留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式

陆丹迎 程少禹 章颖佳 刘志高 金梦婷 董彬 张寿洲 彭豪 戴梦怡 王卓为 赵宏波 申亚梅

陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅. 景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200488
引用本文: 陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅. 景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200488
LU Danying, CHENG Shaoyu, ZHANG Yingjia, LIU Zhigao, JIN Mengting, DONG Bin, ZHANG Shouzhou, PENG Hao, DAI Mengyi, WANG Zhuowei, ZHAO Hongbo, SHEN Yamei. Bioinformatics analysis of PIF transcription factors in Magnolia sinostellata and expression pattern analysis under extreme shading condition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200488
Citation: LU Danying, CHENG Shaoyu, ZHANG Yingjia, LIU Zhigao, JIN Mengting, DONG Bin, ZHANG Shouzhou, PENG Hao, DAI Mengyi, WANG Zhuowei, ZHAO Hongbo, SHEN Yamei. Bioinformatics analysis of PIF transcription factors in Magnolia sinostellata and expression pattern analysis under extreme shading condition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200488

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式

doi: 10.11833/j.issn.2095-0756.20200488
基金项目: “十三五”浙江省林木新品种选育专项(2016C02056-1);浙江省重点研发项目(2019C02023)
详细信息
    作者简介: 陆丹迎(ORCID: 0000-0002-4182-0131),从事园林植物与遗传育种研究。E-mail: ludanying0713@163.com
    通信作者: 申亚梅(ORCID: 0000-0002-3079-2817),教授,从事园林植物与遗传育种研究。E-mail: yameishen@zafu.edu.cn
  • 中图分类号: S718.3

Bioinformatics analysis of PIF transcription factors in Magnolia sinostellata and expression pattern analysis under extreme shading condition

  • 摘要:   目的  群落所造成的遮阴是导致景宁木兰Magnolia sinostellata濒危的重要因素之一。PIF家族转录因子在光信号传导和植物生长发育中起到重要作用。对PIF家族转录因子进行系统分析和研究,为探究其在景宁木兰光信号转导机制中的作用奠定基础。  方法  从景宁木兰转录组数据中鉴定获得PIF家族转录因子并进行生物信息学分析,利用实时荧光定量聚合酶链式反应(qRT-PCR)技术对其在极端遮阴条件下的表达模式进行分析。  结果  从景宁木兰转录组中共筛选出9个MsPIFs转录因子基因,其编码的蛋白质长度为188~735 个氨基酸,蛋白质大小为20 314.56~78 957.02 Da,理论等电点范围为5.18~8.22。MsPIFs基因编码的蛋白质均为不稳定蛋白质,所有蛋白质均为亲水性蛋白质。亚细胞定位预测结果显示所有蛋白质均定位于细胞核。9个蛋白质均具有丝氨酸(Ser)、苏氨酸(Thr)和酪氨酸(Try)磷酸化位点。qRT-PCR结果表明:极端遮阴条件下,9个MsPIFs家族基因表达均发生不同程度的变化。其中,MsbHLH23的表达变化较其他基因更为明显,遮阴处理5和10 d时的表达量分别上调为对照的52.77与20.03倍。  结论  景宁木兰PIF转录因子家族均能响应遮阴,为后续对MsPIFs进行生物学功能鉴定奠定了基础。
  • 图  1  MsPIF蛋白质的基序

    Figure  1  Motif of MsPIF protein

    图  2  MsPIF家族蛋白质的basic、HLH、APB和APA基序蛋白质序列比对

    Figure  2  Sequence alignment of basic、HLH、APB和APA motif protein sequences of MsPIF

    图  3  景宁木兰、拟南芥、玉米和杨树的PIF家族蛋白质的系统进化分析

    Figure  3  Phylogenetic tree analysis of MsPIF protein and AtPIF protein sequences in M. sinostellata, A. thaliana, Z. mays, P. trichocarpa

    图  4  遮阴处理过程中景宁木兰的表型变化

    Figure  4  Phenotypic changes of M. sinostellata during shading treatment

    图  5  qRT-PCR扩增产物特异性

    Figure  5  Specificity of qRT-PCR amplification products

    图  6  遮阴条件下景宁木兰PIF转录因子的qRT-PCR分析

    Figure  6  qRT-PCR analysis of relative expression of MsPIFs under 0~30 d extreme shade treatmen

    图  7  长期极端遮阴条件下景宁木兰PIF转录因子的表达模式

    Figure  7  Pattern of expression of PIF family during shade treatment period of M. sinostellata

    表  1  实时荧光定量PCR引物

    Table  1.   Primers used for qRT-PCR analysis

    基因名称正向(反向)引物序列(5'→3')退火温度/℃扩增效率/%相关系数R2
    MsbHLH68F-CCTCAGGCTCTGTCATTGGG59.590.860.998
    R-AGCGGTTGGGCTTCTTCACG59.5
    MsPIF4F-GCCGAAGAATCTGAGTGCCA57.496.980.999
    R-CTATCCCTCCGTCTCCTTTC57.4
    MsbHLH1F-CTTTGTGCTATCTTCGGGAACG57.7104.480.997
    R-GGGACCCACCAATCAACGAC59.5
    MsPIF8F-AAGCGAGGATGAGAACAAGG55.493.010.983
    R-TGCGTTCGGATTGGTTATGG55.4
    MsbHLH66F-AGCAGTAACGGCACGCAGAC59.5101.570.995
    R-GAAATGGGCATGAGGCAGAG57.4
    MsPIF3F-CAGACTCAGCCGTCAACTCA57.492.930.991
    R-GCAGGCCCACTTCCACCAAT59.5
    MsPIF1F-CCACATATTCCTCCATTTGAT51.7100.900.994
    R-GAAGGCTGAGGTAGTGTTGATA55.8
    MsbHLH48F-CCGTCGAGTCTCCAGTGGTC61.696.920.993
    R-CGTTTGAAGGGAAGGTAGGG57.4
    MsbHLH23F-GCAGACAAAGGACCCAAGGA57.493.010.993
    R-CACGAGGAGTGAGGAACAAGAA57.7
    下载: 导出CSV

    表  2  MsPIF基因家族

    Table  2.   MsPIF gene family of M. sinostellata

    基因名称蛋白质分子量/Da氨基酸数/个等电点不稳定系数脂肪系数平均亲水性亚细胞定位磷酸化位点
    SerThrTyr
    MsbHLH6853 604.795065.1858.1977.51−0.447细胞核(N)47101
    MsPIF457 883.065275.9656.0564.57−0.611细胞核(N)40123
    MsbHLH174 557.306715.5253.0879.66−0.452细胞核(N)34146
    MsPIF850 048.294568.2242.0958.29−0.686细胞核(N)36204
    MsbHLH6645 976.464306.7960.4569.72−0.558细胞核(N)45141
    MsPIF378 957.027356.3167.3763.80−0.513细胞核(N)74133
    MsPIF120 314.561885.9360.7860.32−0.341细胞核(N) 4 21
    MsbHLH4840 255.003666.4359.8570.90−0.639细胞核(N)40 62
    MsbHLH2339 480.073625.8272.0770.14−0.577细胞核(N)43 92
      说明:Ser为丝氨酸,Thr为苏氨酸,Tyr为酪氨酸
    下载: 导出CSV

    表  3  景宁木兰PIF家族蛋白质的主要MEME基序

    Table  3.   Major MEME motif sequences in M. sinostellata PIF protein

    基序宽度/个最佳匹配
    Motif140MKALQELIPNSNKTDKASMLDEAIEYLKSLQLQVQMLSM
    Motif221RGRAAEVHNLSERRRRERINE
    Motif321MMFPGVQQYMPPMGMGMGMGM
    Motif436FEQZIVKLMEEDMGSAMQYLQGKGLCLMPIALAAAI
    Motif58ELLWENGQ
    Motif68CVPBWBTD
    下载: 导出CSV
  • [1] YU Qin, SHEN Yamei, WANG Qianying, et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata [J]. Trees, 2019, 33(1): 11 − 22. doi:  10.1007/s00468-018-1753-5
    [2] 俞芹, 王倩颖, 刘志高, 等. 光强与水分处理下景宁木兰光合光响应模型拟合比较[J]. 生态学杂志, 2018, 37(3): 898 − 905.

    YU Qin, WANG Qianying, LIU Zhigao, et al. Comparison of the light response models of photosynthesis in leaves of Magnolia sinostellata under different light intensity and moisture conditions [J]. J Ecol, 2018, 37(3): 898 − 905.
    [3] TAMAKI I, NOMURA K, NOMURA R, et al. Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting [J]. Landscape Ecol Eng, 2018, 14(2): 269 − 276. doi:  10.1007/s11355-018-0348-z
    [4] 余泽智, 陈翔翔, 卢璐, 等. 玉景宁玉兰种群分布与群落结构研究[J]. 浙江林业科技, 2015, 35(3): 47 − 52. doi:  10.3969/j.issn.1001-3776.2015.03.009

    YU Zezhi, CHEN Xiangxiang, LU Lu, et al. Distribution and community structure ofMagnolia sinostellata [J]. J Zhejiang For Sci Technol, 2015, 35(3): 47 − 52. doi:  10.3969/j.issn.1001-3776.2015.03.009
    [5] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant Cell, 2003, 15(8): 1749 − 1770. doi:  10.1105/tpc.013839
    [6] CASTILLON A, SHEN Hui, HUQ E. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks [J]. Trends Plant Sci, 2007, 12(11): 514 − 521. doi:  10.1016/j.tplants.2007.10.001
    [7] SONG Yi, YANG Chuangwei, GAO Shan, et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5 [J]. Mol Plant, 2014, 7(12): 1776 − 1787. doi:  10.1093/mp/ssu109
    [8] CAPELLA M, RIBONE P A, ARCE A L, et al. Arabidopsis thaliana HomeoBox 1 (AtHB1), a homedomain-leucine zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation [J]. New Phytol, 2015, 207(3): 669 − 682. doi:  10.1111/nph.13401
    [9] GALVĀO V C, FIORUCCI A S, TREVISAN M, et al. PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis[J]. Nat Commun, 2019, 10(1): 4005. doi: 10.1038/s41467-019-11882-7.
    [10] EUNKYOO O, ZHU Jiaying, BAI Mingyi, et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. eLife, 2014, 3. doi: 10.7554/eLife.03031.
    [11] HASAN M, RASHID M, KHATUN S, et al. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information [J]. Sci Rep, 2019, 9: 8258. doi:  10.1038/s41598-019-44548-x
    [12] 陈亮, 崔芬芬, 王勇飞, 等. 基于转录组金银花WRKY转录因子的挖掘与分析[J]. 分子植物育种, 2019, 17(6): 1780 − 1787.

    CHEN Liang, CUI Fenfen, WANG Yongfei, et al. Mining and analysis of WRKY transcription factors in transcriptome-based Lonicera japonica [J]. Mol Plant Breed, 2019, 17(6): 1780 − 1787.
    [13] ESSER D, HOFFMANN L, PHAM T K, et al. Protein phosphorylation and its role in archaeal signal transduction [J]. FEMS Microbiol Rev, 2016, 40(5): 625 − 647. doi:  10.1093/femsre/fuw020
    [14] PHAM V N, KATHARE P K, HUQ E. Phytochromes and phytochrome interacting factors [J]. Plant Physiol, 2018, 176(2): 1025 − 1038. doi:  10.1104/pp.17.01384
    [15] HUANG Xu, ZHANG Qian, JIANG Yupei, et al. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis[J]. eLife, 2018, 7. doi: 10.7554/eLife.31636.
    [16] 庄黎丽, 王剑, 杨志民. 基于转录组数据库的高羊茅HD-Zip I转录因子的鉴定及表达模式解析[J]. 草业学报, 2017, 27(3): 67 − 77.

    ZHUANG Lili, WANG Jian, YANG Zhimin. Transcriptome-wide identification and expression analysis of HD-Zip I transcription factors in Festuca arundinacea [J]. Acta Prat Sin, 2017, 27(3): 67 − 77.
    [17] 徐向东, 任逸秋, 张利, 等. 杨树PIF基因家族成员表达模式研究[J]. 林业科学研究, 2018, 31(2): 19 − 25.

    XU Xiangdong, REN Yiqiu, ZHANG Li, et al. Analysis of expression pattern of PIF family members in Populus [J]. For Res, 2018, 31(2): 19 − 25.
    [18] GAO Yong, REN Xiaoyun, QIAN Jingjie, et al. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): identification, evolution, and expression analysis[J]. Acta Physiol Plant, 2019, 41(1): 8. doi: 10.1007/s11738-018-2802-9.
    [19] NAKAMURA Y, KATO T, YAMASHINO T, et al. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa [J]. Biosci Biotechnol Biochem, 2007, 71(5): 1183 − 1191. doi:  10.1271/bbb.60643
    [20] MONTE E, TEPPERMAN J M, AL-SADY B, et al. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development [J]. Proc Natl Acad Sci USA, 2004, 101(46): 16091 − 16098. doi:  10.1073/pnas.0407107101
    [21] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484(7393): 242 − 245. doi:  10.1038/nature10928
    [22] LEIVAR P, MONTE E, AL-SADY B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels [J]. Plant Cell, 2008, 20(2): 337 − 352. doi:  10.1105/tpc.107.052142
    [23] OH J, PARK E, SONG K, et al. PHYTOCHROME INTERACTING FACTOR8 Inhibits phytochrome a-mediated far-red light responses in Arabidopsis [J]. Plant Cell, 2020, 32(1): 186 − 205. doi:  10.1105/tpc.19.00515
    [24] PENFIELD S, JOSSE E M, KANNANGARA R, et al. Cold and light control seed germination through the bHLH transcription factor SPATULA [J]. Curr Biol, 2005, 15(22): 1998 − 2006. doi:  10.1016/j.cub.2005.11.010
    [25] REYES-OLALDE J I, ZÚÑIGA-MAYO V M, SERWATOWSKA J, et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium [J]. PLoS Genet, 2017, 13(4): e1006726. doi:  10.1371/journal.pgen.1006726
    [26] GROSZMANN M, PAICU T, SMYTH D R. Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis [J]. Plant J, 2008, 55(1): 40 − 52. doi:  10.1111/j.1365-313X.2008.03469.x
    [27] LU Deliang, WANG G G, ZHANG Jinxin, et al. Converting larch plantations to mixed stands: effects of canopy treatment on the survival and growth of planted seedlings with contrasting shade tolerance [J]. For Ecol Manage, 2018, 409: 19 − 28. doi:  10.1016/j.foreco.2017.10.058
    [28] DONG Jie, SUN Ning, YANG Jing, et al. The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation inArabidopsis [J]. Plant Cell, 2019, 31(5): 1155 − 1170. doi:  10.1105/tpc.18.00803
    [29] OH E, YAMAGUCHI S, HU Jianhong, et al. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds [J]. Plant Cell, 2007, 19(4): 1192 − 1208. doi:  10.1105/tpc.107.050153
    [30] OH E, ZHU Jiaying, WANG Zhiyong. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses [J]. Nat Cell Biol, 2012, 14(8): 802 − 809. doi:  10.1038/ncb2545
    [31] PARK E, PARK J, KIM J, et al. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters [J]. Plant J, 2012, 72(4): 537 − 546. doi:  10.1111/j.1365-313X.2012.05114.x
    [32] 任小芸, 吴美琴, 陈建民, 等. 光敏色素作用因子PIFs参与植物激素信号转导的分子机制[J]. 植物生理学报, 2016, 52(10): 1466 − 1473.

    REN Xiaoyun, WU Meiqin, CHEN Jianmin, et al. The molecular mechanisms of phytochrome interacting factors (PIFs) in phy-tohormone signaling transduction [J]. Plant Physiol Commun, 2016, 52(10): 1466 − 1473.
  • [1] 王楠楠, 董彬, 杨丽媛, 赵宏波.  梅花2个PmWRKY2基因克隆及其在逆境胁迫下的表达模式 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200706
    [2] 郝力慧, 董彬, 朱绍华, 马进.  牡丹响应高温胁迫的转录组分析及PsHSP基因表达 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200529
    [3] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200544
    [4] 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超.  桂花己糖激酶基因家族成员的序列及表达分析 . 浙江农林大学学报, 2021, 38(2): 225-234. doi: 10.11833/j.issn.2095-0756.20200370
    [5] 缪云锋, 周丹, 董彬, 赵宏波.  桂花OfNAC转录因子鉴定及在花开放阶段的表达分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200474
    [6] 黄元城, 郭文磊, 王正加.  薄壳山核桃全基因组LBD基因家族的生物信息学分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200454
    [7] 尹跃, 安巍, 赵建华, 王亚军, 樊云芳, 曹有龙.  黑果枸杞转录组SSR信息分析及分子标记开发 . 浙江农林大学学报, 2019, 36(2): 422-428. doi: 10.11833/j.issn.2095-0756.2019.02.025
    [8] 俞狄虎, 张迟, 柯甫志, 敬露阳, 顾雪娇, 吴宝玉, 张敏.  ‘无子瓯柑’CHS基因家族的克隆和表达分析 . 浙江农林大学学报, 2019, 36(5): 943-949. doi: 10.11833/j.issn.2095-0756.2019.05.013
    [9] 原晓龙, 李娟, 李云琴, 王毅.  1个含有SDR结构域PKS/NRPS基因的克隆 . 浙江农林大学学报, 2019, 36(6): 1247-1253. doi: 10.11833/j.issn.2095-0756.2019.06.024
    [10] 王倩颖, 常鹏杰, 申亚梅, 张超, 董彬, 时宝柱.  景宁木兰热胁迫下实时荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 935-942. doi: 10.11833/j.issn.2095-0756.2019.05.012
    [11] 程占超, 侯丹, 马艳军, 高健.  毛竹生长素反应因子基因的生物信息学分析及差异表达 . 浙江农林大学学报, 2017, 34(4): 574-580. doi: 10.11833/j.issn.2095-0756.2017.04.002
    [12] 马进, 郑钢, 裴翠明, 张振亚.  南方型紫花苜蓿根系盐胁迫应答转录因子鉴定与分析 . 浙江农林大学学报, 2016, 33(2): 201-208. doi: 10.11833/j.issn.2095-0756.2016.02.003
    [13] 安苗苗, 刘静, 郦元, 周明兵.  花叶矢竹转录组中的转座子表达分析 . 浙江农林大学学报, 2016, 33(6): 935-943. doi: 10.11833/j.issn.2095-0756.2016.06.003
    [14] 刘健健, 刘俊丽, 季敏杰, 陈家栋, 杨晓峰, 陈爱群.  番茄质膜H+-ATPase家族基因的鉴定和表达分析 . 浙江农林大学学报, 2016, 33(5): 734-741. doi: 10.11833/j.issn.2095-0756.2016.05.002
    [15] 王庆灵, 刘文鑫, 赵嘉平.  山海关杨PdERF-18转录因子的表达特征分析 . 浙江农林大学学报, 2014, 31(5): 716-723. doi: 10.11833/j.issn.2095-0756.2014.05.009
    [16] 丁倩倩, 吴兴波, 刘芳, 许改平, 郑洁, 高岩.  木兰科4种植物鲜花挥发物成分分析 . 浙江农林大学学报, 2013, 30(4): 478-483. doi: 10.11833/j.issn.2095-0756.2013.04.003
    [17] 黄程前, 宋丽青, 童再康, 程龙军.  光皮桦BlFTL基因的克隆和表达模式 . 浙江农林大学学报, 2013, 30(3): 343-349. doi: 10.11833/j.issn.2095-0756.2013.03.006
    [18] 樊二齐, 王云华, 郭叶, 俞春莲, 林新春.  6种木兰科植物叶片精油的气质联用(GC-MS)分析 . 浙江农林大学学报, 2012, 29(2): 307-312. doi: 10.11833/j.issn.2095-0756.2012.02.023
    [19] 彭沙沙, 童再康, 黄华宏, 周厚君, 时剑, 林二培.  杉木纤维素合成酶类似蛋白基因ClCslD1的克隆及其生物信息学分析 . 浙江农林大学学报, 2012, 29(1): 1-6. doi: 10.11833/j.issn.2095-0756.2012.01.001
    [20] 吴家胜, 汪旭升.  数量性状位点(QTLs)内候选基因的生物信息学分析方法 . 浙江农林大学学报, 2008, 25(1): 104-108.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200488

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2021-01-23

景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式

doi: 10.11833/j.issn.2095-0756.20200488
    基金项目:  “十三五”浙江省林木新品种选育专项(2016C02056-1);浙江省重点研发项目(2019C02023)
    作者简介:

    陆丹迎(ORCID: 0000-0002-4182-0131),从事园林植物与遗传育种研究。E-mail: ludanying0713@163.com

    通信作者: 申亚梅(ORCID: 0000-0002-3079-2817),教授,从事园林植物与遗传育种研究。E-mail: yameishen@zafu.edu.cn
  • 中图分类号: S718.3

摘要:   目的  群落所造成的遮阴是导致景宁木兰Magnolia sinostellata濒危的重要因素之一。PIF家族转录因子在光信号传导和植物生长发育中起到重要作用。对PIF家族转录因子进行系统分析和研究,为探究其在景宁木兰光信号转导机制中的作用奠定基础。  方法  从景宁木兰转录组数据中鉴定获得PIF家族转录因子并进行生物信息学分析,利用实时荧光定量聚合酶链式反应(qRT-PCR)技术对其在极端遮阴条件下的表达模式进行分析。  结果  从景宁木兰转录组中共筛选出9个MsPIFs转录因子基因,其编码的蛋白质长度为188~735 个氨基酸,蛋白质大小为20 314.56~78 957.02 Da,理论等电点范围为5.18~8.22。MsPIFs基因编码的蛋白质均为不稳定蛋白质,所有蛋白质均为亲水性蛋白质。亚细胞定位预测结果显示所有蛋白质均定位于细胞核。9个蛋白质均具有丝氨酸(Ser)、苏氨酸(Thr)和酪氨酸(Try)磷酸化位点。qRT-PCR结果表明:极端遮阴条件下,9个MsPIFs家族基因表达均发生不同程度的变化。其中,MsbHLH23的表达变化较其他基因更为明显,遮阴处理5和10 d时的表达量分别上调为对照的52.77与20.03倍。  结论  景宁木兰PIF转录因子家族均能响应遮阴,为后续对MsPIFs进行生物学功能鉴定奠定了基础。

English Abstract

陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅. 景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200488
引用本文: 陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅. 景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200488
LU Danying, CHENG Shaoyu, ZHANG Yingjia, LIU Zhigao, JIN Mengting, DONG Bin, ZHANG Shouzhou, PENG Hao, DAI Mengyi, WANG Zhuowei, ZHAO Hongbo, SHEN Yamei. Bioinformatics analysis of PIF transcription factors in Magnolia sinostellata and expression pattern analysis under extreme shading condition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200488
Citation: LU Danying, CHENG Shaoyu, ZHANG Yingjia, LIU Zhigao, JIN Mengting, DONG Bin, ZHANG Shouzhou, PENG Hao, DAI Mengyi, WANG Zhuowei, ZHAO Hongbo, SHEN Yamei. Bioinformatics analysis of PIF transcription factors in Magnolia sinostellata and expression pattern analysis under extreme shading condition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200488

返回顶部

目录

    /

    返回文章
    返回