留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析

陈雪冰 刘聪 程赫 姜廷波 夏德安 魏志刚

崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
引用本文: 陈雪冰, 刘聪, 程赫, 等. 毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析[J]. 浙江农林大学学报, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
CUI Yanglin, GAO Xiang, DONG Bin, et al. Landscape ecological risk assessment of county[J]. Journal of Zhejiang A&F University, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
Citation: CHEN Xuebing, LIU Cong, CHENG He, et al. Genome-wide identification of ZHD gene family of Populus trichocarpa and its expression under drought stress[J]. Journal of Zhejiang A&F University, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373

毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析

DOI: 10.11833/j.issn.2095-0756.20210373
基金项目: 国家自然科学基金资助项目(31770640);中央级公益性科研院所基本科研业务费(CAFYBB2020ZA005)
详细信息
    作者简介: 陈雪冰(ORCID: 0000-0002-3845-8979),从事林木遗传育种研究。E-mail: 1105010414@qq.com
    通信作者: 魏志刚(ORCID: 0000-0002-0777-9817),教授,博士,博士生导师,从事林木基因组学研究。E-mail: zhigangwei1973@163.com
  • 中图分类号: S722.3

Genome-wide identification of ZHD gene family of Populus trichocarpa and its expression under drought stress

  • 摘要:   目的  对毛果杨Populus trichocarpa ZHD (PtrZHD)家族进行生物信息学以及干旱胁迫下表达特性分析,为研究PtrZHD在干旱胁迫中的功能提供参考。  方法  利用生物信息学方法从全基因组水平鉴定出毛果杨ZHD家族全部成员,并对其进化、理化性质、基因结构、保守基序、启动子顺式作用元件和表达特性进行分析。  结果  毛果杨ZHD家族包括21个成员,可分为7个亚家族;有8对同源基因,且非同义替换率(Ka)/同义替换率(Ks)值远小于1。该家族成员理化性质存在差异,但其结构较为保守,均含有Motif 1;启动子区含有数量不等的激素和非生物胁迫响应元件,不同基因之间响应元件的种类存在差异。在毛果杨PtrZHDs中,分别有1、7和13个基因在根、茎和叶组织中具有偏好性表达特征;PtrZHD家族成员对干旱胁迫的响应具有组织和时间表达特异性,在根、茎和叶部组织中各成员的表达量不同,但随着干旱胁迫时间的增加均呈先上升后下降的趋势。  结论  PtrZHD家族基因对干旱胁迫有不同程度的响应,可调控毛果杨对干旱胁迫的应答。图6表2参27
  • 土地资源是人类社会赖以生存发展的基础,近年来,随着城市化进程不断加快,耕地流失和土地破碎化问题日益严重,区域景观生态风险评价已成为全球环境变化的研究热点[1-3]。日益频繁的人类活动及高强度的开发建设,使得土地景观趋于破碎化,结构趋于复杂化,威胁着人地关系的和谐[4]。景观生态风险评价方法主要分为景观指数法和基于风险源-汇的理论分析法。研究对象多集中在生态环境敏感脆弱和人为干扰剧烈的区域,如城镇[5-7]、流域[8]、海岸带[9]、矿区[10-11]、自然保护区[12]、道路沿线[13]、湿地[14]等,数据源多为人工解译方法获得的遥感解译数据或土地利用现状图矢量图[10-14]。如HAYES等[15]利用GIS技术对生境模型的空间数据进行编译和对比,直观评估出华盛顿西北部近海岸海洋环境的生态风险空间分布状况。张莹等[12]以扎龙自然保护区为研究对象,基于研究区景观格局变化特点构建景观生态风险指数,总结了1995−2010年保护区多尺度下景观生态风险的时空变化特征。刘炎序等[16]以深圳市社会-生态系统为评价研究对象,借助GIS空间分析手段,制作出“忽视风险情景”“正常风险情景”“重视风险情景”等景观生态风险图。王涛等[17]运用景观生态学理论,综合选取指数构建了景观生态风险评价模型,定量化总结1985−2015年杞麓湖流域的景观生态风险分布特征。景观具有高度空间异质性,存在一定的空间分布规律,在景观生态风险评价体系中引入景观指数法,不仅能增加景观异质性的关注度和空间定量描述,还能使风险评价摆脱传统方法中由于某一特定风险因子表征区域状态所造成的局限性[18]。宿松县地处大别山南麓,地理位置特殊,山区和湖泊面积占总面积的86%,生态环境敏感脆弱。人类活动的干扰导致该地区林地面积不断退化,农田城镇化明显,生态系统的基本结构和功能够遭到破坏,景观生态风险日益加剧。本研究从土地景观生态安全角度重新审视该区域的环境和发展问题,通过探究县域景观结构的变化动态,构建最佳粒度下景观指数的生态风险评价模型,进行景观生态风险评价研究,以期为县域尺度景观生态风险的管理提供理论和技术支持。

    宿松县(29°47′20′′~30°25′30′′N,115°52′52′′~116°34′40′′E)位于安徽省西南方向,是安徽、湖北、江西三省的交界处,也是八县结合部,地处长江下游北岸的顶端。全县东西宽约67 km,南北长约72 km,总面积达2 394 km2;东北接壤太湖县,西边紧邻湖北省的蕲春县和黄梅县,东南角连接望江县,南边隔江相望于江西省湖口县和彭泽县;属北亚热带湿润季风气候,四季分明,季风性明显;年平均气温16.6 ℃,由于地势原因,境内温度自西北方向至东南逐渐增高;季节性降水较明显,城区为暴雨多发地区;光照充足,年均无霜期254 d。

    标准采用2017年的GQJC 03−2017《基础性地理国情监测内容与指标》,与2015年标准不同的是,2017年新标准将耕地、园地合并为种植土地;林地、草地合并为了林草覆盖。本研究以2015、2017年的地理国情普查成果为依据,结合研究目标,参考GB/T 21010−2017《土地利用现状分类》,根据土地实际用途以及地物意义,将普查数据中的地表覆盖分类重新划分为耕地、园地、林地、草地、建筑用地(房屋建筑区、构筑物、人工堆掘地)、交通用地(道路)、水域、未利用地(荒漠与裸露地表)八大土地景观类型[19](图1)。通过ArcGIS对划分后的土地斑块类型进行分类、合并处理。选取宿松县景观格局变化研究的最佳粒度值100 m[20],利用Arc GIS重采样功能得出2015、2017年宿松县土地景观栅格分布图。

    图 1  2017年宿松县景观分布示意图
    Figure 1  Landscape distribution map of Susong County in 2017

    本研究从类型和景观水平共选取5个景观指数(表1),从面积与结构、形状、多样性等3个方面对宿松县2015−2017年土地利用格局的动态变化进行研究,并利用FRAGSTATS软件计算出相关值。

    表 1  不同水平下选取的土地利用景观指数
    Table 1  Land use landscape index selected at different levels
    景观特征景观指数水平类型含义
    面积与结构斑块面积(CA)类型   描述某斑块类型的
    总面积     
    斑块类型面积比例指数(PLAND)类型   描述某斑块类型所占整个景观面积比例
    形状   景观形状指数(LSI)类型/景观描述斑块形状边界
    形状的复杂性  
    多样性  Simpson 多样性指数(SIDI)景观   描述斑块类型多样性程度     
    Simpson 均匀度指数(SIEI)景观   描述斑块类型均匀性程度       
    下载: 导出CSV 
    | 显示表格

    样方面积的大小需满足研究区景观斑块平均面积的2~5倍,样本才能综合反映采样地点周围综合景观格局信息[21]。2015和2017年景观斑块平均面积分别为1.872 7、1.862 6 km2,确定风险小区边长选择区间为1.930 0~3.064 5 km,考虑单元格划分既要保证足够多的单元数来反映研究区景观格局的分布规律,又要避免计算强度和精度等问题,因此本研究以3 km×3 km风险小区为评价单元,采用等间距采样方法,将研究区划分为308个风险小区,网格中心点为景观生态风险指数的采样点(图2)。

    图 2  景观生态风险空间采样图
    Figure 2  Landscape ecological risk spatial sampling grid

    生态风险是生态系统结构和功能在响应外界干扰时保持本身处在低能量平衡的一种可能性[22]。景观生态风险由外部的扰动强度和内部的脆弱性来衡量。本研究选取景观干扰度指数和景观脆弱度指数对景观生态风险进行定量分析,该方法能够快速有效识别土地资源异质性带来地干扰度和生态系统自身的脆弱程度[23]

    2.4.1   景观干扰度指数

    景观干扰度指数(Gi)表示i类土地景观抵抗外界的干扰能力和自我恢复能力,景观格局所受的人为和自然的干扰强度越大,则整个土地景观生态系统敏感性越强,其景观生态风险越大。选取景观破碎度指数(Pi)、景观分离度指数(Di)、景观分维度指数(Fi)来构建景观干扰度指数,计算公式为:

    $$G_i = W_1 \times P_i + W_2 \times D_i + W_3 \times F_i \text{。}$$ (1)

    式(1)中:W1W2W3分别为景观破碎度、景观分离度、景观分维度等3个景观指数的权重值,结合相关研究成果分别赋值0.5、0.3、0.2;i为特定的土地覆盖类型[24-25]

    2.4.2   景观脆弱度指数

    景观脆弱度数值大小与区域景观抵抗外界干扰能力的程度成反比。本研究依据各土地类型结构组成形成的土地利用稳定性,和自身的敏感性、脆弱性及分布集中性程度,参考相关研究成果[26-27],将各土地利用类型的脆弱度值进行赋值,并归一化处理,结果见表2

    表 2  景观脆弱度值归一化结果
    Table 2  Normalized results of landscape vulnerability values
    景观类型脆弱度值归一化值
    建设用地10.028
    交通用地20.056
    林地  30.083
    园地  40.111
    耕地  50.139
    水域  60.167
    草地  70.194
    未利用地80.222
    下载: 导出CSV 
    | 显示表格
    2.4.3   景观生态风险指数

    不同的土地利用方式对区域生态风险的贡献程度不同,为了定量分析土地景观结构变化带来的景观生态风险,将景观干扰度指数(外部)和景观脆弱度指数(内部)引入景观生态风险指数(ERI)概念能够使其更具针对性,能够结合采样方法将土地利用格局转化为空间化的生态风险变量。公式如下[28-29]

    $${E_{{\rm{RI}}k}} = \sum\limits_{i = 1}^n {\frac{{{A_{ki}}}}{{{A_k}}}} ({G_i} \times {R_i}) \text{。}$$ (2)

    式(2)中:ERIk为第k个风险小区景观生态风险指数,Aki为第k个风险小区i类景观类型面积的总和,Ak为第k个风险小区n类景观类型面积的总和。Gii类景观类型的景观干扰度指数,Rii类景观类型的景观脆弱度指数。

    最后用空间采样及普通克里金插值法进行分析,根据风险值的范围,采用自然间断法将生态风险程度划分为5个等级:低生态风险区、较低生态风险区、中等风险区、较高风险区、和高生态风险区。

    根据表3~4可见:2015−2017年景观结构发生了变化,景观形状呈复杂化趋势,多样化程度和均匀度不断加强。耕地、林地、水域、草地等优势景观类型面积有所减少,而与人类活动密切相关的建筑用地、园地、交通用地面积有所增加。优势景观类型面积的减少,弱势景观类型面积的增高造成斑块类型分布不断均匀化,同时多样指数的提高说明研究区景观类型的丰富度有所增高,破碎化程度进一步加深。其中林地面积减少的最多,为969 hm2,减少的林地面积与增加的建设用地面积几乎相等,建设用地景观形状指数增幅最大。且2017年比2015人口增长0.31%,城镇人口增长21.11%,建筑业生产总值增长11 000万元。说明宿松县的城市化进程,尤其是城镇建设和农房面积的扩张是导致大量林地面积减少和建设用地形状复杂化的主要原因;耕地主要分布于城镇村庄周围,随着农业科技自动化水平的提高和城镇面积进一步扩张,城镇村庄周围的农业用地都逐渐转化为非农业用地,导致耕地面积有所减少,园地面积有所增加;由于耕地为主体景观类型且分布广泛,交通用地主要贯穿于城镇村庄内部,随着建设用地的大幅度增加,交通用地呈现增加趋势,造成草地、未利用地面积有所减少,耕地斑块形状变得更加复杂。综上,经济发展在一定程度上加剧了景观格局的不稳定状态。

    表 3  2015和2017年类型水平上的格局指数
    Table 3  Pattern index values at the type level in 2015 and 2017
    景观类型年份CA/hm2PLAND/%LSI
    林地  201554 00722.785 672.819 4
    201753 03822.376 772.817 8
    耕地  201586 61436.542 581.321 4
    201786 36736.438 282.403 7
    建设用地201511 0004.640 973.838 1
    201712 0845.098 276.163 6
    园地  20152 3280.982 227.247 4
    20172 3801.004 127.479 6
    交通用地20151 9840.837 141.677 8
    20172 1640.913 043.414 9
    草地  201518 3247.730 987.638 4
    201718 2787.711 586.273 1
    水域  201562 61526.417 330.990 0
    201762 58026.402 531.503 0
    未利用地20151510.063 79.160 0
    20171320.055 79.869 6
      说明:CA为斑块类型面积,PLAND为斑块面积比例,LSI     为景观形状指数
    下载: 导出CSV 
    | 显示表格
    表 4  2015和2017年景观水平上的格局指数
    Table 4  Pattern index values at the landscape level in 2015 and 2017
    年份LSISIDISIEI
    201574.329 60.736 70.842 0
    201775.241 80.739 00.844 5
      说明:LSI为景观形状指数,SIDI为Simpson 多样性指数,     SIEI为Simpson 均匀度指数
    下载: 导出CSV 
    | 显示表格
    3.2.1   景观破碎度分析

    图3表明:西北部和东南部景观破碎程度较低,中部较高。由于宿松县地处大别山山脉,西北部主体景观类型为林地;东南部华阳河农场总场、汇口镇北部、洲头乡北部为主要的农业区,主体景观类型为耕地和水域,且均呈集聚状态分布,景观破碎程度较低;中部破碎化均较高且呈现由东向西的扩张趋势,其中程岭乡的破碎化程度最大,且高破碎度区域依然呈增加趋势,这与中部的景观类型为建筑用地、耕地、草地密切相关,虽然耕地依然为主体景观类型,但是由于受到错综复杂的交通用地、建设用地等其他土地类型的分割,造成中部耕地类型破碎化程度较大。

    图 3  2015和2017年景观破碎度空间分布示意图
    Figure 3  Spatial distribution map of landscape fragmentation in 2015 and 2017
    3.2.2   景观分离度分析

    图4表明:西北部山区景观分离度较低,东南部农业区次之,景观分布较简单,中部地区景观分离度较高,景观分布复杂。2015−2017年西北部北浴乡、陈汉乡、柳坪乡主体景观类型为林地且位于山区,景观分离度未发生明显改变,分离度低于0.602 4;东南部复兴镇、洲头乡南部景观分离度虽发生轻微变化,但变化范围不大;中部西侧二郎镇、孚玉镇,及程岭乡西北部分离度最高、变化最为剧烈,呈现自东向西的扩张趋势。

    图 4  2015和2017年景观分离度分布示意图
    Figure 4  Spatial distribution map of landscape separation in 2015 and 2017
    3.2.3   景观分维度分析

    图5表明:西北部分维度最低,景观形状简单,中部中等区域所占比例较大,且较高级有向中等和高级分离度转化的趋势,高区域集中于东南部,景观形状较复杂。西北部分维度较低,主要是由于该地位于大别山区,主体景观类型由斑块较大的乔木林地组成;与之相对应分维度高区域为中部九姑乡、孚玉镇及东南部华阳河农场地区,原因是由于九姑乡存在较多分散的草地面积,一条自然水系贯穿孚玉镇,且水系形状较复杂,华阳河农场主体景观类型农业用地耕地,其形状均较不规则。综上所述,分维度指数与地貌形态、人类活动的制约和影响有着密切的联系。

    图 5  2015和2017年景观分维度分布示意图
    Figure 5  Spatial distribution map of landscape by dimensions in 2015 and 2017
    3.3.1   景观生态风险的时空变化分析

    图6表明:宿松县景观生态风险空间分布呈明显区位性和异质性特征的景观结构分布规律。低风险区主要集中于西北部山地地带,受其他生态风险等级的胁迫,研究期间面积有所下降,优势景观类型为林地且连片集中分布,景观结构稳定,景观破碎度和分离度较低;较低生态风险区位于西北部林地边缘和黄湖、龙湖南部地带,2015−2017年较低生态风险区有边缘向中部萎缩的趋势,以集中连片的深水域、耕地、和破碎化林地为主,景观结构较为完善,但也是人类主要活动区域的边缘地带,存在一定程度的风险;中等风险区和较高生态风险区主要分布于中部,以及东南部湖泊、长江边缘地带,优势景观类型主要以耕地、水域、林地、草地为主,耕地主要位于山地丘陵地带,自身形状复杂,水网密布且草地、林地的破碎化程度较高造成景观的动态变化较大,生态风险进一步加剧;高生态风险区主要分布于西南和东部边缘地带,2017年中部九姑乡出现大片的高生态风险区,高岭乡高生态风险面积逐渐内部扩张,而其余边缘高生态风险区面积均有所降低,表明高生态风险区有从边缘向中部发展的趋势。综上所述,宿松县的生态风险分布呈现明显的阶梯状态,与研究区内的地势从西北到东南逐渐降低,山区、丘陵、湖泊、平原依次分布的地貌有密切关系。

    图 6  2015和2017年宿松县景观生态风险指数空间分布示意图
    Figure 6  Spatial distribution map of landscape ecological risk index in Susong County in 2015 and 2017

    利用ArcGIS对2015和2017年不同等级的土地景观生态风险面积统计(表5)表明:2015−2017年风险面积占比从高到低依次为较高生态风险区、中等生态风险区、较低生态风险区、低生态风险区、高生态风险区。研究区以较高生态风险区和中等生态风险区为主,2017年二者占比分别为31.22%、27.10%,合计超过总面积的一半。生态等级表现为低等级向相邻高等级转化,风险程度逐渐增加。低生态风险、较低生态风险区面积均有所降低,其中较低生态风险区面积主要由低生态风险区转入和转出为中等生态风险区的面积决定,面积减少了23.174 km2;中等生态风险面积降低幅度较明显,减少了45.605 km2,降幅占2015年中等风险区总面积的6.63%;较高生态风险区、高生态风险区的面积均有所增加,其中高生态风险面积在2 a间增加了65.326 km2,占2015年高风险区总面积的49.73%。根据各等级转化趋势可以得出,宿松县应进一步加大土地利用的治理,减少人为干扰强度,降低破碎化程度,避免较高生态风险区,进一步向高生态风险区转化。

    表 5  2015和2017年各级生态风险面积及其占比
    Table 5  Areas and percentages of ecological risks at all levels in 2015 and 2017
    生态风险等级2015年 2017年
    面积/km2占比/%面积/km2占比/%
    低 315.32913.31309.53713.06
    较低504.78621.30481.61220.32
    中 687.98129.02642.37627.10
    较高730.78830.83740.03331.22
    高 131.350 5.54196.676 8.30
    下载: 导出CSV 
    | 显示表格
    3.3.2   基于乡镇的景观生态风险变化分析

    为了进一步对宿松县的景观生态风险进行分析,依据地形地貌、社会经济条件等限制因素,将宿松县24个乡镇分为五大类,山地旅游区、交通枢纽镇、鱼米之乡、农业区、矿产资源区,统计出各类型地区的风险等级面积(表6)。图5表6表明:2015−2017年除矿产资源区外,各类地区低生态风险、较低生态风险、中等生态风险面积均呈降低趋势;鱼米之乡、矿产资源区的较高生态风险区面积,由于转化为高生态风险面积而有所降低。低生态风险区集中于西北部山地旅游地区,其中陈汉乡完全处于低生态风险区,风险程度最低,隘口乡旅游资源丰富,2017年出现中等生态风险区,面积为0.389 km2,表明旅游业在一定程度上促进了中等生态风险区从中部向西北部扩张;2015−2017年中部交通枢纽镇二郎镇、孚玉镇的较高生态风险面积增长6.316 km2,且邻乡破凉镇中三乡交界处出现较高生态风险区,表明以城镇为中心的城镇扩张进一步加剧了生态风险;中等生态风险区集中于农业区复兴镇、破凉镇等,2015−2017生态风险增加程度较大为复兴镇,增加面积为3.119 km2,这与复兴镇滨江依湖的地理位置有着密切的关系,表明水域的脆弱性比耕地大,更易受到人为干扰;高生态风险区主要位于有“鱼米之乡”之称的高岭乡和佐坝乡,2017年这2个乡镇的高生态风险面积占总高生态风险区面积的47%,与2个乡镇河网分布错综复杂,渔业活动频繁有着密切的关系;矿产资源区九姑乡含有丰富的石灰石资源,2017年高生态风险区出现,中等风险区面积消失,高生态风险面积为21.715 km2,占该乡总面积的42.6%,表明矿产资源区潜在生态风险程度最大。综上所述,宿松县的潜在生态风险由高到低依次为矿产资源区、鱼米之乡、交通枢纽镇、农业区、山地旅游区。

    表 6  2015和2017年宿松县各类乡镇不同等级的生态风险区面积
    Table 6  Ecological risk area of different grades in various township of Susong County in 2015 and 2017
    类别乡镇年份不同等级生态风险区面积/ km2
    较低中等较高
    山地旅游区北浴乡、柳坪乡、陈汉乡、隘口乡、趾凤乡、凉亭镇2015249.104 69.701 43.759 8.108 0.016
    2017247.286 68.742 41.539 11.401 1.720
    农业区  河塌乡、五里乡、复兴镇、下仓镇、破凉镇、华阳河农场、长铺镇2015 7.043155.911323.446187.567 35.868
    2017 6.904147.139299.386221.214 35.192
    交通枢纽镇二郎镇、孚玉镇、九成监狱2015 0.731 36.072 98.160 50.707 9.616
    2017 0.057 33.934 90.754 59.559 10.982
    鱼米之乡 高岭乡、程岭乡、千岭乡、佐坝乡、
    许岭镇、洲头乡、汇口镇
    2015 58.451243.102222.531433.498 85.850
    2017 55.290231.797210.697418.581127.067
    矿产资源区九姑乡2015 0 0 0.085 50.908 0
    2017 0 0 0 29.278 21.715
    下载: 导出CSV 
    | 显示表格

    景观生态风险评价是研究区域生态环境的有效手段。本研究表明:由于经济的发展,人类活动强度的增加,城镇用地的扩张,土地利用的景观生态风险等级有明显的变化趋势,呈低等级向高等级转变,这与张双双等[5]、白舒婷[29]、闻国静等[30]、王涛等[31]的结论类似。目前相关研究多集中于大区域[6-9]的生态风险讨论。县域为中国主要的行政单元,更是连接城市与乡村的节点[32],利用高分影像下采集的地理国情数据具有精度高、尺度细的优点,更能进一步提高生态风险评价结果的精度。本研究表明:乡镇经济的发展程度与景观生态风险的等级大小为正相关关系,即发展程度越高,景观生态风险越大,这与傅微等[23]的研究结果相似。通过对单一景观指数的生态风险分析及乡镇角度的生态风险评价,能进一步针对研究区的地貌、经济特征提出合理化的建议和对策。因此,本研究针对宿松县经济发展中带来的景观生态风险问题,为防止由于建设用地、交通用地的盲目扩张,造成林地、耕地流失,景观生态系统结构遭到破坏等现象的继续发生,提出了以下建议:①低生态风险区和较低生态风险主要位于西北部山区和黄湖、龙湖的中心等区域,景观类型以林地、和水域为主,是生物生长最优栖息地和水源涵养区,景观生态风险指数虽然低,但依然是重点保护对象。因此该区域应充分利用山地景观资源和水源资源,在现有自然保护区和旅游景区的基础上,划出一定的保护区域,扩大相邻林地和水域的面积,使其集中连片,保证生态环境的质量,降低景观破碎度,提高生态系统抗风险能力。②中等生态风险区主要位于宿松县中部的农业大乡,景观类型以耕地为主。由于宿松县是农业大县,耕地资源的保护和利用十分重要,建议对耕地质量等级划分,在保证耕地质量的基础上对质量差的耕地实施退耕还林政策。针对山区耕地,大力推广高效节水灌溉技术,适量推广种植经济价值高、耗水少的药材,减少水资源的浪费,保证区域农业用水。③较高生态风险区主要位于河网密布的鱼米之乡以及交通运输的枢纽镇。区域内存在大量生态稳定性脆弱的湿地,应建立湿地公园等自然保护区,并在河道周围加强林草工程维护,减少土地流失,降低水系破碎度,提高生态系统稳定性。此外还需控制该区域的人口数量,减少建设用地的扩张对耕地资源的占用。④高生态风险区主要位于矿产资源开发区等地。应严格控制对矿产资源的开采,减少矿山企业数量。充分利用遥感技术手段对矿山环境数据进行调查和监测,建立档案,编制相应的矿山环境治理方案,提高矿山修复效率,减少水土流失滑坡等自然灾害的发生。尤其是九姑山,需对矿产资源开采进行严格的管理和控制,降低人类活动的干扰强度。

    2015−2017年宿松县土地景观结构存在一定变化,景观形状呈复杂化趋势,多样化程度和均匀度不断增强,生态风险结果与地貌特征、经济发展存在明显关联性,呈阶梯状分布,经济发展一定程度上造成了景观格局的不稳定。西北部以林地为主的山地旅游区景观,景观破碎度、分离度、分维度均较低,景观多样化水平低,景观生态风险较低。中部和东南部以耕地、建设用地、河网为主的农业区、交通枢纽镇、鱼米之乡景观,景观破碎度、分离度、分维度较高,景观分布结构较为复杂,景观生态风险较高,其中矿产资源区九姑乡的潜在生态风险程度最大。宿松县以较高生态风险区和中等风险区为主,2015−2017年低生态风险区、较低生态风险区、中等生态风险区面积呈降低趋势,而较高生态风险区和高生态风险区面积呈增加趋势,生态等级表现为低等级向相邻高等级转化。

  • 图  1  毛果杨、拟南芥、水稻和大白菜ZHD家族系统进化树

    Figure  1  Phylogenetic tree of ZHD protein family in P. trichocarpa, A. thaliana , O. sativa and B. rapa ssp. pekinensis

    图  2  PtrZHD家族基因染色体定位及同源性分析

    Figure  2  Chromosome localization and homology analysis of PtrZHD gene

    图  3  PtrZHD家族基因结构和蛋白保守基序分析

    Figure  3  Analysis of gene structure and protein conserved motif of PtrZHD gene

    图  4  PtrZHD家族基因启动子区顺式作用元件分析

    Figure  4  Analysis of cis-acting elements in promoter region of PtrZHD gene

    图  5  PtrZHDs组织表达特异性分析

    Figure  5  Analysis of tissue expression specificity of PtrZHDs gene

    图  6  不同组织中PtrZHDs在干旱胁迫下的表达谱分析

    Figure  6  Expression profile analysis of PtrZHDs gene in different tissues under drought stress

    表  1  毛果杨ZHD家族基因概况

    Table  1.   Overview of ZHD gene family in P. trichocarpa

    登录号基因名基因位置蛋白长度/个分子量/kDa等电点编码序列长度/bp
    Potri.002G035200.1 PtrZHD1 Chr02: 2259632..2261632 293 32.84 8.22 882
    Potri.002G102900.1 PtrZHD2 Chr02: 7442579..7444098 262 27.92 7.28 789
    Potri.003G000400.1 PtrZHD3 Chr03: 70322..71164 253 28.01 7.71 762
    Potri.003G146700.1 PtrZHD4 Chr03: 16229434..16229655 73 8.28 7.73 222
    Potri.004G11.300.1 PtrZHD5 Chr04: 12287585..12289662 334 36.77 8.70 1005
    Potri.004G126600.1 PtrZHD6 Chr04: 12337842..12338677 130 14.17 6.81 393
    Potri.004G135100.1 PtrZHD7 Chr04: 15528323..15529129 268 29.44 8.83 807
    Potri.004G229600.1 PtrZHD8 Chr04: 23480758..23482600 271 30.06 8.39 816
    Potri.005G11.300.1 PtrZHD9 Chr05: 9522291..9525287 339 37.98 9.19 1020
    Potri.005G158800.1 PtrZHD10 Chr05: 16017482..16019310 257 27.73 6.43 774
    Potri.005G227900.1 PtrZHD11 Chr05: 23746838..23749246 290 32.32 8.88 873
    Potri.007G024100.1 PtrZHD12 Chr07: 1814109..1816426 331 36.75 9.31 996
    Potri.008G086000.1 PtrZHD13 Chr08: 5402319..5403293 324 35.57 8.83 975
    Potri.010G169400.1 PtrZHD14 Chr10: 17139193..17140688 332 36.41 9.21 999
    Potri.012G040900.1 PtrZHD15 Chr12: 3680805..3681724 182 20.66 6.39 549
    Potri.013G108900.1 PtrZHD16 Chr13: 12226035..12227366 281 31.74 7.71 846
    Potri.015G032700.1 PtrZHD17 Chr15: 2637644..2638216 190 21.44 6.17 573
    Potri.017G082700.1 PtrZHD18 Chr17: 9830334..9831749 161 17.36 5.93 486
    Potri.017G082900.1 PtrZHD19 Chr17: 9903467..9905775 337 37.23 8.23 1014
    Potri.019G021400.1 PtrZHD20 Chr19: 2418959..2419646 132 14.83 8.83 399
    Potri.019G081300.1 PtrZHD21 Chr19: 11464924..11465688 184 20.87 9.91 555
    下载: 导出CSV

    表  2  同源基因的Ka/Ks及同源性

    Table  2.   Ka/Ks values and homologous status of homologous genes

    同源基因非同义替换率(Ka)同义替换率(Ks)Ka/Ks同源片段长度/bp同源性
    基因1基因2
    PtrZHD1 PtrZHD11 0.06 0.32 0.19 787 0.90
    PtrZHD2 PtrZHD10 0.04 0.19 0.21 711 0.92
    PtrZHD3 PtrZHD8 0.08 0.36 0.22 682 0.86
    PtrZHD5 PtrZHD19 0.08 0.35 0.23 779 0.88
    PtrZHD6 PtrZHD18 0.07 0.18 0.39 357 0.91
    PtrZHD9 PtrZHD12 0.08 0.29 0.28 875 0.85
    PtrZHD13 PtrZHD14 0.09 0.36 0.25 838 0.85
    PtrZHD15 PtrZHD17 0.05 0.27 0.19 496 0.90
    下载: 导出CSV
  • [1] 莫晓婷, 赵军, 范云六, 等. 玉米转录因子结构与功能研究进展[J]. 中国农业科技导报, 2013, 15(3): 7 − 17.

    MO Xiaoting, ZHAO Jun, FAN Yunliu, et al. Research progress on structure and function of maize transcription factors [J]. J Agric Sci Technol, 2013, 15(3): 7 − 17.
    [2] WANG Wenli, WU Peng, LI Ying, et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage [J]. Mol Genet Genomics, 2016, 291(3): 1451 − 1464.
    [3] KHATUN K, NATH U K, ROBIN A H K, et al. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato [J/OL]. BMC genomics, 2017, 18(1): 695[2021-03-13]. doi: 10.1186/s12864-017-4082-y.
    [4] 马瑞芳, 陈家璐, 刘笑雨, 等. 毛竹锌指同源结构域基因家族全基因组鉴定及表达分析[J]. 农业生物技术学报, 2020, 28(4): 645 − 657.

    MA Ruifang, CHEN Jialu, LIU Xiaoyu, et al. Genome-wide identification and expression analysis of zinc finger homologous domain gene family in Phyllostachys edulis [J]. J Agric Biotechnol, 2020, 28(4): 645 − 657.
    [5] ZHOU Chengzhe, ZHU Chen, XIE Siyi, et al. Genome-wide analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes and their expression profiles under abiotic stresses and phytohormones stimuli in tea plants (Camellia sinensis) [J/OL]. Sci Hortic, 2021, 281(5): 109976[2021-02-25]. doi: 10.1016/J.SCIENTA.2021.109976.
    [6] SUN Jinhao, XIE Minmin, LI Xiaoxu, et al. Systematic investigations of the ZF-HD gene family in tobacco reveal their multiple roles in abiotic stresses [J/OL]. Agronomy, 2021, 11(3): 406[2021-04-05]. doi: 10.3390/agronomy11030406.
    [7] HU Wei, DEPAMPHILIS C W, MA Hong. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families [J]. J Integrative Plant Biol, 2008, 50(8): 1031 − 1045.
    [8] WANG Hao, YIN Xiangjing, LI Xiaoqin, et al. Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L. ) zinc finger-homeodomain gene family [J]. Int J Mol Sci, 2014, 15(4): 5730 − 5748.
    [9] WINDHÖVEL A, HEIN I, DABROWA R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia [J]. Plant Mol Biol, 2001, 45(2): 201 − 214.
    [10] TAN Q K, IRISH V F. The arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development [J]. Plant Physiol, 2006, 140(3): 1095 − 1108.
    [11] JAIN M, TYAGI A K, KHURANA J P. Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice [J]. FEBS J, 2008, 275(11): 2845 − 2861.
    [12] LAI Wei, ZHU Chuxia, HU Zhaoyang, et al. Identification and transcriptional analysis of zinc finger-homeodomain (ZF-HD) family genes in cucumber [J]. Biochem Genet, 2021, 59(4): 884 − 901.
    [13] TRAN L S, NAKASHIMA K, SAKUMA Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis [J]. Plant J, 2007, 49(1): 46 − 63.
    [14] XU Yang, WANG Yihua, LONG Qizhang, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice [J]. Planta, 2014, 239(4): 803 − 816.
    [15] PARK H C, KIM M L, LEE S M, et al. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter [J]. Nucleic Acids Res, 2007, 35(11): 3612 − 3623.
    [16] ABU-ROMMAN S. Molecular cloning and expression analysis of zinc finger-homeodomain transcription factor TaZFHD1 in wheat [J]. S Afr J Bot, 2014, 91: 32 − 36.
    [17] FIGUEIREDO D D, BARROS P M, CORDEIRO A M, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B [J]. J Exp Bot, 2012, 63(10): 3643 − 3656.
    [18] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 2018, 35(6): 1547 − 1549.
    [19] 刘聪, 张洋, 夏德安, 等. 毛果杨PLD基因家族全基因组水平鉴定及其盐胁迫下的表达分析[J]. 林业科学研究, 2021, 34(3): 23 − 36.

    LIU Cong, ZHANG Yang, XIA De’an, et al. Genome-wide identification of PLD gene family of Populus trichocarpa and its responses to salt stress [J]. For Res, 2021, 34(3): 23 − 36.
    [20] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202.
    [21] HURST L D. The Ka/Ks ratio: diagnosing the form of sequence evolution [J]. Trends Genet, 2002, 18(9): 486 − 487.
    [22] 阮诗雨, 张智俊, 陈家璐, 等. 毛竹GRF基因家族全基因组鉴定与表达分析[J]. 浙江农林大学学报, 2021, 38(4): 792 − 801.

    RUAN Shiyu, ZHANG Zhijun, CHEN Jialu, et al. Genome identification and expression analysis of GRF gene family in Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2021, 38(4): 792 − 801.
    [23] 张金鹏, 郦芝汀, 吴海楠, 等. 几种杨树全基因组复制事件与进化分析[J/OL]. 分子植物育种, 2020[2021-04-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20201216.1635.010.html.

    ZHANG Jinpeng, LI Zhiting, WU Hainan, et al. Whole genome duplication events and evolutionary analyses of several populus species [J/OL]. Mol Plant Breed, 2020[2021-04-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20201216.1635.010.html.
    [24] 李春艳. 玉米ZF-HD转录因子家族耐盐、抗旱相关基因的鉴定及特性分析[D]. 重庆: 西南大学, 2018.

    LI Chunyan. Identification and Characterization of Drought and Salt Resistance-related Genes of ZF-HD Transcription Factors Family in Maize [D]. Chongqing: Southwest University, 2018.
    [25] LIU Moyang, WANG Xiaoxiang, SUN Wenjun, et al. Genome-wide investigation of the ZF-HD gene family in tartary buckwheat (Fagopyrum tataricum) [J/OL]. BMC Plant Biol, 2019, 19(1): 248[2021-04-24]. doi: 10.1186/s12870-019-1834-7.
    [26] MORGAN J T, FINK G R, BARTEL D P. Excised linear introns regulate growth in yeast [J]. Nature, 2019, 565(7741): 606 − 611.
    [27] 方佳, 何勇清, 余敏芬, 等. 植物生长素响应因子基因的研究进展[J]. 浙江农林大学学报, 2012, 29(4): 611 − 616.

    FANG Jia, HE Yongqing, YU Minfen, et al. Recent advances with auxin response factors (ARFs): a review [J]. J Zhejiang A&F Univ, 2012, 29(4): 611 − 616.
  • [1] 郑琳, 王凤敏, 凡婷婷, 王克涛, 胡恒康, 黄坚钦, 张启香.  核桃JrGA3ox基因表达对生长及干旱胁迫的响应 . 浙江农林大学学报, 2025, 42(2): 261-272. doi: 10.11833/j.issn.2095-0756.20240327
    [2] 冯蕊, 周琪, 吴令上, 朱玉球, 高燕会.  PEG 6000模拟干旱胁迫对铁皮石斛幼苗生理和叶绿素荧光特性的影响 . 浙江农林大学学报, 2024, 41(1): 132-144. doi: 10.11833/j.issn.2095-0756.20230301
    [3] 刘俊, 李龙, 陈玉龙, 陈随清.  杜仲WOX家族基因鉴定及在叶片发育中的表达 . 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
    [4] 孟超敏, 耿翡翡, 卿桂霞, 张富厚, 李雪林, 刘逢举.  陆地棉低磷胁迫应答基因GhGDPD1的克隆与表达分析 . 浙江农林大学学报, 2023, 40(4): 723-730. doi: 10.11833/j.issn.2095-0756.20220624
    [5] 陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅.  景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式 . 浙江农林大学学报, 2021, 38(3): 445-454. doi: 10.11833/j.issn.2095-0756.20200488
    [6] 原晓龙, 李娟, 李云琴, 王毅.  1个含有SDR结构域PKS/NRPS基因的克隆 . 浙江农林大学学报, 2019, 36(6): 1247-1253. doi: 10.11833/j.issn.2095-0756.2019.06.024
    [7] 程占超, 侯丹, 马艳军, 高健.  毛竹生长素反应因子基因的生物信息学分析及差异表达 . 浙江农林大学学报, 2017, 34(4): 574-580. doi: 10.11833/j.issn.2095-0756.2017.04.002
    [8] 陈文妃, 杜长霞, 金佩颖, 何亚妮, 樊怀福.  模拟干旱胁迫对黄瓜幼苗组织结构的影响 . 浙江农林大学学报, 2017, 34(6): 1149-1154. doi: 10.11833/j.issn.2095-0756.2017.06.024
    [9] 毛永成, 刘璐, 王小德.  干旱胁迫对3种槭树科植物生理特性的影响 . 浙江农林大学学报, 2016, 33(1): 60-64. doi: 10.11833/j.issn.2095-0756.2016.01.008
    [10] 刘芳, 许改平, 吴兴波, 丁倩倩, 郑洁, 张汝民, 高岩.  干旱-复水处理对迷迭香挥发性有机化合物释放规律的影响 . 浙江农林大学学报, 2014, 31(2): 264-271. doi: 10.11833/j.issn.2095-0756.2014.02.015
    [11] 刘志梅, 蒋文伟, 杨广远, 黄建荣.  干旱胁迫对3种金银花叶绿素荧光参数的影响 . 浙江农林大学学报, 2012, 29(4): 533-539. doi: 10.11833/j.issn.2095-0756.2012.04.008
    [12] 应叶青, 郭璟, 魏建芬, 晏金凤, 路英, 方伟.  自然干旱胁迫及复水处理对红秆寒竹生理特性的影响 . 浙江农林大学学报, 2010, 27(4): 513-517. doi: 10.11833/j.issn.2095-0756.2010.04.006
    [13] 于金慧, 柏明娥, 方伟, 洪利兴.  干旱胁迫对4种灌木生理生化特性的影响 . 浙江农林大学学报, 2009, 26(4): 485-489.
    [14] 朱小楼, 楼炉焕, 王慧.  土壤干旱胁迫对4种薹草植物生理生化特性的影响 . 浙江农林大学学报, 2009, 26(5): 656-662.
    [15] 曾小红, 伍建榕, 马焕成.  接种根瘤菌的台湾相思对干旱胁迫的生化响应 . 浙江农林大学学报, 2008, 25(2): 181-185.
    [16] 郁万文, 曹帮华, 曹福亮.  刺槐生长及盐离子吸收分配对干旱和旱盐胁迫的响应 . 浙江农林大学学报, 2007, 24(3): 290-296.
    [17] 向佐湘, 许桂芳, 蒋文君.  干旱胁迫对4种刺篱植物抗性生理生化指标的影响 . 浙江农林大学学报, 2007, 24(1): 7-11.
    [18] 曹帮华, 张明如, 翟明普, 毛培利.  土壤干旱胁迫下刺槐无性系生长和渗透调节能力 . 浙江农林大学学报, 2005, 22(2): 161-165.
    [19] 温国胜, 王林和, 张国盛.  干旱胁迫条件下臭柏的气体交换与荧光特征 . 浙江农林大学学报, 2004, 21(4): 361-365.
    [20] 温国胜, 张国盛, 张明如, 王林和, 吉川贤.  干旱胁迫条件下臭柏的气孔蒸腾与角质层蒸腾 . 浙江农林大学学报, 2003, 20(3): 268-272.
  • 期刊类型引用(4)

    1. 李俊鹏. 厌氧氨氧化相关工艺处理垃圾渗滤液脱氮研究现状. 辽宁化工. 2023(04): 554-556+560 . 百度学术
    2. 宋慧赟,王莹,陈虎,吕永康. 盐度对新型生物脱氮技术影响的研究进展. 化工进展. 2021(04): 2298-2307 . 百度学术
    3. 孙明珠,任婧,徐爱玲,宋志文. 丙酮酸盐对硝化微生物复合培养过程的影响. 环境科学与技术. 2021(06): 58-66 . 百度学术
    4. 李剑宇,王少坡,邱春生,王栋,于静洁,赵明. PN/A技术应用于城市污水主流处理的挑战与实践. 水处理技术. 2020(11): 24-30 . 百度学术

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210373

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/3/465

图(6) / 表(2)
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  366
  • PDF下载量:  149
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-05-14
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-31
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-05-23

毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析

doi: 10.11833/j.issn.2095-0756.20210373
    基金项目:  国家自然科学基金资助项目(31770640);中央级公益性科研院所基本科研业务费(CAFYBB2020ZA005)
    作者简介:

    陈雪冰(ORCID: 0000-0002-3845-8979),从事林木遗传育种研究。E-mail: 1105010414@qq.com

    通信作者: 魏志刚(ORCID: 0000-0002-0777-9817),教授,博士,博士生导师,从事林木基因组学研究。E-mail: zhigangwei1973@163.com
  • 中图分类号: S722.3

摘要:   目的  对毛果杨Populus trichocarpa ZHD (PtrZHD)家族进行生物信息学以及干旱胁迫下表达特性分析,为研究PtrZHD在干旱胁迫中的功能提供参考。  方法  利用生物信息学方法从全基因组水平鉴定出毛果杨ZHD家族全部成员,并对其进化、理化性质、基因结构、保守基序、启动子顺式作用元件和表达特性进行分析。  结果  毛果杨ZHD家族包括21个成员,可分为7个亚家族;有8对同源基因,且非同义替换率(Ka)/同义替换率(Ks)值远小于1。该家族成员理化性质存在差异,但其结构较为保守,均含有Motif 1;启动子区含有数量不等的激素和非生物胁迫响应元件,不同基因之间响应元件的种类存在差异。在毛果杨PtrZHDs中,分别有1、7和13个基因在根、茎和叶组织中具有偏好性表达特征;PtrZHD家族成员对干旱胁迫的响应具有组织和时间表达特异性,在根、茎和叶部组织中各成员的表达量不同,但随着干旱胁迫时间的增加均呈先上升后下降的趋势。  结论  PtrZHD家族基因对干旱胁迫有不同程度的响应,可调控毛果杨对干旱胁迫的应答。图6表2参27

English Abstract

崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
引用本文: 陈雪冰, 刘聪, 程赫, 等. 毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析[J]. 浙江农林大学学报, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
CUI Yanglin, GAO Xiang, DONG Bin, et al. Landscape ecological risk assessment of county[J]. Journal of Zhejiang A&F University, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
Citation: CHEN Xuebing, LIU Cong, CHENG He, et al. Genome-wide identification of ZHD gene family of Populus trichocarpa and its expression under drought stress[J]. Journal of Zhejiang A&F University, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
  • 植物在生长发育过程中会通过不断调整基因的表达来适应各种逆境,而转录因子(TFs)是其调控过程的关键因子[1]。研究表明:锌指同源结构域(ZF-HD)转录因子作为一种同源异形盒(HB)蛋白在调控植物生长发育以及响应多种生物和非生物胁迫方面发挥着重要作用[2-3]。ZF-HD不仅具有同源结构域(HD),还包括1个高度保守的锌指结构域(ZF)[4],ZF是由2对保守的半胱氨酸(Cys)和/或组氨酸(His)残基结合单个锌离子组成的指环状结构蛋白,可特异性与DNA/RNA序列结合,并参与蛋白质互作[2, 5];HD是1个约60个氨基酸的DNA结合域(DBD),这段序列折叠成一个识别螺旋附着在DNA的大沟上,特异性地结合DNA来激活或抑制靶基因的表达[6]。为了方便研究该家族的进化史,HU等[7]将ZF-HD重新命名为ZHD。

    ZHD蛋白可分ZHD和小锌指(MIF)两类,两者都含有ZF结构域,但MIF缺少HD结构域[8]。2001年ZHD首次在黄花菊Flaveria trinervia中被鉴定出来[9],随后拟南芥Arabidopsis thaliana[10]、水稻Oryza sativa[11]、葡萄Vitis vinifera[8]、大白菜Brassica rapa ssp. pekinensis[2]、番茄Solanum lycopersicum[3]、茶树Camellia sinensis[5]和黄瓜Cucumis sativus[12]等的ZHD被陆续发现。研究表明:ZHD能够调控植物的抗逆性,如过表达AtZHD1可以提高拟南芥的耐旱性[13]OsZHD1基因过表达导致水稻叶片卷曲下垂,降低水稻的耐旱性[14];在大豆Glycine max中,过表达GmZF-HD1和GmZF-HD2会与编码钙调蛋白的GmGaM4基因启动子结合增强大豆的抗病能力[15]TaZFHD1参与小麦Triticum aestivum生长发育过程中茉莉酸(JA)、脱落酸(ABA)和乙烯(ET)信号转导过程,调节小麦对胁迫的抗性[16];大白菜中的BraZF-HD受光、低温等非生物胁迫诱导表达[2];此外,水稻ZHDsOsDREB1B基因的启动子结合调节水稻对低温、干旱和机械损伤的抗性[17]。ZHD广泛存在于植物中,在植物对环境胁迫响应过程中起着重要的作用。

    毛果杨Populus trichocarpa是研究木本植物生长发育、材质材性以及抗逆性状的重要模式植物,但是目前毛果杨ZHD (PtrZHD)家族及非生物胁迫响应特性的研究尚无报道。本研究通过生物信息学手段鉴定了毛果杨全基因组内的PtrZHDs基因,并对其编码蛋白特征、系统发育、基因扩张、基因结构与保守基序、启动子顺式作用元件和表达特性进行分析,为研究该家族基因的功能提供科学依据。

    • 将来自中国科学院分子植物科学卓越创新中心的野生型毛果杨‘Nisqually-1’通过组织培养扩繁后,选取长势一致的4周龄组培苗随机分成6组,用质量分数为8%的聚乙二醇(PEG 6000,来自邢台鑫蓝星科技有限公司)水溶液处理0、3、12、24、48和72 h,分别采集各处理组植株的根、茎和叶部组织,经液氮速冻后保存于−80 ℃冰箱,每组处理重复3次。

    • 利用拟南芥ZHD家族成员的氨基酸序列比对Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html)网站中毛果杨基因组数据库获得候选序列,将得到的序列上传到Pfam (http://pfam.xfam.org/)和SMART(http://smart.embl-heidelberg.de/)数据库,去除不含ZF-HD_dimer (PF04770)结构域的序列得到全部的PtrZHDs[12]。从Phytozome数据库中获取PtrZHD家族基因的染色体位置、基因序列以及开放阅读框长度等信息,并根据基因所在染色体号及位置对其进行命名。在ExPasy (https://web.expasy.org/protparam/)网站预测PtrZHD家族分子质量、等电点和氨基酸序列长度。

    • 将鉴定出的毛果杨ZHD氨基酸序列与已知的拟南芥[10]、水稻[11]和大白菜[2]的ZHD氨基酸序列在MEGA X软件的ClustaW程序中进行多重序列比对,采用邻近法(NJ)构建系统进化树,步长设为10000次,得到系统发育进化树数据[18],经EvolView(https://www.evolgenius.info/ evolview/)网站可视化。

    • PtrZHD家族基因的蛋白质编码序列(CDs)在美国国家生物信息中心(NCBI)网站(https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行BLAST比对,以超过300 bp且同源性超过80%为标准鉴定同源基因对[19],同源关系经TBtools[20]软件可视化。利用TBtools计算同源基因的KsKa以及Ka/Ks[20-21]

    • 从毛果杨数据库(https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism= Ptrichocarpa)获得PtrZHD外显子和内含子长度及位置信息,并通过TBtools软件可视化。使用MEME (https://meme-suite.org/meme/tools/meme)网站对PtrZHD家族进行保守基序分析,保守域数目设置为15,结果由TBtools软件可视化。

    • 利用TBtools软件从毛果杨基因组数据中提取PtrZHD家族起始密码子前2 000 bp的序列作为启动子区域,上传至PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html)网站进行顺式作用元件分析[22],获得的数据通过TBtools软件可视化。

    • 将野生型毛果杨通过组织培养扩繁后,挑选长势一致的4周龄组培苗,分别采集根、茎和叶组织,提取RNA后反转录成cDNA,用于实时荧光定量PCR (qRT-PCR)分析。每组处理重复3次,采用2−∆∆CT法计算相对表达量,并通过TBtools软件可视化。

    • 将长势一致的1月龄组培苗随机分成6组。用质量分数为8%的PEG 6000处理0、6、12、24、48和72 h。分别采集各处理组植株的根、茎和叶组织,提取RNA后反转录成cDNA进行qRT-PCR分析。每组处理重复3次,采用$2^{-\Delta\Delta{\rm{C}}_{\rm{t}}} $法计算相对表达量,并通过TBtools软件可视化。

    • 利用植物总RNA试剂盒(TSP412,北京擎科生物科技有限公司)提取总RNA,然后采用PrimeScriptTMRT reagent Kit [Perfect Real Time,宝生物工程(大连)有限公司 ] 试剂盒反转录RNA,获得cDNA后进行qRT-PCR分析。将PtrZHD家族蛋白质编码区序列上传至上海生工定量引物设计网站(https://www.sangon.com/new PrimerDesign)设计定量引物,以PtrActin为内参基因[19]。在赛默飞ABI 7500荧光定量PCR仪上进行试验,体系如下:2×TransStart TOP/Tip Green qPCR Super mix 10 μL、定量引物上下游混合引物(10 μmol·L−1) 0.4 μL、cDNA 1.5 μL,Passive Reference DyeⅡ(50×) 0.4 μL,加去离子水补充至20 μL体系。反应程序:94 ℃预变性30 s;94 ℃变性5 s,60 ℃退火15 s,72 ℃延伸35 s,40次循环。

    • 将所有含ZF-HD_dimer (PF04770)结构域的序列上传到Pfam和SMART数据库,去除冗余序列后从毛果杨基因组中鉴定出21个PtrZHD (表1),根据基因所在染色体及染色体上的位置信息,将它们分别命名为PtrZHD1~PtrZHD21。PtrZHD家族基因编码蛋白的基本特征分析表明:各PtrZHD所编码蛋白的长度为73~339个、分子量为8.28~37.98 kDa、等电点为6.39~9.31、编码序列长度为222~1 020 bp,蛋白长度、分子量、等电点和编码序列长度差异明显。表明PtrZHD家族基因及其编码蛋白特征存在较大差异,即该家族各个成员的生物学功能发生了分化。

      表 1  毛果杨ZHD家族基因概况

      Table 1.  Overview of ZHD gene family in P. trichocarpa

      登录号基因名基因位置蛋白长度/个分子量/kDa等电点编码序列长度/bp
      Potri.002G035200.1 PtrZHD1 Chr02: 2259632..2261632 293 32.84 8.22 882
      Potri.002G102900.1 PtrZHD2 Chr02: 7442579..7444098 262 27.92 7.28 789
      Potri.003G000400.1 PtrZHD3 Chr03: 70322..71164 253 28.01 7.71 762
      Potri.003G146700.1 PtrZHD4 Chr03: 16229434..16229655 73 8.28 7.73 222
      Potri.004G11.300.1 PtrZHD5 Chr04: 12287585..12289662 334 36.77 8.70 1005
      Potri.004G126600.1 PtrZHD6 Chr04: 12337842..12338677 130 14.17 6.81 393
      Potri.004G135100.1 PtrZHD7 Chr04: 15528323..15529129 268 29.44 8.83 807
      Potri.004G229600.1 PtrZHD8 Chr04: 23480758..23482600 271 30.06 8.39 816
      Potri.005G11.300.1 PtrZHD9 Chr05: 9522291..9525287 339 37.98 9.19 1020
      Potri.005G158800.1 PtrZHD10 Chr05: 16017482..16019310 257 27.73 6.43 774
      Potri.005G227900.1 PtrZHD11 Chr05: 23746838..23749246 290 32.32 8.88 873
      Potri.007G024100.1 PtrZHD12 Chr07: 1814109..1816426 331 36.75 9.31 996
      Potri.008G086000.1 PtrZHD13 Chr08: 5402319..5403293 324 35.57 8.83 975
      Potri.010G169400.1 PtrZHD14 Chr10: 17139193..17140688 332 36.41 9.21 999
      Potri.012G040900.1 PtrZHD15 Chr12: 3680805..3681724 182 20.66 6.39 549
      Potri.013G108900.1 PtrZHD16 Chr13: 12226035..12227366 281 31.74 7.71 846
      Potri.015G032700.1 PtrZHD17 Chr15: 2637644..2638216 190 21.44 6.17 573
      Potri.017G082700.1 PtrZHD18 Chr17: 9830334..9831749 161 17.36 5.93 486
      Potri.017G082900.1 PtrZHD19 Chr17: 9903467..9905775 337 37.23 8.23 1014
      Potri.019G021400.1 PtrZHD20 Chr19: 2418959..2419646 132 14.83 8.83 399
      Potri.019G081300.1 PtrZHD21 Chr19: 11464924..11465688 184 20.87 9.91 555

      表 2  同源基因的Ka/Ks及同源性

      Table 2.  Ka/Ks values and homologous status of homologous genes

      同源基因非同义替换率(Ka)同义替换率(Ks)Ka/Ks同源片段长度/bp同源性
      基因1基因2
      PtrZHD1 PtrZHD11 0.06 0.32 0.19 787 0.90
      PtrZHD2 PtrZHD10 0.04 0.19 0.21 711 0.92
      PtrZHD3 PtrZHD8 0.08 0.36 0.22 682 0.86
      PtrZHD5 PtrZHD19 0.08 0.35 0.23 779 0.88
      PtrZHD6 PtrZHD18 0.07 0.18 0.39 357 0.91
      PtrZHD9 PtrZHD12 0.08 0.29 0.28 875 0.85
      PtrZHD13 PtrZHD14 0.09 0.36 0.25 838 0.85
      PtrZHD15 PtrZHD17 0.05 0.27 0.19 496 0.90
    • 利用双子叶植物(拟南芥、毛果杨和大白菜)与单子叶植物(水稻)的ZHD蛋白序列构建系统进化树(图1),PtrZHD家族分为2个种类(ZHD和MIF),这2个种类可以分成7个亚族(Ⅰ~Ⅶ)[5, 8, 12],PtrZHD不同亚族中即包括单子叶植物又包括双子叶植物,表明该基因家族的分化早于单双子叶植物的分化。

      图  1  毛果杨、拟南芥、水稻和大白菜ZHD家族系统进化树

      Figure 1.  Phylogenetic tree of ZHD protein family in P. trichocarpa, A. thaliana , O. sativa and B. rapa ssp. pekinensis

    • PtrZHD家族成员在毛果杨染色体上的分布(图2)显示:21个PtrZHD不均匀地分布在毛果杨12条染色体上;4、5号染色体上分别分布4和3个ZHD,2、3、17和19号染色体上各分布2个ZHD,7、8、10、12、13和15号染色体上只分布1个ZHD,1、6、9、11、14、16和18号染色体上无ZHD分布。PtrZHD家族编码序列Blast结果表明:PtrZHD1和PtrZHD11、PtrZHD2和PtrZHD10、PtrZHD3和PtrZHD8、PtrZHD5和PtrZHD19、PtrZHD6和PtrZHD18、PtrZHD9和PtrZHD12、PtrZHD13和PtrZHD14以及PtrZHD15和PtrZHD17有共线性关系(图2表2),同源片段长度大于300 bp且同源性超过80%,是进化过程中由于全基因组复制和串联复制而形成的同源基因[3, 22],表明PtrZHD可能通过全基因组复制和串联复制进行家族扩张。8对同源基因的Ka/Ks均小于1(表2),说明PtrZHD家族在进化过程中经历了纯化选择,留存的基因较为保守[3]

      图  2  PtrZHD家族基因染色体定位及同源性分析

      Figure 2.  Chromosome localization and homology analysis of PtrZHD gene

    • PtrZHD家族21个成员中有11个成员含有内含子(图3B),这与之前报道的其他物种ZHD家族中有内含子的成员数量较少的研究结果稍有不同[5, 12]。PtrZHD蛋白具有2个保守性较高的基序:同源结构域序列(Motif 1)和锌指结构域序列(Motif 2)(图3C)。Motif 2与DNA的特异性结合有关;Motif 1与蛋白二聚体的形成有关[7]。所有的PtrZHD蛋白都具有Motif 1,而且除了PtrZHD4和亚族Ⅴ(MIF)的成员之外,其他家族成员都含Motif 2,说明该家族成员在进化过程中比较保守。

      图  3  PtrZHD家族基因结构和蛋白保守基序分析

      Figure 3.  Analysis of gene structure and protein conserved motif of PtrZHD gene

    • PtrZHD家族启动子区顺式作用元件可分为2个大类(图4):第一大类为植物激素响应元件,共有5种,分别为生长素响应元件(AuxRR-core、TGA-element),水杨酸响应元件(TCA-element),茉莉酸甲酯响应元件(CGTC-motif、TGACG-motif),脱落酸响应元件(ABRE)和赤霉素响应元件(P-box、GARE-motif);第二大类为非生物胁迫响应元件,共有4种,分别为厌氧诱导元件(ARE)、干旱诱导性结合位点(MBS)、抗病和胁迫诱导元件(TC-rich repeats)和低温响应元件(LTR)。PtrZHD家族各基因启动子区存在不同类型的作用元件,但处于同一亚族的各基因含有相似的作用元件(图4),亚族Ⅰ主要包含茉莉酸甲酯响应元件、脱落酸响应元件、赤霉素响应元件和厌氧诱导元件;亚族Ⅱ主要包含水杨酸响应元件和茉莉酸甲酯响应元件;亚族Ⅲ主要包含厌氧诱导元件、MYB干旱诱导性结合位点以及抗病和胁迫诱导元件;亚族Ⅳ主要包含生长素响应元件,水杨酸响应元件,茉莉酸甲酯响应元件,脱落酸响应元件和厌氧诱导元件;亚族Ⅴ主要包含水杨酸响应元件、赤霉素响应元件、厌氧诱导元件和MYB干旱诱导性结合位点;亚族Ⅵ主要包含茉莉酸甲酯响应元件、厌氧诱导元件、MYB干旱诱导性结合位点和低温响应元件;亚族Ⅶ主要包含水杨酸响应元件、茉莉酸甲酯响应元件和厌氧诱导元件。以上结果说明:PtrZHD家族可能对植物激素和逆境胁迫有响应能力,虽然不同基因之间响应元件种类存在差异,但是同一亚族基因启动子区顺式作用元件种类基本相同。

      图  4  PtrZHD家族基因启动子区顺式作用元件分析

      Figure 4.  Analysis of cis-acting elements in promoter region of PtrZHD gene

    • 为了了解ZHD在毛果杨生长发育和环境响应中的潜在功能,利用qRT-PCR对毛果杨ZHD家族成员在根、茎和叶组织中的表达模式进行分析。结果(图5)表明:毛果杨21个PtrZHDs中有1、7和13个分别在根、茎和叶部组织偏好表达。亚族Ⅰ和Ⅲ的成员主要在叶中高表达;亚族Ⅱ和Ⅳ的成员全都在叶中高表达;亚族Ⅴ成员主要在茎中高表达;亚族Ⅵ成员主要在茎和叶中高表达;亚族Ⅶ成员在茎中高表达。毛果杨ZHD家族成员在根、茎和叶中有不同的表达特性,但同一亚族各成员偏好表达部位基本相同,说明ZHD在毛果杨根、茎和叶部组织中的生物学功能产生了分化,但同一亚族各成员功能相似。

      图  5  PtrZHDs组织表达特异性分析

      Figure 5.  Analysis of tissue expression specificity of PtrZHDs gene

      图6可知:在根中,随着干旱胁迫时间的增加,部分PtrZHD的表达量显著上调,达到峰值后逐渐降低,PtrZHD3、PtrZHD8、PtrZHD9、PtrZHD10、PtrZHD11、PtrZHD5、PtrZHD13和PtrZHD14在干旱胁迫下表达量呈持续上升趋势,PtrZHD1、PtrZHD6在干旱胁迫下表达量下降;在茎中,大部分PtrZHD在干旱胁迫后显著上调表达,达到峰值后逐渐降低,而PtrZHD2、PtrZHD3、PtrZHD5、PtrZHD6和PtrZHD7在干旱胁迫下表达量呈持续上升趋势;在叶中,大部分PtrZHD在干旱胁迫后表达量同样呈先升后降的趋势,PtrZHD5、PtrZHD7和PtrZHD20在干旱胁迫下表达量持续下降,而PtrZHD1和PtrZHD18在干旱胁迫下表达量呈持续上升趋势。从响应速度来看,根中大部分PtrZHD基因响应干旱胁迫的快速上升期发生在6、12或72 h,而在茎和叶中的快速上升期发生在6或12 h。表明毛果杨ZHD家族各成员响应干旱胁迫且在胁迫中发挥不同的作用。

      图  6  不同组织中PtrZHDs在干旱胁迫下的表达谱分析

      Figure 6.  Expression profile analysis of PtrZHDs gene in different tissues under drought stress

    • ZHD是植物特有的转录因子,在植物生长发育和逆境胁迫响应中起着重要作用[6, 15]。本研究从全基因水平鉴定出21个PtrZHDs家族成员,进化分析表明(图1):21个PtrZHDs可以分为2个不同的种类(ZHD和MIF)、7个亚族(Ⅰ~Ⅶ),这与葡萄[8]、茶树[5]和黄瓜[12]中的分类基本一致。

      PtrZHD家族有76%的成员涉及全基因组复制和串联复制现象,说明该基因家族扩张的主要方式是全基因组复制和串联复制[22-23],基因复制可以提供丰富的遗传物质有助于毛果杨适应外界环境。PtrZHD家族同源基因的Ka/Ks均小于1,表明纯化作用在该基因家族进化过程中存在一定的选择压力[3],说明PtrZHD家族基因具有较强的保守性。同时,PtrZHD家族基因编码蛋白保守基序分析发现:21个PtrZHD蛋白具有2个保守性较高的基序Motif 1和Motif 2,进一步说明PtrZHD家族在进化过程中较为保守。

      启动子分析发现:虽然PtrZHD家族启动子区顺式作用元件的种类不同,但处于同一亚族基因启动子区顺式作用元件类型基本相同,同时,同一亚族基因编码蛋白的保守基序也基本相同,表明PtrZHD家族不同亚族的生物学功能产生了分化,但同一亚族各基因的生物学功能基本相同;PtrZHD家族成员在毛果杨根、茎和叶部组织中具有偏好性表达特征,但同一亚族基因的偏好表达部位基本相同。

      毛果杨中具有内含子的ZHD占比(52%)多于拟南芥(0%)[2]、水稻(33%)[24]、玉米Zea mays(13%)[24]、黄瓜(38%)[14]、苦荞麦Fagopyrum tataricum (20%)[25]、大白菜(3%)[2]和番茄(4%)[3]等草本植物,内含子增多可以加大转录本的多样性,提高生物的抗逆能力[26]。因此,毛果杨ZHD的内含子比草本植物多的原因可能是毛果杨生命周期长、生存空间大,需要应对更为复杂的环境挑战,所以进化出了更多含有内含子的基因以保证其正常生长发育。

      ZHD能够调控植物的生长发育和对干旱胁迫的抗性,如过表达AtZHD1可以提高拟南芥的耐旱性[13]OsZHD1基因过表达导致水稻叶片卷曲下垂,降低水稻的耐旱性[14];毛果杨亚族Ⅱ中的PtrZHD2、PtrZHD10与AtZHD1、OsZHD1聚类在一起,且同时在叶部组织中高表达,表明PtrZHD2和PtrZHD10可能通过调控毛果杨叶片的生长发育来响应干旱胁迫的。生物在遭受胁迫时,基因的相关顺势作用元件会影响其自身的转录以响应胁迫[27]PtrZHD家族基因启动子区含有MYB干旱诱导性结合位点,而且PtrZHD家族基因在干旱胁迫下的表达量会随着胁迫时间的增加而发生变化,进一步说明在毛果杨干旱胁迫的响应中,PtrZHD家族基因发挥着重要的调控作用。

    • 本研究在全基因组水平上鉴定出21个PtrZHDs,通过系统发育将其分为7个亚族;同源性及KaKs分析表明:PtrZHD通过全基因组复制和串联复制进行家族扩张且在进化过程中经历了纯化选择;启动子顺式作用元件分析表明:PtrZHD家族基因能够响应干旱胁迫信号;基因结构和基序分析表明:PtrZHD家族基因功能发生了分化但同一亚族基因生物学功能基本相同;组织表达特异性和干旱胁迫下的表达模式表明:毛果杨ZHD在不同组织中行使特定的生物学功能且能够响应干旱胁迫。

参考文献 (27)

目录

/

返回文章
返回