省科技研发计划联合基金项目(222301420074);河南省高等学校重点科研项目(22A360005);国际竹藤中心安徽太平试验中心开放课题基金(1632021006-4);国家林业和草原局/北京市共建竹藤科学与技术重点实验室开放基金(ICBR-2020-05);河南中医药大学博士科研启动基金项目(RSBSJJ2019-04)
详细信息
    作者简介: 刘俊(ORCID: 0000-0003-0468-5927),助理研究员,从事药用植物分子生物学研究。E-mail: liujun_0325@163.com
  • 中图分类号: S718.4;Q754

Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides

  • 摘要:   目的  Wuschel (WUS)相关的同源异型盒(Wuschel-related homeobox,WOX)转录因子家族在植物生长发育中发挥重要作用。本研究旨在探索WOX转录因子在杜仲Eucommia ulmoides中的分布及表达特征。  方法  以杜仲基因组数据库为基础,利用生物信息学方法对杜仲WOX家族进行全基因组鉴定;基于转录组数据分析EuWOXs在叶片发育及杜仲胶形成中的表达特征,通过实时荧光定量PCR (RT-qPCR)检测EuWOXs在‘紫叶’杜仲‘Ziye’叶片不同发育时期的表达模式。  结果  杜仲基因组中共鉴定出8条EuWOXs,分布于8条染色体;EuWOXs蛋白质长度为182~352个氨基酸,理论等电点为5.10~6.47,分子量为20.7~40.4 kDa;亚细胞定位预测EuWOXs均定位在细胞核中,均为亲水性蛋白。根据系统进化关系,杜仲WOX家族包括3个亚家族,分别含2、1和5个EuWOXs基因。EuWOXs均含有内含子,并包含多个基序,启动子中富含激素、胁迫和光周期响应元件。大部分EuWOXs在杜仲叶片中表达量较低,EuWOX13-1随叶片发育表达量逐渐降低,EuWOX13-2在生长叶中表达量最高。  结论  杜仲中有8个EuWOXs基因,EuWOX13-1和EuWOX13-2可能在杜仲叶片发育中发挥重要作用。图10表2参50
  • 图  1  EuWOXs染色体位点

    Figure  1  Chromosome site of EuWOXs genes

    图  2  拟南芥和杜仲WOXs的蛋白质同源结构域序列分析

    Figure  2  Sequence analysis of WOX proteins homeo domain in A. thaliana and E. ulmoides

    图  3  杜仲、拟南芥、毛果杨、水稻和玉米WOXs蛋白系统发育树

    Figure  3  WOX proteins phylogenetic trees of E. ulmoides, A. thaliana, P. trichocar, O. sativa and Z. mays

    图  4  杜仲WOX家族基因的结构分析

    Figure  4  Structural analysis of WOX gene family in E. ulmoides

    图  5  杜仲WOX基因家族保守基序分析

    Figure  5  Conserved motifs analysis of E. ulmoides WOX gene family

    图  6  EuWOXs基因启动子顺式作用元件分析

    Figure  6  Cis-element analysis of EuWOX genes promoter

    图  7  EuWOXs在杜仲叶片不同发育阶段的表达模式

    Figure  7  Expression patterns of EuWOXs at different developmental stages in E. ulmoides leaves

    图  8  杜仲EuWOXs基因在杜仲叶片不同发育时期的表达模式

    Figure  8  Expression pattern of EuWOX genes in E. ulmoides leaves at different developmental stages

    图  9  EuWOXs在杜仲胶形成中的表达模式

    Figure  9  Expression patterns of EuWOX genes in the form of Eu-rubber      

    图  10  EuWOXs蛋白互作网络预测

    Figure  10  Prediction of interaction network between EuWOX proteins

    表  1  引物序列

    Table  1.   Primer sequences

    基因名上游引物(5′→3′)下游引物(5′→3′)
    EuWOX1 ATGGTGGGTGACCAGCTTAG TTCTCTGGCCTTGTGGTTCT
    EuWOX2 ACCGTACCCCAACCTACTCC ACTTCCCGTTGGATGAAGTG
    EuWOX4-1 GGAACCCTACGCAAGAACAG GCGCTTCTGCTTTTGTCTCT
    EuWOX4-2 TAGAGCAGATCACGGCACAG CTAGGGTCGGATGTTGGAGA
    EuWOX5 GACGGAGCAAGTGAGAGTCC TCTCCCGTGCCTTATGATTC
    EuWOX11 ACTCGAGTTTTGTGGCCTGT AATTGGAGGCATCTGGATTG
    EuWOX13-1 GGTCTGAGGGCATGTGTTTT TTGGAGATATGGGTGGTGGT
    EuWOX13-2 GGGTTGTTCGTCAAGGTCAT GTTGGAATCCACCGTTGTCT
    UBCE2 AGTGGGTGGTGCTGTAGTCC AACTCCCGTTTCGTTTGTTG
    下载: 导出CSV

    表  2  EuWOXs蛋白质序列特征及亚细胞定位

    Table  2.   Sequence characteristics and subcellular location of E. ulmoides WOX proteins

    基因号基因名拟南芥
    同源基因
    染色体位置CDS长度/
    bp
    氨基酸数/
    分子量/
    kDa
    等电点亚细胞
    定位
    EUC13591-RA EuWOX1 AT3G18010.1 Super-Scaffold_235 3540694-3544292 1059 352 40.36 5.78 细胞核
    EUC12552-RA EuWOX2 AT5G59340.1 Scaffold912_obj 156744-159059 810 269 30.16 8.11 细胞核
    EUC15721-RA EuWOX4-1 AT1G46480.1 Super-Scaffold_242 604979-606289 618 205 23.48 9.04 细胞核
    EUC21176-RA EuWOX4-2 AT1G46480.1 Scaffold272_obj 37477-39280 642 213 24.31 8.82 细胞核
    EUC18832-RA EuWOX5 AT3G11260.1 Super-Scaffold_117 336319-340482 549 182 20.70 6.92 细胞核
    EUC00362-RA EuWOX11 AT3G03660.1 Super-Scaffold_154 68808-70507 765 254 27.67 5.62 细胞核
    EUC00756-RA EuWOX13-1 AT4G35550.1 Super-Scaffold_233 319468-325733 810 269 30.42 6.22 细胞核
    EUC02503-RA EuWOX13-2 AT4G35550.1 Super-Scaffold_71 6332599-6364092 576 191 22.11 6.54 细胞核
    下载: 导出CSV
  • [1] ZHANG Xin, ZONG Jie, LIU Jianhua, et al. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar [J]. Journal of Integrative Plant Biology, 2010, 52(11): 1016 − 1026.
    [2] HAO Qingnan, ZHANG Ling, YANG Yanyan, et al. Genome-wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean [J/OL]. Plants, 2019, 8(7): 215[2021-11-01]. doi: 10.3390/plants8070215.
    [3] GU Ran, SONG Xiaofei, LIU Xiaofeng, et al. Genome-wide analysis of CsWOX transcription factor gene family in cucumber (Cucumis sativus L. ) [J/OL]. Scientific Reports, 2020, 10: 6216[2021-11-01]. doi: 10.1038/s41598-020-63197-z.
    [4] HAECKER A, GROß-HARDT R, GEIGES B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana [J]. Development, 2004, 131(3): 657 − 668.
    [5] BREUNINGER H, RIKIRSCH E, HERMANN M, et al. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo [J]. Developmental Cell, 2008, 14(6): 867 − 876.
    [6] DOLZBLASZ A, NARDMANN J, CLERICI E, et al. Stem cell regulation by Arabidopsis WOX genes [J]. Molecular Plant, 2016, 9(7): 1028 − 1039.
    [7] COSTANZO E, TREHIN C, VANDENBUSSCHE M. The role of WOX genes in flower development [J]. Annals of Botany, 2014, 114(7): 1545 − 1553.
    [8] LAUX T, MAYER K F, BERGER J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis [J]. Development, 1996, 122(1): 87 − 96.
    [9] BOUCHABKÉ-COUSSA O, OBELLIANNE M, LINDERME D, et al. Wuschel overexpression promotes somatic embryo genesis and induces organo genesis in cotton (Gossypium hirsutum L. ) tissues cultured in vitro [J]. Plant Cell Reports, 2013, 32(5): 675 − 686.
    [10] ZHAO Yu, HU Yongfeng, DAI Mingqiu, et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice [J]. The Plant Cell, 2009, 21(3): 736 − 748.
    [11] CHO S H, YOO S C, ZHANG Haitao, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development [J]. New Phytologist, 2013, 198(4): 1071 − 1084.
    [12] OHMORI Y, TANAKA W, KOJIMA M, et al. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice [J]. The Plant Cell, 2013, 25: 229 − 241.
    [13] LIU Bobin, WANG Lin, ZHANG Jin, et al. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation [J/OL]. BMC Genomics, 2014, 15: 296[2021-11-01]. doi: 10.1186/1471-2164-15-296.
    [14] XU Meng, XIE Wenfan, HUANG Minren. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar [J]. Physiologia Plantarum, 2015, 155(4): 446 − 456.
    [15] LI Zheng, LIU Dan, XIA Yu, et al. Identification of the WUSCHEL-related Homeobox (WOX) gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat [J/OL]. International Journal of Molecular Sciences, 2020, 21(5): 1581[2021-11-01]. doi: 10.3390/ijms21051581.
    [16] CHENG Saifeng, HUANG Yulan, ZHU Ning, et al. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response [J]. Gene, 2014, 549(2): 266 − 274.
    [17] CHENG Saifeng, ZHOU Daoxiu, ZHAO Yu. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development [J/OL]. Plant Signaling & Behavior, 2016, 11(2): e1130198[2021-11-01]. doi: 10.1080/15592324.2015.1130198.
    [18] WANG Liuqiang, LI Zhen, WEN Shuangshuang, et al. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar [J]. Journal of Experimental Botany, 2020, 71(4): 1503 − 1513.
    [19] WANG Liuqiang, WEN Shuangshuang, WANG Rui, et al. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar [J]. Plant Biotechnology Journal, 2021, 19(11): 2249 − 2260.
    [20] 杜红岩. 中国杜仲图志[M]. 北京: 中国林业出版社, 2014.

    DU Hongyan. Chinese Eucommia Pictorial [M]. Beijing: China Forestry Publishing House, 2014.
    [21] LI Zhenyu, GU Juan, YAN Jin, et al. Hypertensive cardiac remodeling effects of lignan extracts from Eucommia ulmoides Oliv. bark: a famous traditional Chinese medicine [J]. The American Journal of Chinese Medicine, 2013, 41(4): 801 − 815.
    [22] WU Dong, YU Danmeng, ZHANG Yujia, et al. Metabolite profiles, bioactivity, and HPLC fingerprint of different varieties of Eucommia ulmoides Oliv. : Towards the utilization of medicinal andcommercial chinese endemic tree [J/OL]. Molecules, 2018, 23(8): 1898[2021-11-01]. doi: 10.3389/molecules.23081898.
    [23] 刘俊, 陈玉龙, 刘燕, 等. 杜仲TIFY转录因子鉴定与表达分析[J]. 中国实验方剂学杂志, 2021, 27(19): 165 − 174.

    LIU Jun, CHEN Yulong, LIU Yan, et al. Identification and expression analysis of TIFY transcription factor in Eucommia ulmoides [J]. Chinese Journal of Experemental Traditional Medical Formulae, 2021, 27(19): 165 − 174.
    [24] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology &Evolution, 2013, 30(12): 2725 − 2729.
    [25] LI Long, LIU Minhao, SHI Kan, et al. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides [J/OL]. International Journal of Molecular Sciences, 2019, 20(16): 4030[2021-11-01]. doi: 10.3390/ijms20164030.
    [26] YE Jing, HAN Wenjing, FAN Ruisheng, et al. Integration of transcriptomes, small RNAs, and degradome sequencing to identify putative miRNAs and their targets related to eu-rubber biosynthesis in Eucommia ulmoides [J/OL]. Genes, 2019, 10(8): 623[2021-11-01]. doi: 10.3390/genes10080623.
    [27] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202.
    [28] LIU Jun, CHENG Zhanchao, XIE Lihua, et al. Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in moso bamboo (Phyllostachys edulis) [J/OL]. International Journal of Molecular Sciences, 2019, 20(2): 424[2021-11-01]. doi: 10.3390/ijms20020424.
    [29] LI Xiangyu, LI Juan, CAI Miaomiao, et al. Identification and evolution of the WUSCHEL related homeobox protein family in Bambusoideae [J/OL]. Biomolecules, 2020, 10(5): 739[2021-11-01]. doi: 10.3390/biom10050739.
    [30] 武强强, 张凤洁, 董浩欢, 等. 小麦WOX转录因子基因的全基因组鉴定与分析[J]. 激光生物学报, 2021, 30(1): 67 − 74.

    WU Qiangqiang, ZHANG Fengjie, DONG Haohuan, et al. Genome-wide identification and analyses of WOX transcription factor genes in wheat [J]. Acta Laser Biology Sinica, 2021, 30(1): 67 − 74.
    [31] WANG Pengjie, GUO Yongchun, CHEN Xuejin, et al. Genome-wide identification of WOX genes and their expression patterns under different hormone and abiotic stress treatments in tea plant (Camellia sinensis) [J]. Trees, 2019, 33(4): 1129 − 1142.
    [32] YANG Zhaoen, GONG Qian, QIN Wenqiang, et al. Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses [J/OL]. BMC Plant Biology, 2017, 17(1): 113[2021-11-01]. doi: 10.1186/s12870-017-2015-8.
    [33] International Wheat Genome Sequencing Consortium. A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome [J/OL]. Science, 2014, 345(6194): 1251788[2021-11-01]. doi: 10.1126/science.1251788.
    [34] WANG Guifeng, ZHONG Mingyu, WANG Jiajia, et al. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays) [J]. Journal of Experimental Botany, 2014, 65(4): 923 − 938.
    [35] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nature Genetics, 2013, 45(4): 456 − 461.
    [36] WUYUN Tana, WANG Lin, LIU Huimin, et al. The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis [J]. Molecular Plant, 2018, 11(3): 429 − 442.
    [37] The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon [J]. Nature, 2009, 463: 763 − 768.
    [38] BURR B. Mapping and sequencing the rice genome [J]. The Plant Cell, 2002, 14(3): 521 − 523.
    [39] HOFMEISTER B T, DENKENA J, COLOMÉ-TATCHÉ M, et al. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa [J/OL]. Genome Biology, 2020, 21: 259[2021-11-01]. doi: 10.1186/s13059-020-02162-5.
    [40] GUAN Chunmei, WU Binbin, YU Ting, et al. Spatial auxin signaling controls leaf flattening in Arabidopsis [J]. Current Biology, 2017, 27(19): 2940 − 2950.
    [41] TADEGE M, LIN Hao, BEDAIR M, et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris [J]. The Plant Cell, 2011, 23(6): 2125 − 2142.
    [42] KUCUKOGLU M, NILSSON J, ZHENG Bo, et al. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees [J]. New Phytologist, 2017, 215(2): 642 − 657.
    [43] BLEIN T, PAUTOT V, LAUFS P. Combinations of mutations sufficient to alter Arabidopsis leaf dissection [J]. Plants, 2013, 2: 230 − 247.
    [44] WANG Chaoqun, ZHAO Baolin, HE Liangliang, et al. The WOX family transcriptional regulator SlLAM1 controls compound leaf and floral organ development in Solanum lycopersicum [J]. Journal of Experimental Botany, 2021, 72(5): 1822 − 1835.
    [45] VANDENBUSSCHE M, HORSTMAN A, ZETHOF J, et al. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis [J]. The Plant Cell, 2009, 21(8): 2269 − 2283.
    [46] NAKATA M, MATSUMOTO N, TSUGEKI R, et al. Roles of the middle domain-specifific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis [J]. The Plant Cell, 2012, 24(2): 519 − 535.
    [47] HE Peng, ZHANG Yuzhou, LIU Hao, et al. Comprehensive analysis of WOX genes uncovers that WOX13 is involved in phytohormone-mediated fiber development in cotton [J/OL]. BMC Plant Biology, 2019, 19: 312[2021-11-01]. doi: 10.1186/s12870-019-1892-x.
    [48] MINH-THU P T, KIM J S, CHAE S, et al. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice [J]. Moleculer Cells, 2018, 41(8): 781 − 798.
    [49] LI Mengdi, WANG Ruihua, LIU Zhengyi, et al. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization [J/OL]. BMC Genomics, 2019, 20: 317[2021-11-01]. doi: 10.1186/s12864-019-5684-3.
    [50] DEVEAUX Y, TOFFANO-NIOCHE C, CLAISSE G, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis [J/OL]. BMC Evolutionary Biology, 2008, 8: 291[2021-11-01]. doi: 10.1186/1471-2148-8-291.
  • [1] 周文玲, 魏洪玲, 李德文, 唐中华, 刘英, 解胜男, 田叙晨, 储启明.  植物生长调节剂对杜仲叶片主要次级代谢产物的影响 . 浙江农林大学学报, 2023, 40(5): 999-1007. doi: 10.11833/j.issn.2095-0756.20220705
    [2] 孟超敏, 耿翡翡, 卿桂霞, 张富厚, 李雪林, 刘逢举.  陆地棉低磷胁迫应答基因GhGDPD1的克隆与表达分析 . 浙江农林大学学报, 2023, 40(4): 723-730. doi: 10.11833/j.issn.2095-0756.20220624
    [3] 王桂芳, 索金伟, 王哲, 成豪, 胡渊渊, 张可伟, 吴家胜.  香榧种实膨大过程中蔗糖代谢及其基因表达 . 浙江农林大学学报, 2022, 39(1): 1-12. doi: 10.11833/j.issn.2095-0756.20210593
    [4] 陈雪冰, 刘聪, 程赫, 姜廷波, 夏德安, 魏志刚.  毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析 . 浙江农林大学学报, 2022, 39(3): 465-474. doi: 10.11833/j.issn.2095-0756.20210373
    [5] 刘俊, 李龙, 陈玉龙, 刘燕, 吴耀松, 任闪闪.  杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析 . 浙江农林大学学报, 2022, 39(3): 475-485. doi: 10.11833/j.issn.2095-0756.20210385
    [6] 王灵杰, 栗青丽, 高培军, 韦赛君, 吕嘉欣, 高岩, 张汝民.  毛竹茎秆快速生长期光合关键酶活性及基因表达分析 . 浙江农林大学学报, 2021, 38(1): 84-92. doi: 10.11833/j.issn.2095-0756.20200277
    [7] 陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅.  景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式 . 浙江农林大学学报, 2021, 38(3): 445-454. doi: 10.11833/j.issn.2095-0756.20200488
    [8] 吴琪, 吴鸿飞, 周敏舒, 徐倩霞, 杨丽媛, 赵宏波, 董彬.  桂花OfFCA基因的克隆及在花芽分化时期的表达分析 . 浙江农林大学学报, 2020, 37(2): 195-200. doi: 10.11833/j.issn.2095-0756.2020.02.001
    [9] 栗青丽, 王灵杰, 高培军, 韦赛君, 吕嘉欣, 高岩, 张汝民.  竹茎秆快速生长期淀粉分解相关酶基因表达的分析 . 浙江农林大学学报, 2020, 37(6): 1128-1135. doi: 10.11833/j.issn.2095-0756.20190661
    [10] 刘华, 薛金嫚, 徐倩玉, 易昕, 王维艳, 刘宏波.  花生油酸脱氢酶基因AhFAD2AAhFAD2B的时空表达特征 . 浙江农林大学学报, 2019, 36(1): 14-20. doi: 10.11833/j.issn.2095-0756.2019.01.003
    [11] 王丽媛, 孙鹏, 李华威, 傅建敏, 刁松锋, 韩卫娟, 索玉静, 买旖旎.  柿性器官败育及相关基因的表达 . 浙江农林大学学报, 2019, 36(2): 236-246. doi: 10.11833/j.issn.2095-0756.2019.02.004
    [12] 原晓龙, 李娟, 李云琴, 王毅.  1个含有SDR结构域PKS/NRPS基因的克隆 . 浙江农林大学学报, 2019, 36(6): 1247-1253. doi: 10.11833/j.issn.2095-0756.2019.06.024
    [13] 陆军, 孙丽娟, 王晓荣, 吉泓睿, 倪晓详, 程龙军.  巨桉糖基转移酶基因EgrGATL1序列特征及表达分析 . 浙江农林大学学报, 2018, 35(4): 604-611. doi: 10.11833/j.issn.2095-0756.2018.04.004
    [14] 高向倩, 李忆林, 贾彩霞, 李大培, 杨玉婷, 杨桂燕.  核桃抗逆基因JrGSTU23的克隆及表达分析 . 浙江农林大学学报, 2018, 35(4): 589-595. doi: 10.11833/j.issn.2095-0756.2018.04.002
    [15] 温星, 程路芸, 李丹丹, 许馨露, 高岩, 张汝民.  毛竹叶片发育过程中光合生理特性的变化特征 . 浙江农林大学学报, 2017, 34(3): 437-442. doi: 10.11833/j.issn.2095-0756.2017.03.008
    [16] 哀建国, 杜江丽, 周爱存, 金松恒, 宋新章.  双波长HPLC同时测定氮沉降处理下杜仲皮和叶中的5种成分 . 浙江农林大学学报, 2015, 32(1): 60-66. doi: 10.11833/j.issn.2095-0756.2015.01.009
    [17] 朱景乐, 杨超伟, 杜红岩, 李芳东, 孙志强, 杜兰英.  2个杜仲无性系光合能力比较 . 浙江农林大学学报, 2014, 31(5): 704-709. doi: 10.11833/j.issn.2095-0756.2014.05.007
    [18] 刘攀峰, 乌云塔娜, 杜兰英, 吴敏, 黄海燕, 杜红岩.  杜仲2-甲基-D-赤藓糖醇-2,4-环焦磷酸合酶基因全长cDNA克隆与序列分析 . 浙江农林大学学报, 2014, 31(3): 410-416. doi: 10.11833/j.issn.2095-0756.2014.03.013
    [19] 黄程前, 宋丽青, 童再康, 程龙军.  光皮桦BlFTL基因的克隆和表达模式 . 浙江农林大学学报, 2013, 30(3): 343-349. doi: 10.11833/j.issn.2095-0756.2013.03.006
    [20] 高建社, 符军, 刘永红, 陈竹君.  氮磷肥配施效应对杜仲光合与蒸腾特性的影响 . 浙江农林大学学报, 2004, 21(3): 254-257.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210725

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/1

图(10) / 表(2)
计量
  • 文章访问数:  607
  • HTML全文浏览量:  123
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2022-05-15
  • 录用日期:  2022-07-11
  • 网络出版日期:  2023-12-19
  • 刊出日期:  2023-02-20

杜仲WOX家族基因鉴定及在叶片发育中的表达

doi: 10.11833/j.issn.2095-0756.20210725
    基金项目:  河南省科技研发计划联合基金项目(222301420074);河南省高等学校重点科研项目(22A360005);国际竹藤中心安徽太平试验中心开放课题基金(1632021006-4);国家林业和草原局/北京市共建竹藤科学与技术重点实验室开放基金(ICBR-2020-05);河南中医药大学博士科研启动基金项目(RSBSJJ2019-04)
    作者简介:

    刘俊(ORCID: 0000-0003-0468-5927),助理研究员,从事药用植物分子生物学研究。E-mail: liujun_0325@163.com

  • 中图分类号: S718.4;Q754

摘要:   目的  Wuschel (WUS)相关的同源异型盒(Wuschel-related homeobox,WOX)转录因子家族在植物生长发育中发挥重要作用。本研究旨在探索WOX转录因子在杜仲Eucommia ulmoides中的分布及表达特征。  方法  以杜仲基因组数据库为基础,利用生物信息学方法对杜仲WOX家族进行全基因组鉴定;基于转录组数据分析EuWOXs在叶片发育及杜仲胶形成中的表达特征,通过实时荧光定量PCR (RT-qPCR)检测EuWOXs在‘紫叶’杜仲‘Ziye’叶片不同发育时期的表达模式。  结果  杜仲基因组中共鉴定出8条EuWOXs,分布于8条染色体;EuWOXs蛋白质长度为182~352个氨基酸,理论等电点为5.10~6.47,分子量为20.7~40.4 kDa;亚细胞定位预测EuWOXs均定位在细胞核中,均为亲水性蛋白。根据系统进化关系,杜仲WOX家族包括3个亚家族,分别含2、1和5个EuWOXs基因。EuWOXs均含有内含子,并包含多个基序,启动子中富含激素、胁迫和光周期响应元件。大部分EuWOXs在杜仲叶片中表达量较低,EuWOX13-1随叶片发育表达量逐渐降低,EuWOX13-2在生长叶中表达量最高。  结论  杜仲中有8个EuWOXs基因,EuWOX13-1和EuWOX13-2可能在杜仲叶片发育中发挥重要作用。图10表2参50

English Abstract

刘俊, 李龙, 陈玉龙, 陈随清. 杜仲WOX家族基因鉴定及在叶片发育中的表达[J]. 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
引用本文: 刘俊, 李龙, 陈玉龙, 陈随清. 杜仲WOX家族基因鉴定及在叶片发育中的表达[J]. 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
LIU Jun, LI Long, CHEN Yulong, CHEN Suiqing. Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
Citation: LIU Jun, LI Long, CHEN Yulong, CHEN Suiqing. Identification of WOX gene family and their expression in the leaf development of Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
  • Wuschel-related homeobox (WOX)是植物特有的新型转录因子,属于Homepbox (HOX)超家族,包含由60~65个氨基酸组成的螺旋-环-螺旋-转角-螺旋的保守结构域。WOX家族基因分为3个独立进化支,即现代进化支(modern clade,WUS),中间进化支(intermediate clade)和远古进化支(ancient clade)[1-3],其中WUS是最早发现的WOX家族成员[4]。WOXs蛋白在植物胚胎形成[5]、干细胞维持[6]和花发育[7]等方面发挥重要作用。拟南芥Arabidopsis thaliana中WOX家族有15个成员,分别是AtWUS和AtWOX1~AtWOX14[4],其中,AtWOX10、AtWOX13和AtWOX14蛋白属于远古进化分支,AtWUS和AtWOX1~7等8个蛋白质属于WUS分支,AtWOX8、AtWOX9、AtWOX11和AtWOX12蛋白属于中间进化分支。AtWUS在胚珠、花药和茎尖分生组织中表达,是维持中央分生组织的关键基因,AtWOX11和AtWOX12参与新生根器官发生,在顶端分生组织发育阶段,AtWUS参与干细胞稳态维持[8]。超表达AtWUS促进棉花Gossypium hirsutum体细胞胚胎发育和器官发生[9]。水稻Oryza sativa中,OsWOX11激活冠根的萌发和生长,过表达OsWOX11可促进雌蕊增加[10]OsWOX3A参与水稻叶片、小穗、分蘖和侧根的发育[11];在茎顶端分生组织和腋分生组织中OsWOX4正调控干细胞[12]。超表达WOX11 (PeWOX11aPeWOX11b)或WOX11/12a增加转基因植株不定根数量[13-14]。在小麦Triticum aestivum中超表达TaWUS影响外花轮状器官发育,TaWOX9促进转基因拟南芥根的发育[15]

    WOXs转录因子不仅调控植物生长发育,而且参与胁迫响应。在水稻中OsWOX12AOsWOX12B等基因的表达受干旱、寒冷和盐胁迫差异调控,超表达OsWOX11通过促进根毛生长发育提高转基因植株干旱胁迫耐受性[16-17]。84K杨树Populus alba×P. glandulosa中,干旱胁迫诱导PagWOX11/12a基因强烈表达,促进根系伸长和生物量生长,上游调控因子PagERF35激活PagWOX11/12a表达[18]PagWOX11/12a通过调控PagCYP736A12基因表达,调节活性氧(reactive oxygen species,ROS )清除,提高杨树耐盐性[19]

    杜仲Ecommia ulmoides是杜仲科Eucommiaceae杜仲属Eucommia的落叶乔木,为中国二级保护植物,叶片、树皮和果皮中富含杜仲胶,是重要的胶用和药用经济树种,具有极高的开发利用价值[20]。杜仲叶片中含有绿原酸、黄酮类、木脂素类、环烯醚萜类、α­-亚麻酸等药用成分,具有抗疲劳、抗衰老、抗肿瘤、增强免疫力等重要作用[21-22]。鉴于WOX基因在拟南芥、水稻、玉米Zea mays、杨树、油菜Brassica napus、铁皮石斛Dendrobium officinale等中的作用,推测WOX家族基因可能在杜仲叶芽的形成和激活过程中起关键作用。本研究以杜仲基因组数据为基础,对杜仲WOX家族基因进行了全基因组鉴定和生物信息学分析,基于转录组分析WOX在杜仲叶片不同发育时期以及杜仲胶形成中的表达模式,利用实时荧光定量PCR(RT-qPCR)检测杜仲WOX基因(EuWOXs)在‘紫叶’杜仲‘Ziye’叶片发育中的表达水平,以期为EuWOXs功能的深入研究奠定基础。

    • 自西北农林科技大学苗圃(陕西杨凌),取生长正常长势一致的2年生‘紫叶’杜仲幼苗的叶芽(茎尖)、生长叶(3 cm长叶片)、幼叶(完全展开的新叶),用液氮迅速处理,置于−80 ℃冰箱保存。

    • 拟南芥WOX蛋白序列下载于TAIR数据库(https://www.arabidopsis.org/index.jsp),根据Pfam号(PF00046)在杜仲基因组数据库中筛选出WOX家族基因候选序列,利用美国国立生物技术信息中心(National Center for Biotechnology Information,NCBI)的保守结构域搜索服务(Conserved Domain Search Service,CD Search)检测蛋白质保守结构域,筛选出具有完整WOX结构域的蛋白质作为EuWOX家族成员,利用生物信息学方法[23]分析EuWOXs的理化性质。

    • 通过杜仲基因组数据库搜索WOX基因在染色体上的位置及每条染色体长度,利用MapGene2Chromosome v2 (http://mg2c.iask.in/mg2c_v2.0/)软件绘制WOX家族基因染色体定位。利用DNAMAN进行蛋白序列比对,通过Clustal X 1.83对杜仲、拟南芥、毛果杨、水稻和玉米WOXs蛋白进行多序列比对,利用MEGA 6.0邻接法(neighbor-joining),重复次数设置为1 000次[24],构建系统发育树,根据拟南芥同源基因对EuWOXs蛋白命名。

    • 利用GSDS (http://gsds.gao-lab.org/index.php)软件分析EuWOXs的内含子和外显子分布。利用MEME (http://meme-suite.org/)软件分析EuWOXs基序,参数设置为:any number of Repetitions,maximum number of Motifs=20,minimum width≥6,and maximum width≤50。分离EuWOXs启动子(ATG)上游2 000 bp序列,利用Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/htmL/)分析EuWOXs启动子顺式作用元件。

    • 从NCBI的Short Read Arshive (SRA)数据库中下载‘秦仲1号’‘Qinzhong No.1’叶片不同发育时期(叶芽、初生叶、幼叶、老叶)(版本号:SRP218063)[25]及高产胶杜仲品种‘秦仲2号’‘Qinzhong No.2’、低产胶杜仲品种‘小叶’‘Xiaoye’(版本号:SRP158357)[26]的转录组数据,使用每1百万个映射上的碱基中映射到外显子的每1千个碱基上的碱基个数(fragments per kilobase million,FPKM)值表示EuWOXs相对表达丰度,取对数(log2)进行统计分析,利用TBtools工具绘制基因表达图谱[27]

      使用Trizol(天根DP424)提取RNA,反转录成cDNA,通过Primer 3.0软件设计EuWOXs特异性引物(引物序列见表1),通过Quant Studio 6(新加坡Life Technologies公司),All-in-One SYBR Premix EX TaqTM kit(美国Gene Copoeia公司)进行实时荧光定量PCR(RT-qPCR)反应,10 μL反应体系:2× mix 5.00 μL、正向引物/反向引物各0.25 μL、cDNA 2.00 μL、ROX 0.20 μL、双蒸水2.30 μL。反应程序:95 ℃预变性5 min,95 ℃变性10 s,60 ℃退火10 s,72 ℃延伸20 s,45个循环。以UBCE2为内参基因[26],通过$2^{-\Delta \Delta C_t} $法对3次生物学重复进行数据分析。

      表 1  引物序列

      Table 1.  Primer sequences

      基因名上游引物(5′→3′)下游引物(5′→3′)
      EuWOX1 ATGGTGGGTGACCAGCTTAG TTCTCTGGCCTTGTGGTTCT
      EuWOX2 ACCGTACCCCAACCTACTCC ACTTCCCGTTGGATGAAGTG
      EuWOX4-1 GGAACCCTACGCAAGAACAG GCGCTTCTGCTTTTGTCTCT
      EuWOX4-2 TAGAGCAGATCACGGCACAG CTAGGGTCGGATGTTGGAGA
      EuWOX5 GACGGAGCAAGTGAGAGTCC TCTCCCGTGCCTTATGATTC
      EuWOX11 ACTCGAGTTTTGTGGCCTGT AATTGGAGGCATCTGGATTG
      EuWOX13-1 GGTCTGAGGGCATGTGTTTT TTGGAGATATGGGTGGTGGT
      EuWOX13-2 GGGTTGTTCGTCAAGGTCAT GTTGGAATCCACCGTTGTCT
      UBCE2 AGTGGGTGGTGCTGTAGTCC AACTCCCGTTTCGTTTGTTG
    • 通过STRING软件(https://string-db.org/)上传EuWOXs蛋白质序列,利用拟南芥数据库,根据拟南芥WOXs蛋白已知互作关系,预测EuWOXs互作蛋白,通过Cytoscape 3.7.0软件对EuWOXs蛋白质互作信息进行评估和预测[28]

    • 表2可知:从杜仲基因组中共鉴定到8个EuWOXs,分布在8条染色体上(图1);均含有HD保守结构域,其中EuWOX1序列最长,编码352个氨基酸,EuWOX13-2序列最短,编码191个氨基酸。EuWOXs分子量为22.12~40.36 kDa,EuWOX11等电点最小,为5.62,EuWOX4-1等电点最大,为9.04;亚细胞定位预测结果显示:EuWOXs均定位在细胞核中,均为亲水性蛋白。

      表 2  EuWOXs蛋白质序列特征及亚细胞定位

      Table 2.  Sequence characteristics and subcellular location of E. ulmoides WOX proteins

      基因号基因名拟南芥
      同源基因
      染色体位置CDS长度/
      bp
      氨基酸数/
      分子量/
      kDa
      等电点亚细胞
      定位
      EUC13591-RA EuWOX1 AT3G18010.1 Super-Scaffold_235 3540694-3544292 1059 352 40.36 5.78 细胞核
      EUC12552-RA EuWOX2 AT5G59340.1 Scaffold912_obj 156744-159059 810 269 30.16 8.11 细胞核
      EUC15721-RA EuWOX4-1 AT1G46480.1 Super-Scaffold_242 604979-606289 618 205 23.48 9.04 细胞核
      EUC21176-RA EuWOX4-2 AT1G46480.1 Scaffold272_obj 37477-39280 642 213 24.31 8.82 细胞核
      EUC18832-RA EuWOX5 AT3G11260.1 Super-Scaffold_117 336319-340482 549 182 20.70 6.92 细胞核
      EUC00362-RA EuWOX11 AT3G03660.1 Super-Scaffold_154 68808-70507 765 254 27.67 5.62 细胞核
      EUC00756-RA EuWOX13-1 AT4G35550.1 Super-Scaffold_233 319468-325733 810 269 30.42 6.22 细胞核
      EUC02503-RA EuWOX13-2 AT4G35550.1 Super-Scaffold_71 6332599-6364092 576 191 22.11 6.54 细胞核

      图  1  EuWOXs染色体位点

      Figure 1.  Chromosome site of EuWOXs genes

    • 利用DNAMAN软件对8个EuWOXs及12个拟南芥WOXs蛋白(AtWOXs)保守结构域进行序列分析。结果(图2)显示:WOXs蛋白质HD结构域氨基酸及其分布具有显著的相似性,均包含由60个氨基酸组成的螺旋-环-螺旋-转角-螺旋,螺旋较环和转角保守。谷氨酰胺(Q)、亮氨酸(L)和脯氨酸(Pro)是螺旋Ⅰ (Helix Ⅰ)结构域的保守氨基酸,脯氨酸、异亮氨酸(Ile)和亮氨酸是螺旋Ⅱ (Helix Ⅱ)结构域的保守氨基酸,相比之下,螺旋Ⅲ (Helix Ⅲ)结构域最为保守,其中保守氨基酸有天冬酰胺(N)、缬氨酸(V)、色氨酸(W)、苯丙氨酸(F)、谷氨酰胺、天冬酰胺和精氨酸(R)。EAR-like仅存在于EuWOX1、EuWOX2、EuWOX4-1、EuWOX4-2和EuWOX5中,属于WUS,暗示EuWOXs在进化过程中具有保守性。

      图  2  拟南芥和杜仲WOXs的蛋白质同源结构域序列分析

      Figure 2.  Sequence analysis of WOX proteins homeo domain in A. thaliana and E. ulmoides

    • 对8个杜仲EuWOXs、15个拟南芥AtWOXs、18个毛果杨Populus trichocarpa WOX蛋白(PotriWOXs)、13个水稻OsWOXs、20个玉米ZmWOXs的蛋白质序列进行多重比对,构建无根系统发育树。结果如 图3所示:74个WOXs蛋白共分为3组[远古进化支、中间进化支和现代进化支(WUS)],其中远古进化支含有12个WOXs蛋白,中间进化支含22个WOXs蛋白,现代进化支包含的蛋白数量最多,共有40个。8个EuWOXs中,EuWOX13-1和EuWOX13-2属于远古进化支,EuWOX11属于中间进化支,EuWOX1、EuWOX2、EuWOX5、EuWOX4-1和EuWOX4-2等5个蛋白质属于WUS。进化结果显示:杜仲与毛果杨亲缘关系最近。

      图  3  杜仲、拟南芥、毛果杨、水稻和玉米WOXs蛋白系统发育树

      Figure 3.  WOX proteins phylogenetic trees of E. ulmoides, A. thaliana, P. trichocar, O. sativa and Z. mays

    • 利用GSDS软件构建EuWOXs基因内含子-外显子结构图,结果如图4显示:EuWOXs含有1~3个内含子,EuWOX13-2、EuWOX2和EuWOX5基因含有2个外显子,EuWOX11、EuWOX13-1、EuWOX4-1和EuWOX4-2含有3个外显子,EuWOX1含有4个外显子。不同进化分支基因结构差异显著,同一分支基因结构也存在差异。属于中间进化支的EuWOX11含有3个外显子,同属远古进化支的EuWOX13-1和EuWOX13-2分别含有3个和2个外显子,在WUS中,EuWOX2和EuWOX5含有2个外显子,EuWOX4-1和EuWOX4-2含有3个外显子,而EuWOX1含有4个外显子。

      图  4  杜仲WOX家族基因的结构分析

      Figure 4.  Structural analysis of WOX gene family in E. ulmoides

      蛋白质保守基序分析显示:EuWOXs含有10个保守基序,分别命名为Motif 1~Motif 10 (图5),其中Motif 1和Motif 2最为保守,是WOX的核心基序,存在于所有EuWOXs中。Motif 6较为保守,存在于4个EuWOXs蛋白质(EuWOX4-2、EuWOX2、EuWOX1和EuWOX5)中。相同分支EuWOXs含有相似的保守基序,不同分支EuWOXs基序之间存在显著差异,Motif 4~Motif 10只存在于现代进化分支,Motif 3只在EuWOX13-1和EuWOX13-2蛋白质中存在。

      图  5  杜仲WOX基因家族保守基序分析

      Figure 5.  Conserved motifs analysis of E. ulmoides WOX gene family

    • 顺式作用元件分析结果(图6)显示:EuWOXs启动子中主要包括脱落酸(ABRE)和水杨酸反应元件(TCA-element)、厌氧响应元件(ARE)、光响应元件(Box 4)及玉米蛋白代谢调节元件(O2-site)。所有顺式作用元件中光响应元件最多,达77个,其中Box 4元件有26个,所占比例是34%;G-box和GT1-motif元件均有9个,占比为12%,表明EuWOXs基因表达可能与光合作用有关。EuWOXs共含有46个激素响应元件,32个胁迫响应元件,其中ABRE和ARE元件数量最多,均含有14个,所占比例分别为31%和44%,暗示EuWOXs参与杜仲激素及胁迫响应。此外EuWOXs共含有12个生长发育调控相关元件,其中O2-site有6个,占50%。

      图  6  EuWOXs基因启动子顺式作用元件分析

      Figure 6.  Cis-element analysis of EuWOX genes promoter

    • 利用‘秦仲1号’叶片不同发育时期转录组数据对EuWOXs基因的表达模式进行分析。结果(图7)可见:EuWOXs在叶片不同发育时期表达丰度存在显著差异,EuWOX11和EuWOX2在杜仲叶芽、初生叶、幼叶、老叶时期均不表达,EuWOX5仅在叶芽和老叶中低表达,EuWOX13-2在4个时期中的FPKM值均大于20,推测EuWOX13-2参与杜仲叶片的整个发育过程;EuWOX13-1和EuWOX4-1在叶芽中表达丰度最高,随着叶片发育表达水平逐渐降低,表明EuWOX13-1和EuWOX4-1主要在叶芽中发挥作用;EuWOX1在生长叶中表达量相对较高,其余EuWOXs基因表达丰度较低,FPKM值小于5。

      图  7  EuWOXs在杜仲叶片不同发育阶段的表达模式

      Figure 7.  Expression patterns of EuWOXs at different developmental stages in E. ulmoides leaves

      利用RT-qPCR检测EuWOXs在‘紫叶’杜仲叶片不同发育阶段(叶芽、生长叶、幼叶)的表达水平。结果(图8)可见:EuWOX1、EuWOX2、EuWOX4-1、EuWOX5和EuWOX13-2在生长叶中表达量最高,随着叶片发育表达水平呈先升高后降低趋势,EuWOX4-2在幼叶中表达量最高,EuWOX13-1在叶芽中表达量最高,随着叶片发育,表达量逐渐降低,暗示EuWOX13-1在叶片发育的起始阶段发挥重要作用。EuWOX1、EuWOX13-1和EuWOX13-2在‘紫叶’杜仲叶片中的表达趋势与‘秦仲1号’一致。

      图  8  杜仲EuWOXs基因在杜仲叶片不同发育时期的表达模式

      Figure 8.  Expression pattern of EuWOX genes in E. ulmoides leaves at different developmental stages

      利用‘秦仲2号’和‘小叶’杜仲成熟叶片转录组数据检测EuWOXs的表达模式。由如图9可见:大部分EuWOXs转录水平较低,其中有6个EuWOXs基因几乎不表达,EuWOX13-2表达水平最高,FPKM值>40,不同胶含量样品之间无显著差异,推测EuWOXs在杜仲胶形成过程中发挥作用较小。

      图  9  EuWOXs在杜仲胶形成中的表达模式

      Figure 9.  Expression patterns of EuWOX genes in the form of Eu-rubber      

    • 植物WOXs蛋白由多基因家族编码,蛋白质之间可能存在相互作用。利用STRING数据库,构建EuWOXs蛋白相互作用网络。图10显示:该网络包含21个节点(互作蛋白)和82条边(相互作用组合)。EuWOX4-1可与20个蛋白质互作,其中包含干细胞分化抑制因子(CLE41和CLE44),细胞增殖和愈伤组织形成蛋白(CLV1、CLV3和ACT7),胚胎发育相关蛋白(TPL、BBM和APM1),维管组织发育蛋白(PXY、HB-8、ATHB-15、MOL和RUL1),细胞程序化死亡调控因子(LOL1),参与DNA的复制和延伸(MCM1、POLD2)以及信号转导蛋白(F14K14),花药发育关键调控因子(RPK2),参与DNA的复制植物发育相关转录因子GRAS(HAM3和SCL27)等,推测EuWOXs全面参与了杜仲的生长发育。

      图  10  EuWOXs蛋白互作网络预测

      Figure 10.  Prediction of interaction network between EuWOX proteins

    • WOX蛋白是植物特有的高度保守的一类转录因子,广泛参与植物的生长发育、干细胞维持、组织器官发生和形成等多种生物学过程。到目前为止,WOX家族基因已在多个物种进行了研究报道,如拟南芥中含有15个、毛果杨18个、水稻中有13个、玉米中有20个、毛竹Phyllostachys edulis 中存在27个[29],小麦中有26个[30]、茶树Camellia sinensis中包含18个[31],黄瓜Cucumis sativus中有11个[3],陆地棉Gossypium hirsutum中含有38个[32]。小麦(17 Gb)[33]、玉米(2 300 Mb)[34]和毛竹(2 021 Mb)[35]基因组大于杜仲(1.2 Gb)[36],拟南芥(164 Mb)[37]、水稻(441 Mb) [38]和毛果杨(392.3 Mb)[39]基因组小于杜仲。杜仲WOX数量低于拟南芥、毛果杨、水稻、玉米、小麦和毛竹,表明WOXs基因的丰富程度与基因组大小无关,这可能与基因重复有关。

      杜仲基因组中共鉴定出8个EuWOXs,分布在8条染色体上。EuWOXs均为核定位蛋白,在现代进化支(WUS)、中间进化支和远古进化支分别含有5、1和2个成员,其系统发育模式与拟南芥、水稻、陆地棉等类似[2931-32]EuWOXs基因启动子中含有多种生长发育、激素响应、非生物胁迫以及光周期响应元件。在水稻中,WUS的OsWOX5和中间进化支的OsWOX11、OsWOX12A和OsWOX12B基因表达受生长素、细胞分裂素和赤霉素调节,超表达OsWOX11可提高水稻抗旱性[16-17]。细胞分裂素强烈促进苹果Malus pumila WOX1和WOX3基因表达,生长素诱导黄瓜CsWOX1b和CsWOX3基因表达[3]。在拟南芥中,生长素反应因子5 (AUXIN RESPONSE FACTOR,ARF5)上调AtWOX1和PRS (AtWOX3)基因的表达,ARF2、ARF3和ARF4抑制AtWOX1和PRS的表达[40]OsWOX3A参与水稻器官发育、叶片横向轴伸长、颖花外稃形态发生以及分蘖和侧根发育[10]MtWOX1的同源基因STENOFOLIA是蒺藜苜蓿Medicago truncatula叶片生长和维管组织形成的必须基因[41]PttWOX4在杨树形成层中特异表达,PttWOX4a/b RNAi干扰后导致维管形成层宽度缩小,次生生长减弱[42]。推测EuWOXs可能在杜仲生长发育、激素和胁迫响应等生物学过程中发挥重要作用。

      WOX家族基因参与叶片发育。属于中间支的AtWOX9/STIMPY过表达导致拟南芥叶缘波浪化[43]SlLAM1主要在番茄Solanum lycopersicum叶片、花和果实中表达,SlLAM1缺失导致叶片变窄,次生小叶数量减少[44],超表达黄瓜CsWOX9导致转基因拟南芥角果变短,莲座叶和分枝数目增加[3]。来源于WUS的AtWOX3是拟南芥侧托叶发育的必需基因,Atwox1和Atwox3缺失突变体导致叶片和花器官变窄,影响叶片横向扩张和花瓣融合[45-46]GhWOX9_AtGhWUSa_AtGhWUSb_Dt主要在棉花幼叶中高量表达[47]。远古进化分支中的OsWOX13在水稻叶、茎、根维管组织中表现为空间表达调控,在花和发育中的种子中是时间表达调控[48]。在杜仲中,EuWOX13-1在叶芽中表达量最高,随着叶片发育,转录水平逐渐降低,暗示EuWOX13-1主要在杜仲叶片发育的早期阶段发挥作用。EuWOX13-2在生长叶中表达量较高,在叶片发育过程中呈现先升高后降低的趋势。EuWOX13-1和EuWOX13-2是一对重复基因,其表达水平的差异可能与基因结构不同有关,也可能是EuWOX13-1和EuWOX13-2在重复后发生了功能分化。在甘蓝型油菜Brassica napus中,BnCWOX13a与BnCWOX13c互为同源基因,然而它们的表达趋势完全不同[49],在拟南芥中,AtWOX13在初生根、侧根、雌蕊和胚发育中动态表达,而AtWOX13的直系同源基因AtWOX14只在侧根形成的早期阶段和发育的花药中特异表达[50],由此推测EuWOX13-2可能只获得了EuWOX13-1基因的部分功能,具体功能还需要进一步研究。

参考文献 (50)

目录

    /

    返回文章
    返回