-
植物在生长发育过程中会通过不断调整基因的表达来适应各种逆境,而转录因子(TFs)是其调控过程的关键因子[1]。研究表明:锌指同源结构域(ZF-HD)转录因子作为一种同源异形盒(HB)蛋白在调控植物生长发育以及响应多种生物和非生物胁迫方面发挥着重要作用[2-3]。ZF-HD不仅具有同源结构域(HD),还包括1个高度保守的锌指结构域(ZF)[4],ZF是由2对保守的半胱氨酸(Cys)和/或组氨酸(His)残基结合单个锌离子组成的指环状结构蛋白,可特异性与DNA/RNA序列结合,并参与蛋白质互作[2, 5];HD是1个约60个氨基酸的DNA结合域(DBD),这段序列折叠成一个识别螺旋附着在DNA的大沟上,特异性地结合DNA来激活或抑制靶基因的表达[6]。为了方便研究该家族的进化史,HU等[7]将ZF-HD重新命名为ZHD。
ZHD蛋白可分ZHD和小锌指(MIF)两类,两者都含有ZF结构域,但MIF缺少HD结构域[8]。2001年ZHD首次在黄花菊Flaveria trinervia中被鉴定出来[9],随后拟南芥Arabidopsis thaliana[10]、水稻Oryza sativa[11]、葡萄Vitis vinifera[8]、大白菜Brassica rapa ssp. pekinensis[2]、番茄Solanum lycopersicum[3]、茶树Camellia sinensis[5]和黄瓜Cucumis sativus[12]等的ZHD被陆续发现。研究表明:ZHD能够调控植物的抗逆性,如过表达AtZHD1可以提高拟南芥的耐旱性[13];OsZHD1基因过表达导致水稻叶片卷曲下垂,降低水稻的耐旱性[14];在大豆Glycine max中,过表达GmZF-HD1和GmZF-HD2会与编码钙调蛋白的GmGaM4基因启动子结合增强大豆的抗病能力[15];TaZFHD1参与小麦Triticum aestivum生长发育过程中茉莉酸(JA)、脱落酸(ABA)和乙烯(ET)信号转导过程,调节小麦对胁迫的抗性[16];大白菜中的BraZF-HD受光、低温等非生物胁迫诱导表达[2];此外,水稻ZHDs与OsDREB1B基因的启动子结合调节水稻对低温、干旱和机械损伤的抗性[17]。ZHD广泛存在于植物中,在植物对环境胁迫响应过程中起着重要的作用。
毛果杨Populus trichocarpa是研究木本植物生长发育、材质材性以及抗逆性状的重要模式植物,但是目前毛果杨ZHD (PtrZHD)家族及非生物胁迫响应特性的研究尚无报道。本研究通过生物信息学手段鉴定了毛果杨全基因组内的PtrZHDs基因,并对其编码蛋白特征、系统发育、基因扩张、基因结构与保守基序、启动子顺式作用元件和表达特性进行分析,为研究该家族基因的功能提供科学依据。
-
将所有含ZF-HD_dimer (PF04770)结构域的序列上传到Pfam和SMART数据库,去除冗余序列后从毛果杨基因组中鉴定出21个PtrZHD (表1),根据基因所在染色体及染色体上的位置信息,将它们分别命名为PtrZHD1~PtrZHD21。PtrZHD家族基因编码蛋白的基本特征分析表明:各PtrZHD所编码蛋白的长度为73~339个、分子量为8.28~37.98 kDa、等电点为6.39~9.31、编码序列长度为222~1 020 bp,蛋白长度、分子量、等电点和编码序列长度差异明显。表明PtrZHD家族基因及其编码蛋白特征存在较大差异,即该家族各个成员的生物学功能发生了分化。
表 1 毛果杨ZHD家族基因概况
Table 1. Overview of ZHD gene family in P. trichocarpa
登录号 基因名 基因位置 蛋白长度/个 分子量/kDa 等电点 编码序列长度/bp Potri.002G035200.1 PtrZHD1 Chr02: 2259632..2261632 293 32.84 8.22 882 Potri.002G102900.1 PtrZHD2 Chr02: 7442579..7444098 262 27.92 7.28 789 Potri.003G000400.1 PtrZHD3 Chr03: 70322..71164 253 28.01 7.71 762 Potri.003G146700.1 PtrZHD4 Chr03: 16229434..16229655 73 8.28 7.73 222 Potri.004G11.300.1 PtrZHD5 Chr04: 12287585..12289662 334 36.77 8.70 1005 Potri.004G126600.1 PtrZHD6 Chr04: 12337842..12338677 130 14.17 6.81 393 Potri.004G135100.1 PtrZHD7 Chr04: 15528323..15529129 268 29.44 8.83 807 Potri.004G229600.1 PtrZHD8 Chr04: 23480758..23482600 271 30.06 8.39 816 Potri.005G11.300.1 PtrZHD9 Chr05: 9522291..9525287 339 37.98 9.19 1020 Potri.005G158800.1 PtrZHD10 Chr05: 16017482..16019310 257 27.73 6.43 774 Potri.005G227900.1 PtrZHD11 Chr05: 23746838..23749246 290 32.32 8.88 873 Potri.007G024100.1 PtrZHD12 Chr07: 1814109..1816426 331 36.75 9.31 996 Potri.008G086000.1 PtrZHD13 Chr08: 5402319..5403293 324 35.57 8.83 975 Potri.010G169400.1 PtrZHD14 Chr10: 17139193..17140688 332 36.41 9.21 999 Potri.012G040900.1 PtrZHD15 Chr12: 3680805..3681724 182 20.66 6.39 549 Potri.013G108900.1 PtrZHD16 Chr13: 12226035..12227366 281 31.74 7.71 846 Potri.015G032700.1 PtrZHD17 Chr15: 2637644..2638216 190 21.44 6.17 573 Potri.017G082700.1 PtrZHD18 Chr17: 9830334..9831749 161 17.36 5.93 486 Potri.017G082900.1 PtrZHD19 Chr17: 9903467..9905775 337 37.23 8.23 1014 Potri.019G021400.1 PtrZHD20 Chr19: 2418959..2419646 132 14.83 8.83 399 Potri.019G081300.1 PtrZHD21 Chr19: 11464924..11465688 184 20.87 9.91 555 表 2 同源基因的Ka/Ks及同源性
Table 2. Ka/Ks values and homologous status of homologous genes
同源基因 非同义替换率(Ka) 同义替换率(Ks) Ka/Ks 同源片段长度/bp 同源性 基因1 基因2 PtrZHD1 PtrZHD11 0.06 0.32 0.19 787 0.90 PtrZHD2 PtrZHD10 0.04 0.19 0.21 711 0.92 PtrZHD3 PtrZHD8 0.08 0.36 0.22 682 0.86 PtrZHD5 PtrZHD19 0.08 0.35 0.23 779 0.88 PtrZHD6 PtrZHD18 0.07 0.18 0.39 357 0.91 PtrZHD9 PtrZHD12 0.08 0.29 0.28 875 0.85 PtrZHD13 PtrZHD14 0.09 0.36 0.25 838 0.85 PtrZHD15 PtrZHD17 0.05 0.27 0.19 496 0.90 -
利用双子叶植物(拟南芥、毛果杨和大白菜)与单子叶植物(水稻)的ZHD蛋白序列构建系统进化树(图1),PtrZHD家族分为2个种类(ZHD和MIF),这2个种类可以分成7个亚族(Ⅰ~Ⅶ)[5, 8, 12],PtrZHD不同亚族中即包括单子叶植物又包括双子叶植物,表明该基因家族的分化早于单双子叶植物的分化。
-
PtrZHD家族成员在毛果杨染色体上的分布(图2)显示:21个PtrZHD不均匀地分布在毛果杨12条染色体上;4、5号染色体上分别分布4和3个ZHD,2、3、17和19号染色体上各分布2个ZHD,7、8、10、12、13和15号染色体上只分布1个ZHD,1、6、9、11、14、16和18号染色体上无ZHD分布。PtrZHD家族编码序列Blast结果表明:PtrZHD1和PtrZHD11、PtrZHD2和PtrZHD10、PtrZHD3和PtrZHD8、PtrZHD5和PtrZHD19、PtrZHD6和PtrZHD18、PtrZHD9和PtrZHD12、PtrZHD13和PtrZHD14以及PtrZHD15和PtrZHD17有共线性关系(图2和表2),同源片段长度大于300 bp且同源性超过80%,是进化过程中由于全基因组复制和串联复制而形成的同源基因[3, 22],表明PtrZHD可能通过全基因组复制和串联复制进行家族扩张。8对同源基因的Ka/Ks均小于1(表2),说明PtrZHD家族在进化过程中经历了纯化选择,留存的基因较为保守[3]。
-
PtrZHD家族21个成员中有11个成员含有内含子(图3B),这与之前报道的其他物种ZHD家族中有内含子的成员数量较少的研究结果稍有不同[5, 12]。PtrZHD蛋白具有2个保守性较高的基序:同源结构域序列(Motif 1)和锌指结构域序列(Motif 2)(图3C)。Motif 2与DNA的特异性结合有关;Motif 1与蛋白二聚体的形成有关[7]。所有的PtrZHD蛋白都具有Motif 1,而且除了PtrZHD4和亚族Ⅴ(MIF)的成员之外,其他家族成员都含Motif 2,说明该家族成员在进化过程中比较保守。
-
PtrZHD家族启动子区顺式作用元件可分为2个大类(图4):第一大类为植物激素响应元件,共有5种,分别为生长素响应元件(AuxRR-core、TGA-element),水杨酸响应元件(TCA-element),茉莉酸甲酯响应元件(CGTC-motif、TGACG-motif),脱落酸响应元件(ABRE)和赤霉素响应元件(P-box、GARE-motif);第二大类为非生物胁迫响应元件,共有4种,分别为厌氧诱导元件(ARE)、干旱诱导性结合位点(MBS)、抗病和胁迫诱导元件(TC-rich repeats)和低温响应元件(LTR)。PtrZHD家族各基因启动子区存在不同类型的作用元件,但处于同一亚族的各基因含有相似的作用元件(图4),亚族Ⅰ主要包含茉莉酸甲酯响应元件、脱落酸响应元件、赤霉素响应元件和厌氧诱导元件;亚族Ⅱ主要包含水杨酸响应元件和茉莉酸甲酯响应元件;亚族Ⅲ主要包含厌氧诱导元件、MYB干旱诱导性结合位点以及抗病和胁迫诱导元件;亚族Ⅳ主要包含生长素响应元件,水杨酸响应元件,茉莉酸甲酯响应元件,脱落酸响应元件和厌氧诱导元件;亚族Ⅴ主要包含水杨酸响应元件、赤霉素响应元件、厌氧诱导元件和MYB干旱诱导性结合位点;亚族Ⅵ主要包含茉莉酸甲酯响应元件、厌氧诱导元件、MYB干旱诱导性结合位点和低温响应元件;亚族Ⅶ主要包含水杨酸响应元件、茉莉酸甲酯响应元件和厌氧诱导元件。以上结果说明:PtrZHD家族可能对植物激素和逆境胁迫有响应能力,虽然不同基因之间响应元件种类存在差异,但是同一亚族基因启动子区顺式作用元件种类基本相同。
-
为了了解ZHD在毛果杨生长发育和环境响应中的潜在功能,利用qRT-PCR对毛果杨ZHD家族成员在根、茎和叶组织中的表达模式进行分析。结果(图5)表明:毛果杨21个PtrZHDs中有1、7和13个分别在根、茎和叶部组织偏好表达。亚族Ⅰ和Ⅲ的成员主要在叶中高表达;亚族Ⅱ和Ⅳ的成员全都在叶中高表达;亚族Ⅴ成员主要在茎中高表达;亚族Ⅵ成员主要在茎和叶中高表达;亚族Ⅶ成员在茎中高表达。毛果杨ZHD家族成员在根、茎和叶中有不同的表达特性,但同一亚族各成员偏好表达部位基本相同,说明ZHD在毛果杨根、茎和叶部组织中的生物学功能产生了分化,但同一亚族各成员功能相似。
从图6可知:在根中,随着干旱胁迫时间的增加,部分PtrZHD的表达量显著上调,达到峰值后逐渐降低,PtrZHD3、PtrZHD8、PtrZHD9、PtrZHD10、PtrZHD11、PtrZHD5、PtrZHD13和PtrZHD14在干旱胁迫下表达量呈持续上升趋势,PtrZHD1、PtrZHD6在干旱胁迫下表达量下降;在茎中,大部分PtrZHD在干旱胁迫后显著上调表达,达到峰值后逐渐降低,而PtrZHD2、PtrZHD3、PtrZHD5、PtrZHD6和PtrZHD7在干旱胁迫下表达量呈持续上升趋势;在叶中,大部分PtrZHD在干旱胁迫后表达量同样呈先升后降的趋势,PtrZHD5、PtrZHD7和PtrZHD20在干旱胁迫下表达量持续下降,而PtrZHD1和PtrZHD18在干旱胁迫下表达量呈持续上升趋势。从响应速度来看,根中大部分PtrZHD基因响应干旱胁迫的快速上升期发生在6、12或72 h,而在茎和叶中的快速上升期发生在6或12 h。表明毛果杨ZHD家族各成员响应干旱胁迫且在胁迫中发挥不同的作用。
Genome-wide identification of ZHD gene family of Populus trichocarpa and its expression under drought stress
-
摘要:
目的 对毛果杨Populus trichocarpa ZHD (PtrZHD)家族进行生物信息学以及干旱胁迫下表达特性分析,为研究PtrZHD在干旱胁迫中的功能提供参考。 方法 利用生物信息学方法从全基因组水平鉴定出毛果杨ZHD家族全部成员,并对其进化、理化性质、基因结构、保守基序、启动子顺式作用元件和表达特性进行分析。 结果 毛果杨ZHD家族包括21个成员,可分为7个亚家族;有8对同源基因,且非同义替换率(Ka)/同义替换率(Ks)值远小于1。该家族成员理化性质存在差异,但其结构较为保守,均含有Motif 1;启动子区含有数量不等的激素和非生物胁迫响应元件,不同基因之间响应元件的种类存在差异。在毛果杨PtrZHDs中,分别有1、7和13个基因在根、茎和叶组织中具有偏好性表达特征;PtrZHD家族成员对干旱胁迫的响应具有组织和时间表达特异性,在根、茎和叶部组织中各成员的表达量不同,但随着干旱胁迫时间的增加均呈先上升后下降的趋势。 结论 PtrZHD家族基因对干旱胁迫有不同程度的响应,可调控毛果杨对干旱胁迫的应答。图6表2参27 Abstract:Objective With an investigation of the bioinformatics information of the ZHD gene family of Populus trichocarpa (PtrZHD) and an analysis of the expression characteristics of this gene family under drought stress, This study is aimed to provide reference for exploring the functions of PtrZHD in drought stress. Method Bioinformatics was used to identify all members of the ZHD gene family in P. trichocarpa at the genome-wide level before an analysis was conducted of their evolution, physicochemical properties, gene structure, conserved Motifs, cis-acting elements of the promoter and expression characteristics. Result The ZHD gene family of P. trichocarpa consisted of 21 members, which could be divided into 7 subfamilies. There were 8 pairs of homologous genes in the ZHD gene family of P. trichocarpa, and the Ka/Ks value of each pair of homologous genes was far lower than 1. Though with different physicochemical properties, PtrZHD gene family members had relatively conservative structures, all containing Motif 1. Different numbers of hormone and abiotic stress response elements were found in the promoter regions of PtrZHD gene family members with various response elements among different genes. One, seven and thirteen members of the PtrZHDs gene family were preferentially expressed in the root, stem and leaf tissues of P. trichocarpa, respectively. The response of PtrZHD gene family members to drought stress was tissue-specific and time-specific with the expression levels of each member of ZHD gene family being different in root, stem and leaf tissues, yet with the increase of drought stress time, they all showed a trend of first increasing and then decreasing. Conclusion Different members of the PtrZHD gene family had different responses to drought stress, indicating that they might regulate the response of P. trichocarpa to drought stress. [Ch, 6 fig. 2 tab. 27 ref.] -
Key words:
- Populus trichocarpa /
- ZHD gene family /
- bioinformatics analysis /
- tissue expression /
- drought stress
-
表 1 毛果杨ZHD家族基因概况
Table 1. Overview of ZHD gene family in P. trichocarpa
登录号 基因名 基因位置 蛋白长度/个 分子量/kDa 等电点 编码序列长度/bp Potri.002G035200.1 PtrZHD1 Chr02: 2259632..2261632 293 32.84 8.22 882 Potri.002G102900.1 PtrZHD2 Chr02: 7442579..7444098 262 27.92 7.28 789 Potri.003G000400.1 PtrZHD3 Chr03: 70322..71164 253 28.01 7.71 762 Potri.003G146700.1 PtrZHD4 Chr03: 16229434..16229655 73 8.28 7.73 222 Potri.004G11.300.1 PtrZHD5 Chr04: 12287585..12289662 334 36.77 8.70 1005 Potri.004G126600.1 PtrZHD6 Chr04: 12337842..12338677 130 14.17 6.81 393 Potri.004G135100.1 PtrZHD7 Chr04: 15528323..15529129 268 29.44 8.83 807 Potri.004G229600.1 PtrZHD8 Chr04: 23480758..23482600 271 30.06 8.39 816 Potri.005G11.300.1 PtrZHD9 Chr05: 9522291..9525287 339 37.98 9.19 1020 Potri.005G158800.1 PtrZHD10 Chr05: 16017482..16019310 257 27.73 6.43 774 Potri.005G227900.1 PtrZHD11 Chr05: 23746838..23749246 290 32.32 8.88 873 Potri.007G024100.1 PtrZHD12 Chr07: 1814109..1816426 331 36.75 9.31 996 Potri.008G086000.1 PtrZHD13 Chr08: 5402319..5403293 324 35.57 8.83 975 Potri.010G169400.1 PtrZHD14 Chr10: 17139193..17140688 332 36.41 9.21 999 Potri.012G040900.1 PtrZHD15 Chr12: 3680805..3681724 182 20.66 6.39 549 Potri.013G108900.1 PtrZHD16 Chr13: 12226035..12227366 281 31.74 7.71 846 Potri.015G032700.1 PtrZHD17 Chr15: 2637644..2638216 190 21.44 6.17 573 Potri.017G082700.1 PtrZHD18 Chr17: 9830334..9831749 161 17.36 5.93 486 Potri.017G082900.1 PtrZHD19 Chr17: 9903467..9905775 337 37.23 8.23 1014 Potri.019G021400.1 PtrZHD20 Chr19: 2418959..2419646 132 14.83 8.83 399 Potri.019G081300.1 PtrZHD21 Chr19: 11464924..11465688 184 20.87 9.91 555 表 2 同源基因的Ka/Ks及同源性
Table 2. Ka/Ks values and homologous status of homologous genes
同源基因 非同义替换率(Ka) 同义替换率(Ks) Ka/Ks 同源片段长度/bp 同源性 基因1 基因2 PtrZHD1 PtrZHD11 0.06 0.32 0.19 787 0.90 PtrZHD2 PtrZHD10 0.04 0.19 0.21 711 0.92 PtrZHD3 PtrZHD8 0.08 0.36 0.22 682 0.86 PtrZHD5 PtrZHD19 0.08 0.35 0.23 779 0.88 PtrZHD6 PtrZHD18 0.07 0.18 0.39 357 0.91 PtrZHD9 PtrZHD12 0.08 0.29 0.28 875 0.85 PtrZHD13 PtrZHD14 0.09 0.36 0.25 838 0.85 PtrZHD15 PtrZHD17 0.05 0.27 0.19 496 0.90 -
[1] 莫晓婷, 赵军, 范云六, 等. 玉米转录因子结构与功能研究进展[J]. 中国农业科技导报, 2013, 15(3): 7 − 17. MO Xiaoting, ZHAO Jun, FAN Yunliu, et al. Research progress on structure and function of maize transcription factors [J]. J Agric Sci Technol, 2013, 15(3): 7 − 17. [2] WANG Wenli, WU Peng, LI Ying, et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage [J]. Mol Genet Genomics, 2016, 291(3): 1451 − 1464. [3] KHATUN K, NATH U K, ROBIN A H K, et al. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato [J/OL]. BMC genomics, 2017, 18(1): 695[2021-03-13]. doi: 10.1186/s12864-017-4082-y. [4] 马瑞芳, 陈家璐, 刘笑雨, 等. 毛竹锌指同源结构域基因家族全基因组鉴定及表达分析[J]. 农业生物技术学报, 2020, 28(4): 645 − 657. MA Ruifang, CHEN Jialu, LIU Xiaoyu, et al. Genome-wide identification and expression analysis of zinc finger homologous domain gene family in Phyllostachys edulis [J]. J Agric Biotechnol, 2020, 28(4): 645 − 657. [5] ZHOU Chengzhe, ZHU Chen, XIE Siyi, et al. Genome-wide analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes and their expression profiles under abiotic stresses and phytohormones stimuli in tea plants (Camellia sinensis) [J/OL]. Sci Hortic, 2021, 281(5): 109976[2021-02-25]. doi: 10.1016/J.SCIENTA.2021.109976. [6] SUN Jinhao, XIE Minmin, LI Xiaoxu, et al. Systematic investigations of the ZF-HD gene family in tobacco reveal their multiple roles in abiotic stresses [J/OL]. Agronomy, 2021, 11(3): 406[2021-04-05]. doi: 10.3390/agronomy11030406. [7] HU Wei, DEPAMPHILIS C W, MA Hong. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families [J]. J Integrative Plant Biol, 2008, 50(8): 1031 − 1045. [8] WANG Hao, YIN Xiangjing, LI Xiaoqin, et al. Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L. ) zinc finger-homeodomain gene family [J]. Int J Mol Sci, 2014, 15(4): 5730 − 5748. [9] WINDHÖVEL A, HEIN I, DABROWA R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia [J]. Plant Mol Biol, 2001, 45(2): 201 − 214. [10] TAN Q K, IRISH V F. The arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development [J]. Plant Physiol, 2006, 140(3): 1095 − 1108. [11] JAIN M, TYAGI A K, KHURANA J P. Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice [J]. FEBS J, 2008, 275(11): 2845 − 2861. [12] LAI Wei, ZHU Chuxia, HU Zhaoyang, et al. Identification and transcriptional analysis of zinc finger-homeodomain (ZF-HD) family genes in cucumber [J]. Biochem Genet, 2021, 59(4): 884 − 901. [13] TRAN L S, NAKASHIMA K, SAKUMA Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis [J]. Plant J, 2007, 49(1): 46 − 63. [14] XU Yang, WANG Yihua, LONG Qizhang, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice [J]. Planta, 2014, 239(4): 803 − 816. [15] PARK H C, KIM M L, LEE S M, et al. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter [J]. Nucleic Acids Res, 2007, 35(11): 3612 − 3623. [16] ABU-ROMMAN S. Molecular cloning and expression analysis of zinc finger-homeodomain transcription factor TaZFHD1 in wheat [J]. S Afr J Bot, 2014, 91: 32 − 36. [17] FIGUEIREDO D D, BARROS P M, CORDEIRO A M, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B [J]. J Exp Bot, 2012, 63(10): 3643 − 3656. [18] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 2018, 35(6): 1547 − 1549. [19] 刘聪, 张洋, 夏德安, 等. 毛果杨PLD基因家族全基因组水平鉴定及其盐胁迫下的表达分析[J]. 林业科学研究, 2021, 34(3): 23 − 36. LIU Cong, ZHANG Yang, XIA De’an, et al. Genome-wide identification of PLD gene family of Populus trichocarpa and its responses to salt stress [J]. For Res, 2021, 34(3): 23 − 36. [20] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202. [21] HURST L D. The Ka/Ks ratio: diagnosing the form of sequence evolution [J]. Trends Genet, 2002, 18(9): 486 − 487. [22] 阮诗雨, 张智俊, 陈家璐, 等. 毛竹GRF基因家族全基因组鉴定与表达分析[J]. 浙江农林大学学报, 2021, 38(4): 792 − 801. RUAN Shiyu, ZHANG Zhijun, CHEN Jialu, et al. Genome identification and expression analysis of GRF gene family in Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2021, 38(4): 792 − 801. [23] 张金鹏, 郦芝汀, 吴海楠, 等. 几种杨树全基因组复制事件与进化分析[J/OL]. 分子植物育种, 2020[2021-04-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20201216.1635.010.html. ZHANG Jinpeng, LI Zhiting, WU Hainan, et al. Whole genome duplication events and evolutionary analyses of several populus species [J/OL]. Mol Plant Breed, 2020[2021-04-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20201216.1635.010.html. [24] 李春艳. 玉米ZF-HD转录因子家族耐盐、抗旱相关基因的鉴定及特性分析[D]. 重庆: 西南大学, 2018. LI Chunyan. Identification and Characterization of Drought and Salt Resistance-related Genes of ZF-HD Transcription Factors Family in Maize [D]. Chongqing: Southwest University, 2018. [25] LIU Moyang, WANG Xiaoxiang, SUN Wenjun, et al. Genome-wide investigation of the ZF-HD gene family in tartary buckwheat (Fagopyrum tataricum) [J/OL]. BMC Plant Biol, 2019, 19(1): 248[2021-04-24]. doi: 10.1186/s12870-019-1834-7. [26] MORGAN J T, FINK G R, BARTEL D P. Excised linear introns regulate growth in yeast [J]. Nature, 2019, 565(7741): 606 − 611. [27] 方佳, 何勇清, 余敏芬, 等. 植物生长素响应因子基因的研究进展[J]. 浙江农林大学学报, 2012, 29(4): 611 − 616. FANG Jia, HE Yongqing, YU Minfen, et al. Recent advances with auxin response factors (ARFs): a review [J]. J Zhejiang A&F Univ, 2012, 29(4): 611 − 616. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210373