留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温胁迫下景宁木兰淀粉与蔗糖代谢途径转录分析

郑晨璐 王倩颖 陆丹迎 申亚梅 马晶晶 刘璐 王云

张建云, 吴胜春, 王敏艳, 等. 烟秆炭修复重金属污染土壤的效应及对烟草生长的影响[J]. 浙江农林大学学报, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
引用本文: 郑晨璐, 王倩颖, 陆丹迎, 等. 高温胁迫下景宁木兰淀粉与蔗糖代谢途径转录分析[J]. 浙江农林大学学报, 2023, 40(1): 55-63. DOI: 10.11833/j.issn.2095-0756.20220170
ZHANG Jianyun, WU Shengchun, WANG Minyan, et al. Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production[J]. Journal of Zhejiang A&F University, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
Citation: ZHENG Chenlu, WANG Qianying, LU Danying, et al. Transcriptional analysis of starch and sucrose metabolism pathways in Magnolia sinostellata under heat stress[J]. Journal of Zhejiang A&F University, 2023, 40(1): 55-63. DOI: 10.11833/j.issn.2095-0756.20220170

高温胁迫下景宁木兰淀粉与蔗糖代谢途径转录分析

DOI: 10.11833/j.issn.2095-0756.20220170
基金项目: 浙江省农业新品种选育重大科技专项(2021C2071-3)
详细信息
    作者简介: 郑晨璐(ORCID: 0000-0003-2415-3485 ),从事城市景观相关研究。E-mail: zcl9679@sjtu.edu.cn
    通信作者: 王云(ORCID: 0000-0003-2268-5541),教授,从事城市公园绿地研究。E-mail: wangyun03@sjtu.edu.cn
  • 中图分类号: Q75;S685

Transcriptional analysis of starch and sucrose metabolism pathways in Magnolia sinostellata under heat stress

  • 摘要:   目的  从分子生物学角度探究景宁木兰Magnolia sinostellata能否适应城市高温环境,为木兰属Magnolia植物城市推广应用和胁迫分子研究奠定基础。  方法  采取人工控制实验,对景宁木兰幼苗进行40 ℃极端高温处理,测定果糖、葡萄糖、蔗糖、淀粉碳同化产物,以及果糖磷酸酶、蔗糖磷酸合成酶,进行了转录组测序。  结果  随着胁迫时间的延长,景宁木兰叶片果糖、葡萄糖、蔗糖、淀粉质量分数发生一定的变化,但是差异不显著(P>0.05),果糖合成酶活性呈现显著下降趋势(P<0.05),蔗糖合成酶变化不显著(P>0.05)。转录组数据进一步揭示了在高温胁迫下,相比于24 h,48 h时景宁木兰叶片调节淀粉合成的SS(Unigene 40295)、Glc-1-pa(Unigene 38453)、GBE(CL4668.contig3)基因的表达量增加,随着高温胁迫的加深,调节蔗糖合成的SPS基因呈现下降趋势,并通过荧光定量验证了以上结果。  结论  景宁木兰对极端高温(40 ℃)有一定的短时耐受性,为应对高温胁迫,不但碳同化产物发生显著变化,调控淀粉与蔗糖代谢途径的关键基因表达也发生了变化,进一步证明了高温会导致景宁木兰叶片内蔗糖和淀粉的相互转化。图4表3参25
  • 烟草Nicotiana tabacum是中国重要的经济作物之一。中国烟草种植面积高达100万hm2,烟叶产量达450~500万t·a-1,其中烟秆产量约为150万t·a-1[1],由于管理比较粗犷,烟叶收获后大量烟秆被堆砌焚烧,不仅造成农林秸秆资源的巨大浪费,且焚烧产生的烟气对大气环境造成了严重影响。另一方面,有研究发现,中国部分烟草种植区土壤受到了不同程度的重金属污染,如贵阳和安顺镉的单项污染指数分别为1.581和1.103[2],当烟叶中含有过量重金属时,抽吸过程中,重金属会以气溶胶或金属氧化物的形式通过主流烟气进入人体,造成潜在危害[3];此外,连作会使重茬种植后的烟草生长迟缓、植株矮小、产量品质降低、土传病虫害加重等现象[4-5],严重影响当地烟农的经济收益。因此,寻找一种既能解决烟秆有效利用,同时又能降低土壤重金属生物有效性,并能提高重金属污染烟田经济价值的方法尤为重要。生物质炭是富含碳的生物质在缺氧或者无氧的条件下通过高温裂解或者不完全燃烧,生成的一种含碳量大、孔隙结构复杂的固体物质[6-7]。近年来,有研究表明:生物质炭可以提高土壤肥力[8],降低二氧化碳排放量[9];其含有的高比表面积、孔隙结构、碱性阳离子和官能团,对重金属有良好的修复作用[10];还可以改善土壤团聚体、降低土壤容重[11],促进土壤微生物活性[12],提高土壤酶活性[13]。因此,生物质炭化资源化利用不仅是低端农林废物如烟秆高值化利用的新技术途径,也是土壤学、环境科学、生态学等专业领域研究的一个重大热点。本研究利用贵州省毕节地区烟叶收获后的废弃烟秆制备成的烟秆炭改良重金属污染土壤,进行烟草种植试验,主要考察①烟秆炭对重金属污染土壤理化性质的影响;②烟秆炭对重金属污染土壤金属有效性的影响;③烟秆炭对烟叶生产及重金属质量分数的影响。希望通过本试验研究,为烟秆废弃物的炭化资源化再生使用及重金属污染土壤的修复利用提供理论依据。

    供试土壤采自浙江富阳朱家坞一块重金属复合污染水稻田。该采样点受到周边铜冶炼小作坊废水直排和大气沉降污染,因长期施用石灰,呈弱碱性。采样时取0~20 cm的表层土,带回实验室后剔除植物根系等杂物,风干后混匀、磨碎、过2 mm尼龙筛备用。实验用生物质炭是以贵州毕节地区烟叶收获后的废弃烟秆为原料在600 ℃下热裂解1 h制成,炭化后的产物过2 mm筛储备待用。土壤样品碱解氮、有效磷、有机质分别为132.67,13.31,63 600 mg·kg-1,pH值为pH 7.68,铜、铅、镉分别为296.66,5.91,291.39 mg·kg-1。烟秆炭的总氮、炭、氢、硫分别为20.1,597.5,32.6,3.6 g·kg-1,pH 10.51,铜、镉、铅分别为38.16,1.33,6.93 mg·kg-1,比表面积为368.92 m2·g-1,孔隙度为0.30 cm2·g-1,孔径大小为3.71 nm-1

    盆栽试验在浙江农林大学温室大棚进行。用土4.0 kg·盆-1,烟秆炭用量按0(对照TB0), 20, 40, 80 g·kg-1[m(炭): m(土)]计算施入(分别以TB20,TB40,TB80计),重复4次·处理-1。随机区组排列,并且隔15 d调换1次以保证每盆烟草苗生长受外界环境条件的影响基本一致。基肥选择硝酸铵、过磷酸钙和硫酸钾,用量分别为0.30, 0.80和0.30 g·盆-1,将基肥与土壤、烟秆炭充分混匀后装入塑料桶中(高32 cm,直径21 cm)。烟草种植采用直播方式,于2016年3月27日播种,苗高至10 cm时间苗,留长势一致的烟苗1株·盆-1。试验期间每天为每盆植物补充蒸馏水,使土壤含水量保持在田间最大持水量的65%左右。盆栽试验于8月6日结束。

    植物样的采集:先采收烟叶,然后将植株连根拔起,带回实验室区分根系和地上部,充分漂洗干净,待水珠自然风干后称量各部位鲜质量,然后装入牛皮纸袋105 ℃杀青30 min,60 ℃烘干至恒量,用植物粉碎机(CS-700,中国)粉碎后过0.125 mm筛,装入塑料封口袋中保存待测。

    土壤样的采集:用环刀(长40 cm,直径1 cm)按梅花采样法采集盆栽土壤,采样约500 g·盆-1,充分混匀后带回实验室阴干,用行星式球磨机(QM-3SP04-1,中国)磨碎后过0.125 mm筛,转入塑料封口袋中保存待测。

    土壤pH值采用酸度计(FE20,中国)测定[m(土): m(水)= 1.0: 2.5];有效磷测定采用Olsen法,经过0.5 mol·L-1碳酸氢钠(NaHCO3)浸提[m(土): m(水)=1: 20],比色法测定;有机碳采用低温外热重铬酸钾氧化-比色法[14]

    土壤重金属有效态提取采用二乙三胺五乙酸(DTPA)浸提法[m(土): m(水)=1: 20),重金属质量分数用电感耦合等离子体发射光谱仪(ICP-OES,Prodigy 7,美国)测定[15]。烟叶中重金属质量分数采用硝酸(HNO3)消解,ICP-OES测定[15]。测定过程分别采用土壤(GBW07447)和植物标准物质(GBW10012)进行质量控制。

    土壤脲酶的测定采用苯酚钠-次氯酸钠比色法;碱性磷酸酶采用磷酸苯二钠比色法,缓冲液选柠檬酸缓冲液(pH 7.0);脱氢酶采用TTC分光光度法。为衡量土壤酶综合活性值,对土壤氧化还原酶活性求取集合平均数,计算公式为:$ {G_{{\rm{Mea}}}} = \sqrt[3]{{脲酶活性 \times 脱氢酶活性 \times 碱性磷酸酶活性}} $[16]

    烟秆炭碳、氮、氢和硫质量分数用元素自动分析仪(Vario EL Ⅲ,德国)测定。炭比表面积由比表面积及孔隙度分析仪(SI-MP-10,美国)测定。烟秆炭官能团由傅里叶变换近红外光谱仪(FT-IR,IR Prestige 21,日本)测定。

    应用SPSS 17.0进行数据统计分析,采用单因素方差分析和Duncan's多重比较评价不同处理对土壤pH值、有效磷、碱解氮质量分数和有效态重金属质量分数等指标影响的显著性。采用Person法分析重金属有效性与土壤理化性质之间的相关性。应用Origin 8.5和Excel软件作图。

    烟秆炭主要成分是碳(≈60%),含有少量的氮、氢、硫,pH 10.51,呈碱性,比供试土壤高2.83个单位。烟秆炭比表面积(BET)高达368.92 m2·g-1,与稻草炭(500 ℃裂解30 min,比表面积为29.97 m2·g-1)[17]和死猪炭(800 ℃裂解1 h,比表面积为29.15 m2·g-1)[18]相比有较高的比表面积,能为金属离子提供更多的吸附点位。由图 1可知:生物质炭表面含有丰富的芳香族和脂肪族官能团[19],这些含氧官能团决定了生物质炭具有亲水、疏水性,并增强其对酸碱的缓冲能力,也是土壤pH升高的关键因素。

    图  1  烟秆炭FT-IR表征
    Figure  1.  FT-IR characterization of the tobacco stalk biochar

    表 1显示:施用烟秆炭可以显著提高土壤pH值,且随着炭施加量的增加,土壤pH值显著提高。其中处理TB80效果最为显著,与对照相比土壤pH显著提高了0.38个单位。土壤有机质的变化趋势与pH值一致(表 1),但土壤溶解性有机碳质量分数只有在烟秆炭施加量增加到80 g·kg-1时,才呈现显著性提高(23.4%)。

    表  1  不同处理下土壤pH值和养分质量分数
    Table  1.  Soil pH and nutrient contents under different treatments
    处理 pH值 ω有机质/(g·kg-1) ω水溶性碳/(mg·kg-1) ω有效磷/(mg·kg-1) ω碱解氮/(g·kg-1)
    TB0 7.76 ± 0.06 d 29.73 ± 2.74 d 222.76 ± 16.58 b 19.71 ± 3.38 c 0.10 ± 0.003 bc
    TB20 7.85 ± 0.03 c 39.38 ± 2.46 c 228.51 ± 22.21 b 27.10 ± 7.66 c 0.11 ± 0.006 c
    TB40 7.97 ± 0.04 b 47.43 ± 7.11 b 231.26 ± 24.88 b 42.80 ± 6.76 b 0.12 ± 0.005 ab
    TB80 8.14 ± 0.05 a 60.08 ± 4.97 a 274.96 ± 15.49 a 67.50 ± 8.74 a 0.12 ± 0.008 a
    说明:TB0为对照,英文小写字母代表同列不同处理间的显著性差异水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    另外,施用一定数量的烟秆炭也能显著增加土壤碱解氮和有效磷质量分数(表 1)。与对照相比,施加20 g·kg-1烟秆炭对土壤碱解氮和有效磷质量分数提高不明显;当施加量增加到40 g·kg-1时,土壤有效磷质量分数显著提高,当增加到80 g·kg-1时,土壤有效磷比40 g·kg-1时又增加了约60.0%;但只有将烟秆炭施加量提高到80 g·kg-1时,与对照相比土壤碱解氮质量分数才显著增加(20.0%)。

    土壤重金属有效态主要指植物有效态,它与重金属形态关系密切[20]。中国现行土壤重金属有效态的提取采用二乙三胺五乙酸(DTPA)浸提法[NY/T 890-2004]。从图 2可见:施加烟秆炭能显著降低土壤中铜、镉和铅的有效态质量分数,但不同施用量对3种重金属的钝化效果表现不同。以土壤施加40 g·kg-1的烟秆炭为分界点,施用20 g·kg-1烟秆炭就能显著降低土壤有效态铜、铅和镉质量分数,与对照相比分别下降了16.6%,18.7%和19.6%;增加炭的施用量至40 g·kg-1,土壤中有效态镉质量分数并没有持续降低,而铜和铅又显著降低了20.5%和13.2%;再提高烟秆炭的施用量至80 g·kg-1,并不能继续降低土壤DTPA可提取态铜和铅的质量分数,但是镉质量分数却显著降低了26.7%。

    图  2  不同处理下DTPA有效态土壤重金属
    Figure  2.  Concentrations of the DTPA extractable heavy metals in soils under different treatments

    土壤酶参与碳、氮、磷、硫等各类物质的循环,是土壤新陈代谢的重要物质。土壤酶活性是反映土壤肥力和质量的重要指标。从表 2可知:土壤中施加烟秆炭会显著降低脱氢酶的活性,而一定数量的烟秆炭能显著提高土壤脲酶和磷酸酶活性。

    表  2  不同烟秆炭使用量对土壤酶活性的影响
    Table  2.  Effects of tobacco stalk biochar on soil enzymes activities under different application rates
    处理 脲酶/(mg·g-1·h-1) 碱性磷酸酶/(mg·g-1·h-1) 脱氢酶/(mg·g-1·h-1 土壤酶综合活性值
    TB0 13.83 ± 0.41 c 0.67 ± 0.52 b 0.36 ± 0.08 a 1.49 c
    TB20 16.54 ± 1.75 b 0.96 ± 0.72 ab 0.25 ± 0.12 b 1.58 b
    TB40 16.93 ± 3.81 b 0.97 ± 0.74 ab 0.23 ± 0.04 b 1.56 b
    TB80 20.49 ± 3.06 a 1.50 ± 1.12 a 0.21 ± 0.03 b 1.86 a
    说明:英文小写字母表示同列不同处理间的显著性差异水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    具体讲,土壤施加20 g·kg-1烟秆炭,脲酶活性显著提高了19.6%,但将烟秆炭的施用量增加到40 g·kg-1,并没有继续提高土壤脲酶活性(表 2),只有将施用量增加到80 g·kg-1时,土壤脲酶活性才显著又提高了21.0%,与对照相比约显著提高了50%。土壤施加20 g·kg-1或40 g·kg-1的烟秆炭,并不能显著提高土壤磷酸酶活性,但将炭的施用量提高到80 g·kg-1时,土壤磷酸酶活性与对照相比显著提高了2倍多。但是施加80 g·kg-1烟秆炭,土壤磷酸酶活性与施加20和40 g·kg-1烟秆炭的土壤磷酸酶活性对比没有显著性差异。烟秆炭的施用会降低土壤脱氢酶的活性,不同比例烟秆炭施用对土壤脱氢酶活性也没有显著性差异。

    因此,不同烟秆炭施用量处理对土壤酶活性综合性指标的影响效果为TB80>TB40=TB20>TB0。综上所述,处理TB80对土壤酶活性影响最为显著。

    由于重金属本身的化学性质各异且在土壤中存在的形态也不同,土壤理化性质对重金属有效态质量分数影响各不相同。从表 3中可知:烟秆炭施用量与铜、铅有效态质量分数呈负相关关系,其中与镉呈显著负相关关系,说明烟秆炭施用量对降低有效态镉效果更好。土壤基本理化性质如pH值和有机质、水溶性碳、碱解氮和有效磷质量分数与土壤有效态重金属铜、镉、铅均呈负相关关系。土壤有机质质量分数与有效态镉呈极显著负相关关系,pH值、有效磷质量分数与有效态镉呈显著负相关性,表明土壤有机质对镉的钝化作用比土壤pH值、有效磷质量分数大。有效态铅与有效态铜呈显著正相关性,表明土壤中铜与铅具有伴生性关系[21]

    表  3  土壤重金属有效态与烟秆炭施用量及土壤理化性质的相关性分析
    Table  3.  Correlation between soil DTPA-extractable heavy metals and soil physical and chemical properties
    炭施用量 有效磷 水溶性碳 有机质 pH值 碱解氮
    -0.88 -0.86 -0.66 -0.92 -0.90 -0.74 0.91 0.99*
    -0.98* -0.96* -0.89 -0.99** -0.98* -0.81 1.00 0.95
    -0.90 -0.871 -0.71 -0.94 -0.92 -0.71 0.95 1.00
    说明: *表示P<0.05(双尾检测);**表示P<0.01(双尾检测)
    下载: 导出CSV 
    | 显示表格

    表 4可见:施用烟秆炭对烟草生长各农艺指标影响各异。土壤施加烟秆炭能显著增加烟草有效叶数和叶片的宽度,但不同比例炭施用量对烟草株高和叶片的长度并没有显著影响。不同的是,烟叶鲜质量随生物炭施用量的增加而显著增加。20,40和80 g·kg-1的烟秆炭施用量收获的烟叶鲜质量分别比对照显著提高了45.0%,47.1%和61.2%。

    表  4  不同烟秆炭施用量对烟草农艺指标的影响
    Table  4.  Effects of different tobacco biochar application rates on agronomic indexes of tobacco stems
    处理 茎高/cm 有效叶数/片 叶宽/cm 叶长/cm 鲜叶质量/g
    TB0 87.25 ± 3.20 a 15.00 ± 0.00 b 16.00 ± 1.41 b 36.25 ± 2.36 a 85.00 ± 10.98 c
    TB20 95.75 ± 5.56 a 16.25 ± 0.96 a 19.75 ± 2.22 a 41.00 ± 4.08 a 119.00 ± 11.05 b
    TB40 94.00 ± 8.37 a 16.25 ± 0.96 a 22.25 ± 3.77 a 40.00 ± 3.46 a 125.00 ± 10.07 ab
    TB80 95.75 ± 4.35 a 16.25 ± 0.50 a 20.38 ± 1.10 a 41.13 ± 1.93 a 137.00 ± 5.72 a
    说明:同列数字后面英文小写字母表示不同处理间差异性水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    烟叶是烟草的重要经济部位,叶片中重金属质量分数是衡量烟叶品质的重要指标。从图 3可见:土壤添加一定量的烟秆炭可以显著降低烟叶中重金属质量分数,其中铜和镉的变化趋势相似。在土壤施加20 g·kg-1的烟秆炭时,叶片中铜和镉的质量分数比对照(无烟秆炭添加)显著降低了13.6%和18.4%;烟秆炭施用量增加到40 g·kg-1时,与20 g·kg-1相比,烟叶中铜、镉的质量分数没有显著变化;但当烟秆炭的施用量继续增加到80 g·kg-1时,与烟秆炭低施用量(20和40 g·kg-1)相比,叶片中铜和镉质量分数反而显著上升了。与对照相比,随着土壤施加烟秆炭的量的增加,烟叶中铅质量分数有下降趋势,但各处理间并没有显著差异。

    图  3  不同处理对烟叶中重金属的影响
    Figure  3.  Effects of different treatments on concentration of heavy matals in leaves on tobacco

    本研究中,施用烟秆炭可显著提高土壤pH值。原因可能归结为烟秆炭在高温裂解过程中,其灰分含有大量碱性盐基物质,当施入土壤后,盐基离子与氢离子(H+)及铝离子(Al3+)进行离子交换,生成中性盐,从而提高土壤pH值[21]。从表 1可知:使用烟秆炭可有效提高土壤养分质量分数。本研究结果表明:添加烟秆炭对提高土壤有机质质量分数有显著效果,且随着炭施用量的增加有机质显著增加。原因可能是烟秆炭本身炭质量分数高、氢/碳比小、芳香性强,化学稳定性较高,不易被微生物分解,从而有利于有机质的积累。

    本研究结果显示:施入烟秆炭后,土壤有效磷、碱解氮和水溶性有机碳均比对照高。虽然土壤碱解氮质量分数显著提高,但是增幅不大。这可能是由于烟秆炭表面丰富的含氧官能团带有负电荷,吸附土壤铵(NH4+),从而减少了氮素的损失[22]。有机质是作物所需氮、磷等必要营养元素的主要来源,土壤有效磷质量分数增加可能与有机质质量分数有关。刘方等[23]以生物质炭土壤改良剂为试材,研究了生物质炭对连作蔬菜地土壤有效养分影响的实验中发现,生物质炭能明显提高土壤有效氮和有效磷的质量分数。这与本研究结果相似。

    重金属的生物有效性大小决定着其在土壤中毒性的强弱,因此,降低重金属的生物有效性对于改善土壤质量至关重要[19]。生物质炭具有较大的比表面积和多孔的结构特征,具有良好的吸附特性,施入土壤后可以降低重金属有效性[24]。本研究结果表明:重金属有效态质量分数随着烟秆炭施加量的增加而显著减少。且烟秆炭对不同重金属的修复效果也不尽相同,处理TB40对铜、镉、铅的固定效果顺序为铜(33.7%)>铅(29.5%)>镉(26.4%)。JIANG等[25]采用水稻秸秆制成的生物质炭修复模拟铜、铅、镉污染老成土,结果发现:生物质炭使土壤pH值和阳离子交换量增大,使酸可提取态重金属含量降低,而氧化结合态和有机结合态含量增加,且生物质炭对铜和铅的固化效果优于镉,与本研究结果相似。这可能是生物质炭对铜离子(Cu2+)吸附机制不同于镉离子(Cd2+)和铅离子(Pb2+)的,还有可能是生物质炭表面的孔隙结构有利于铜的固定,具体机制还需进一步深入研究。YANG等[26]在使用烟秆炭修复镉、锌污染土壤的实验中发现,与对照相比,烟秆炭可以显著降低重金属镉、锌的有效态含量,且其固定效果随着烟秆炭施用量的增加而增强。有研究表明,有效磷在中性或碱性条件下易与土壤溶液中的重金属离子形成磷酸盐沉淀[27]。其次,pH值是影响土壤重金属有效性和迁移性的重要因素。土壤pH值随着炭施用量的增加可增加土壤及生物质炭表面的可变电荷,增强阳离子吸附能力和交换作用,降低重金属的解吸,还可促进重金属生成碳酸盐和磷酸盐沉淀[28]进而降低重金属的移动性。此外,有机质对重金属也表现出强烈的吸附固定能力,原因是有机质的主要成分是腐殖质,腐殖质是土壤重要的螯合或络合剂,其中羧基(—COOH),羟基(—OH)和羰基(—C=O)等能与重金属发生络合或螯合作用,使重金属在土壤溶液中失去活性[29]

    土壤酶活性可以反映土壤中生物化学反应的活跃程度以及养分物质循环状况,是衡量土壤质量的重要指标[30]。土壤有机质、pH值、养分及微生物种类等因素均可影响土壤酶活性。

    脲酶是参与土壤氮素循环的重要的水解酶,主要功能是催化土壤中尿素的水解,其活性强度常被用来表征土壤氮素供应状况[30]。本研究中,土壤脲酶活性与烟秆炭施用量密切相关。随着烟秆炭施用量的增加,脲酶活性有升高的趋势,其中处理80 g·kg-1的脲酶活性最高(20.49 mg·g-1·h-1)。碱性磷酸酶参与土壤中磷的矿化和利用,主要功能是在碱性条件下将土壤中的有机磷水解成为磷酸盐,为植物和土壤中的生物提供养分[31]。本研究结果显示:施加烟秆炭可增强重金属污染土壤中碱性磷酸酶的活性。原因可能是烟秆炭施入土壤可以改善土壤理化环境,有利于土壤动物和微生物生长,从而加快了有机物质的分解,为土壤酶的产生提供了更多的底物[32];还有可能是由于烟秆炭的施用增加了土壤活性有机碳质量分数(表 1),从而为土壤微生物的生长提供了充足的碳源,促进了微生物繁殖,刺激了酶活性提高[33]

    生物质炭的吸附性使得生物质炭对土壤酶的作用比较复杂,一方面生物质炭对反应底物的吸附有助于酶促反应的进行而提高土壤酶活性,另一方面生物质炭对酶分子的吸附对酶促反应结合位点形成保护,而阻止酶促反应的进行[32]。脱氢酶活性能反映土壤有机质含量和微生物活性[34]。本研究结果显示:土壤脱氢酶活性随着烟秆炭的增加而显著减少。冯爱青等[35]研究表明:施用控释肥及添加生物炭可提高土壤脲酶活性,抑制土壤脱氢酶活性。原因可能是在强碱性条件下脱氢酶的蛋白构象遭到了破坏进而影响酶活性[36]。具体原因还需进一步深入研究。

    生物质炭施入重金属污染土壤中可以有效增加作物的产量。原因是生物质炭施入土壤后可以增加土壤有效养分[8],促进微生物活性并改善土壤团聚体结构[11],降低重金属的生物有效性[28],从而为作物提供良好的生长环境。本研究结果表明,烟秆炭的施用可以提高烟叶产量,与众多研究结果相似[37-38]

    植物中重金属含量由土壤中重金属有效态含量及植物生理性质决定。植物体蛋白质、有机酸、有机碱及植物络合素、酶可以与植物体内的重金属形成螯合物,降低重金属的生物毒性[39]。在本研究中,适量添加烟秆炭可以降低叶片中重金属质量分数。原因可能是添加烟秆炭后降低了土壤中有效态重金属的质量分数。高瑞丽等[24]研究发现,在铅和镉复合污染土壤中添加生物质炭可显著减少有效态重金属的含量,与本实验研究结果相似。而处理TB80叶片中铜和镉质量分数却比处理TB20和TB40有所增加。原因可能是TB80的叶片生物量高,植物体中的蛋白质、有机物及植物络合素与重金属形成络合素,减轻了重金属对细胞的毒害作用,从而使烟草可以继续吸附重金属。此外,植物蒸腾作用和势能高于处理TB20和TB40,导致重金属质量分数升高。另有研究指出,不同重金属在植物不同器官的迁移能力不同[40],这可能是铅在各处理间没有显著差异的原因,但具体的作用机制还需进一步研究。

    综上所述,烟秆炭的施用可有效提高重金属污染土壤中pH值、有机质、碱解氮和有效磷质量分数;还可以显著提高土壤脲酶和碱性磷酸酶的活性,降低脱氢酶的活性,其中添加80 g·kg-1的烟秆炭对土壤肥力的改善及酶活性指数的提升最为显著。另外,土壤施加烟秆炭能显著增加烟草有效叶数和叶片的宽度,烟叶鲜质量随烟秆炭施用量的增加而显著增加。

    烟秆炭的施用可以降低污染土壤中重金属的生物有效性,施加40 g·kg-1烟秆炭已使铜、铅的钝化效果达到最佳,但80 g·kg-1的烟秆炭使污染土壤中镉的有效性降至最低。但是,施用20 g·kg-1的烟秆炭即可显著降低烟叶中重金属铜和镉的质量分数。

    本研究证明,烟秆炭作为土壤改良剂对重金属污染土壤有着良好的修复效果,且可提高重金属污染土壤中烟草的产量,提高污染农用地的经济价值,同时为因烟秆废弃而造成的环境污染等问题提供了一个合理的解决方案,也为烟秆炭在重金属污染农田中的修复提供了实践理论参考价值。

  • 图  1  不同热胁迫处理对景宁木兰碳水化合物同化过程的影响

    Figure  1  Effects of different heat stress treatments on the carbohydrates assimilation process of M. sinostellata

    图  2  3个比较组差异基因的GO分类(A~C)和KEGG富集图(D~F)

    Figure  2  GO classification (A−C) and KEGG enrichment map (D−F) of DEGs in 3 comparison groups

    图  3  高温胁迫下淀粉-糖代谢途径及相关基因表达分析图

    Figure  3  Analysis of starch and sugar metabolic pathway and related gene expression under high temperature stress metabolism

    图  4  淀粉与蔗糖代谢途径6个DEGs在不同时间点的相对表达

    Figure  4  Relative expression of 6 DEGs in starch and sucrose metabolism pathways at different time points

    表  1  高温胁迫下景宁木兰碳水化合物质量分数与酶活性的相关系数

    Table  1.   Correlation coefficient between carbohydrate contents and enzyme activities of M. sinostellata under high temperature stress

    指标果糖葡萄糖蔗糖淀粉FBPase活性SPS活性
    果糖 1
    葡萄糖 0.945 1
    蔗糖 0.999** 0.937 1
    淀粉 0.697 0.853 0.670 1
    FBPase活性 0.261 0.030 0.298 −0.493 1
    SPS活性 0.707 0.738 0.680 0.891 −0.432 1
      说明:**表示差异极显著(P<0.01)
    下载: 导出CSV

    表  2  高温胁迫和非高温胁迫下景宁木兰的叶片测序结果与参考基因序列的对比率

    Table  2.   Ratio of leaf sequencing results to reference gene sequences of M. sinotellata under heat stress and non-heat stress

    处理总读数总碱基对总比对数高质量比对数丢失对比数单一比对数非单一读数总未比对读数
    ck-2470 547 818
    (100)
    7 054 781 800
    (100)
    52 601 172
    (74.56)
    33 257 776
    (47.14)
    19 343 396
    (27.42)
    38 336 892
    (54.34)
    14 264 280
    (20.22)
    17 946 644
    (25.44)
    ck-4872 966 866
    (100)
    7 296 686 600
    (100)
    55 252 592
    (75.72)
    35 172 380
    (48.20)
    20 080 212
    (27.52)
    39 734 140
    (54.46)
    15 518 452
    (21.27)
    17 714 272
    (24.28)
    H-2473 134 592
    (100)
    73 134 592 009
    (100)
    52 733 028
    (72.10)
    33 645 473
    (46.00)
    19 087 555
    (26.10)
    38 257 910
    (52.31)
    14 475 118
    (19.79)
    20 401 562
    (27.90)
    H-4873 140 464
    (100)
    7 314 046 400
    (100)
    54 165 208
    (74.06)
    34 404 377
    (47.04)
    19 760 831
    (27.02)
    40 219 158
    (54.99)
    13 946 050
    (19.07)
    18 975 254
    (25.94)
      说明:括号内为参考基因序列的对比率(%)
    下载: 导出CSV

    表  3  差异表达基因统计

    Table  3.   Statistic of differentially expressed genes

    总计 ck-24/H-24 ck-48/H-48 H-24/H-48
    上调 6611 5131 4056
    下调 4662 4958 4548
    下载: 导出CSV
  • [1] 郝力慧, 董彬, 朱绍华, 等. 牡丹响应高温胁迫的转录组分析及PsHSP基因表达[J]. 浙江农林大学学报, 2021, 38(4): 802 − 811.

    HAO Lihui, DONG Bin, ZHU Shaohua, et al. Transcriptome analysis and PsHSP gene expression of Paeonia suffruticosa in response to high temperature stress [J]. Journal of Zhejiang A&F University, 2021, 38(4): 802 − 811.
    [2] 许大全. 光合作用[M]. 北京: 科学出版社, 2013.

    XU Daquan. Photosynthesis[M]. Beijing: Science Press, 2013.
    [3] DAIE J. Cytosolic fructose-1, 6-bisphosphatase: a key enzyme inthe sucrose biosynthetic pathway [J]. Photosynthesis Research., 1993, 38(1): 5 − 14.
    [4] SERRTO A, de DIOSBARAJASLOPE Z J, CHUECA A, et al. Changing sugar partitioning in FBPase-manipulated plants [J]. Journal of Experimental Botany, 2009, 60(10): 2923 − 2931.
    [5] 王宁宁, 朱建新, 王淑芳, 等. 苦参碱对小麦旗叶中蔗糖磷酸合成酶活性的调节[J]. 南开大学学报(自然科学版), 2000, 33(1): 19 − 22.

    WANG Ningning, ZHU Jianxin, WANG Shufang, et al. The effect of matrine on sucrose biosynthesis in wheat flag leaves [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2000, 33(1): 19 − 22.
    [6] HUBER S C. Role of sucrose-phosphate synthase in partitioning of carbon in leaves [J]. Plant Physiology, 1983, 71(4): 818 − 821.
    [7] 李梓铭, 泮仪晨, 范小平, 等. 浙贝母淀粉、蔗糖代谢相关基因的克隆与表达分析[J]. 核农学报, 2021, 35(11): 2470 − 2481.

    LI Zhiming, PAN Yichen, FAN Xiaoping, et al. Cloning and expression analysis of genes related to starch and sucrose metabolism in Fritillaria thunbergii[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2470 − 2481.
    [8] BALLICORA M A, IGLESIAS A A, PREISS J. ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis [J]. Photosynthesis Research, 2004, 79: 1 − 24.
    [9] 王倩颖, 常鹏杰, 申亚梅, 等. 景宁木兰热胁迫下实时荧光定量 PCR 内参基因的筛选[J]. 浙江农林大学学报, 2019, 36(5): 935 − 942.

    WANG Qianying, CHANG Pengjie, SHEN Yamei, et al. Reference genes for quantitative PCR in Magnolia sinostellata with heat stress [J]. Journal of Zhejiang A&F University, 2019, 36(5): 935 − 942.
    [10] BUYSSE J, MERCKX R. An improved colorimetric method to quantify sugar content of plant tissue [J]. Journal of Experimental Botany, 1993, 44(10): 1627 − 1629.
    [11] CHEN L S, CHENG L. Carbon assimilation and carbohydrate metabolism of ‘Concord’ grape (Vitis labrusca L. ) leaves in response to nitrogen supply [J]. Journal of the American Society for Horticultural Science, 2003, 128(5): 754 − 760.
    [12] GROFC P, KNIGHTD P, MCNEILSD, et al. A modified assay method shows leaf sucrose-phosphate synthase activity is correlated with leaf sucrose content across a range of sugarcane varieties [J]. Functional Plant Biology, 1998, 25(4): 499 − 502.
    [13] LI B, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J/OL]. BMC Bioinformatics, 2011, 12(1): 323 [2022-01-17]. doi: 10.1186/1471-2105-12-323.
    [14] WANF W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta, 2003, 218(1): 1 − 14.
    [15] YE Jia, FANG Lin, ZHENG Hongkun, et al. WEGO: a web tool for plotting GO annotations [J]. Nucleic Acids Research, 2006, 34(2): 293 − 297.
    [16] 祝小云. 切花非洲菊苗期在高温胁迫中的生理生化响应和转录组分析[D]. 杭州: 浙江农林大学, 2016.

    ZHU Xiaoyun. Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress and Transcriptome Analysis[D]. Hangzhou: Zhejiang A&F University, 2016.
    [17] TAIZ L, ZEIGER E. 植物生理学[M]. 4版. 宋纯鹏, 王学路, 译. 北京: 科学出版社, 2015.

    TAIZ L, ZEIGER E. Plant Physiology[M]. 4th ed. SONG Chunpeng, WANG Xuelu, tran. Beijing: Science Press, 2015.
    [18] THORBGORNSEN T, ASP T, JORGENSEN K, et al. Starch biosynthesis from triose-phosphate in transgenic potato tubers expressing plastidic fructose-1, 6-bisphosphatase [J]. Planta, 2002, 214(4): 616 − 624.
    [19] STRANDÅ, ZRENNER R, TREVANION S, et al. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1, 6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana [J]. The Plant Journal, 2000, 23(6): 759 − 770.
    [20] HARBRON S, FOYER C, WALKER D. The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis [J]. Archives of Biochemistry and Biophysics, 1981, 212(1): 237 − 246.
    [21] 刘凌霄, 沈法富, 卢合全, 等. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J]. 分子植物育种, 2005, 3(2): 275 − 281.

    LIU Lingxiao, SHEN Fafu, LU Hequan, et al. Research advance on sucrose phosphate synthase in sucrose metabolism[J]. Molecular Plant Breeding, 3(2): 275 − 281.
    [22] 赵智中, 张上隆, 徐昌杰, 等. 蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J]. 园艺学报, 2001, 28(2): 112 − 118.

    ZHAO Zhizhong, ZHANG Shanglong, XU Changjie, et al. Roles of sucrose-metabolizing enzymes in accumulation of sugars in satsuma mandarin fruit [J]. Acta Horticulturae Sinica, 2001, 28(2): 112 − 118.
    [23] 李天, 刘奇华, 大杉, 等. 灌浆结实期高温对水稻籽粒蔗糖及降解酶活性的影响[J]. 中国水稻科学, 2006, 20(6): 626 − 630.

    LI Tian, LIU Qihua, RYU O, et al. Effect of high temperature on sucrose content and sucrose-cleaving enzymes activity in rice during grain filling stage [J]. Chinese Journal of Rice Science, 2006, 20(6): 626 − 630.
    [24] CHATTERTONN J, SILVIUSJ E. Photosynthate partitioning into starch in soybean leaves ‘Ⅰ’. Effects of photoperiod versus photosynthetic period duration [J]. Plant Physiology, 1979, 64(5): 749 − 753.
    [25] 郭金妹, 李天来, 姜晶, 等. 昼间亚高温下番茄叶中糖含量与蔗糖代谢相关酶的活性日变化[J]. 植物生理学通讯, 2007, 43(2): 231 − 234.

    GUO Jinmei, LI Tianlai, JIANG Jing, et al. Diurnal changes in sugar contents and enzymes activities involving sucrose metabolism in tomato (Lycopersicon esculentum Mill) leaves under sub-high temperature by day [J]. Plant Physiology Communications, 2007, 43(2): 231 − 234.
  • [1] 郭畅健, 余克非, 郑展望.  源自蚯蚓堆肥的吲哚乙酸高产菌株筛选、代谢途径 解析及发酵条件优化 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240426
    [2] 王佳琦, 王欣, 邓小梅, 吴蔼民.  基于代谢与转录水平的花榈木萜类合成候选基因分析 . 浙江农林大学学报, 2023, 40(5): 970-981. doi: 10.11833/j.issn.2095-0756.20220737
    [3] 孔德雷, 姜培坤.  “双碳”背景下种植业减排增汇的途径与政策建议 . 浙江农林大学学报, 2023, 40(6): 1357-1365. doi: 10.11833/j.issn.2095-0756.20220742
    [4] 周文玲, 魏洪玲, 李德文, 唐中华, 刘英, 解胜男, 田叙晨, 储启明.  植物生长调节剂对杜仲叶片主要次级代谢产物的影响 . 浙江农林大学学报, 2023, 40(5): 999-1007. doi: 10.11833/j.issn.2095-0756.20220705
    [5] 李兴鹏, 张杨, 王瑞珍, 董雷鸣.  碳氮培养条件下伊氏杀线虫真菌的代谢组研究 . 浙江农林大学学报, 2022, 39(6): 1313-1320. doi: 10.11833/j.issn.2095-0756.20210828
    [6] 王桂芳, 索金伟, 王哲, 成豪, 胡渊渊, 张可伟, 吴家胜.  香榧种实膨大过程中蔗糖代谢及其基因表达 . 浙江农林大学学报, 2022, 39(1): 1-12. doi: 10.11833/j.issn.2095-0756.20210593
    [7] 陈超, 金则新, 袁梦, 罗光宇, 李月灵, 单方权.  不同光照强度下濒危植物景宁木兰幼苗光合特性的季节变化 . 浙江农林大学学报, 2022, 39(5): 950-959. doi: 10.11833/j.issn.2095-0756.20210814
    [8] 王灵杰, 栗青丽, 高培军, 韦赛君, 吕嘉欣, 高岩, 张汝民.  毛竹茎秆快速生长期光合关键酶活性及基因表达分析 . 浙江农林大学学报, 2021, 38(1): 84-92. doi: 10.11833/j.issn.2095-0756.20200277
    [9] 郝力慧, 董彬, 朱绍华, 马进.  牡丹响应高温胁迫的转录组分析及PsHSP基因表达 . 浙江农林大学学报, 2021, 38(4): 802-811. doi: 10.11833/j.issn.2095-0756.20200529
    [10] 陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅.  景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式 . 浙江农林大学学报, 2021, 38(3): 445-454. doi: 10.11833/j.issn.2095-0756.20200488
    [11] 王小东, 汪俊宇, 周欢欢, 傅卢成, 王彬, 张汝民, 高岩.  模拟酸雨高温胁迫对桂花品种‘杭州黄’抗氧化酶活性和非结构性碳代谢的影响 . 浙江农林大学学报, 2019, 36(1): 54-61. doi: 10.11833/j.issn.2095-0756.2019.01.008
    [12] 帅敏敏, 张启香, 黄有军.  光周期途径成花关键基因CONSTANS的进化机制 . 浙江农林大学学报, 2019, 36(1): 7-13. doi: 10.11833/j.issn.2095-0756.2019.01.002
    [13] 顾帆, 季梦成, 顾翠花, 郑钢, 郑绍宇.  高温干旱胁迫对黄薇抗氧化防御系统的影响 . 浙江农林大学学报, 2019, 36(5): 894-901. doi: 10.11833/j.issn.2095-0756.2019.05.007
    [14] 王彬, 田正凤, 应彬彬, 马元丹, 左照江.  高温胁迫对樟树光合性能的影响 . 浙江农林大学学报, 2019, 36(1): 47-53. doi: 10.11833/j.issn.2095-0756.2019.01.007
    [15] 王倩颖, 常鹏杰, 申亚梅, 张超, 董彬, 时宝柱.  景宁木兰热胁迫下实时荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 935-942. doi: 10.11833/j.issn.2095-0756.2019.05.012
    [16] 李黎, 宋帅杰, 方小梅, 杨丽芝, 邵珊璐, 应叶青.  高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响 . 浙江农林大学学报, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [17] 刘盟盟, 贾丽, 张洪芹, 臧晓琳, 张汝民, 高岩.  机械损伤对冷蒿叶片次生代谢产物的影响 . 浙江农林大学学报, 2015, 32(6): 845-852. doi: 10.11833/j.issn.2095-0756.2015.06.004
    [18] 王月圆, 刘向敏, 周明兵, 汤定钦.  小佛肚竹生氰糖苷合成关键酶CYP79家族同源基因的克隆和鉴定 . 浙江农林大学学报, 2012, 29(4): 510-515. doi: 10.11833/j.issn.2095-0756.2012.04.005
    [19] 杨蓓芬.  云锦杜鹃次生代谢产物质量分数的测定 . 浙江农林大学学报, 2004, 21(4): 371-375.
    [20] 刘世芳, 许树洪, 吴家森, 童祝平, 柴世民.  猕猴桃早熟品种果实采后高温下的营养代谢和耐藏特点 . 浙江农林大学学报, 1996, 13(3): 359-363.
  • 期刊类型引用(3)

    1. 贾方方,滕世华,何琳,付安旗,陈淑萍,赵中原. 基于水分光谱指数的烟草叶片等效水厚度估测. 中国农学通报. 2024(01): 151-156 . 百度学术
    2. 王楠,陈春玲,相爽,金忠煜,白驹驰,于丰华. 基于叶片双层辐射传输机理的水稻叶绿素含量反演. 农业工程学报. 2024(17): 171-178 . 百度学术
    3. 莫佳佳,黄玉清,靳佳,闫妍. 芒果叶片水分含量估算光谱指数模型的建立. 西南农业学报. 2023(08): 1677-1685 . 百度学术

    其他类型引用(5)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220170

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/55

图(4) / 表(3)
计量
  • 文章访问数:  1628
  • HTML全文浏览量:  125
  • PDF下载量:  188
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-02-20
  • 修回日期:  2022-08-29
  • 录用日期:  2022-10-09
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-01-17

高温胁迫下景宁木兰淀粉与蔗糖代谢途径转录分析

doi: 10.11833/j.issn.2095-0756.20220170
    基金项目:  浙江省农业新品种选育重大科技专项(2021C2071-3)
    作者简介:

    郑晨璐(ORCID: 0000-0003-2415-3485 ),从事城市景观相关研究。E-mail: zcl9679@sjtu.edu.cn

    通信作者: 王云(ORCID: 0000-0003-2268-5541),教授,从事城市公园绿地研究。E-mail: wangyun03@sjtu.edu.cn
  • 中图分类号: Q75;S685

摘要:   目的  从分子生物学角度探究景宁木兰Magnolia sinostellata能否适应城市高温环境,为木兰属Magnolia植物城市推广应用和胁迫分子研究奠定基础。  方法  采取人工控制实验,对景宁木兰幼苗进行40 ℃极端高温处理,测定果糖、葡萄糖、蔗糖、淀粉碳同化产物,以及果糖磷酸酶、蔗糖磷酸合成酶,进行了转录组测序。  结果  随着胁迫时间的延长,景宁木兰叶片果糖、葡萄糖、蔗糖、淀粉质量分数发生一定的变化,但是差异不显著(P>0.05),果糖合成酶活性呈现显著下降趋势(P<0.05),蔗糖合成酶变化不显著(P>0.05)。转录组数据进一步揭示了在高温胁迫下,相比于24 h,48 h时景宁木兰叶片调节淀粉合成的SS(Unigene 40295)、Glc-1-pa(Unigene 38453)、GBE(CL4668.contig3)基因的表达量增加,随着高温胁迫的加深,调节蔗糖合成的SPS基因呈现下降趋势,并通过荧光定量验证了以上结果。  结论  景宁木兰对极端高温(40 ℃)有一定的短时耐受性,为应对高温胁迫,不但碳同化产物发生显著变化,调控淀粉与蔗糖代谢途径的关键基因表达也发生了变化,进一步证明了高温会导致景宁木兰叶片内蔗糖和淀粉的相互转化。图4表3参25

English Abstract

张建云, 吴胜春, 王敏艳, 等. 烟秆炭修复重金属污染土壤的效应及对烟草生长的影响[J]. 浙江农林大学学报, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
引用本文: 郑晨璐, 王倩颖, 陆丹迎, 等. 高温胁迫下景宁木兰淀粉与蔗糖代谢途径转录分析[J]. 浙江农林大学学报, 2023, 40(1): 55-63. DOI: 10.11833/j.issn.2095-0756.20220170
ZHANG Jianyun, WU Shengchun, WANG Minyan, et al. Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production[J]. Journal of Zhejiang A&F University, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
Citation: ZHENG Chenlu, WANG Qianying, LU Danying, et al. Transcriptional analysis of starch and sucrose metabolism pathways in Magnolia sinostellata under heat stress[J]. Journal of Zhejiang A&F University, 2023, 40(1): 55-63. DOI: 10.11833/j.issn.2095-0756.20220170
  • 高温胁迫不仅导致植物表型的变化,而且会引起植物体内细胞稳态失衡,生长发育受到抑制,严重影响观赏植物的品质[1]。环境温度的变化对植物光合作用的多种生理生化过程有直接的影响,包括光合碳固定和还原、蔗糖合成、光合产物的运输与分配等[2]。碳同化是光合作用中植物在同化力形成之后的第3个阶段,此阶段中,植物叶绿体基质中的Rubisco酶利用ATP和NADPH同化二氧化碳(CO2)生成淀粉、蔗糖、葡萄糖、果糖等物质。在高等植物光合作用中,果糖-1,6-二磷酸酶(Fructose-1, 6-diphosphate synthase, FBPase)在卡尔文循环和细胞质中的蔗糖生物合成途径中都起着关键作用,其中存在至少2种酶:叶绿体型FBPase和胞质型FBPase。叶绿体型FBPase主要参与还原磷酸戊糖途径,同时参与叶绿体中淀粉的合成;胞质型FBPase主要参与糖异生途径和蔗糖的合成,在蔗糖的合成中起着重要的调节作用[3-4]。有研究指出蔗糖磷酸合酶(sucrose diphosphate synthase, SPS)与淀粉积累呈现负相关关系,而与蔗糖形成呈正比关系[5-6],并与蔗糖合成酶(sucrose synthase, SS)一起成为蔗糖调节的关键酶[7],为淀粉合成提供底物及能量。淀粉是植物体中碳水化合物的主要储存形式,叶片中淀粉合成是一个动态的过程[8]。在淀粉合成通路中,腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glocose pyrophosphorylase, AGP)作为限速酶,参与第一步反应,颗粒结合淀粉合酶(granule-bound starch synthase, GBSS)参与直链淀粉合成,可溶性淀粉合成酶(soluble starch synthase, SSS)和淀粉分支酶(starch branching enzyme, SBE)协作合成支链淀粉[7]。这些碳同化产物既是光合作用的产物,同时还是植物呼吸作用的底物,为植物的生长发育提供碳骨架的同时,还可增强植物的抗逆性。为进一步了解植物对高温的响应,分子生物学与转录组学等应用与解析调控植物耐热的分子基础,培育了相关观赏植物品种[1]

    景宁木兰Magnolia sinostellata是木兰科Magnoliaceae木兰属Magnolia灌木,早春开花,花色浅粉色到粉红色,具有较高的观赏价值,具有开发应用价值[9]。全球变暖带来的极端高温可能对景宁木兰的生长发育带来潜在的威胁。目前已挖掘了景宁木兰热胁迫下实时荧光定量PCR 内参基因,但还未深入研究。因此,本研究以景宁木兰幼苗为对象,采取高温胁迫处理,研究其糖代谢途径变化机制,从而探究景宁木兰对高温的响应情况,同时为木兰属植物的城市应用奠定基础。

    • 景宁木兰植株均来自浙江省景宁县草鱼塘林场苗圃(海拔1 100 m)。选择1年生、生长一致的景宁幼苗栽植于装有土壤与珍珠岩按质量比为1∶1混合的容器中,常规管理。所有样品均放置于光照培养箱中[光照20 μmol·m−2·s−1,温度(25±1) ℃,相对湿度(70±10)%,光照黑暗各12 h]。当植株生长到10 cm左右高度时,选取20株健康、长势均匀的幼苗转移到温度设定为40 ℃(H)的光照培养箱中,以25 ℃为对照(ck)。处理0、3、6、9、 12、24和48 h时采集景宁木兰第2~3叶(成熟叶)为样本,迅速保存在液氮中,用于后续的测定,其中选取ck-24、ck-48、H-24、H-48用于转录组测定,每个样本3次生物学重复。

    • 蔗糖、淀粉、葡萄糖和果糖质量分数的测定采用改进的苯酚-硫酸法[10],果糖1,6-二磷酸酶(FBPase)的测定方法采用CHEN等[11]的方法,蔗糖磷酸合酶(SPS)根据GROF等[12]方法测定。采用SPSS 19.0进行单因素方差分析,采用LSD法进行显著性差异分析。

    • 使用Trizol试剂盒(天根,北京)提取景宁木兰叶片总RNA。质量检测合格后,经深圳华大基因科技服务有限公司使用DNaseI消化DNA、富集mRNA并反转录合成cDNA和PCR扩增,制备cDNA文库。用Agilent 2100 Bioanalyzer和ABI StepOnePlusReal-Time PCR System完成文库质量和产量检测后进行转录组测序。对原始数据(raw reads)进行质控(QC)获得滤后的数据(clean reads),再进行基因定量分析以及基于基因表达水平的各项分析(主成分、相关性、条件特异表达、差异基因筛选等),并对筛选出的样品间差异表达基因进行GO功能显著性富集分析、pathway显著性富集分析和聚类以及蛋白互作网络和转录因子等深入挖掘分析。

    • 用RSEM工具[1314]进行基因表达定量,运用FPKM法消除基因长度和测序量差异对计算基因表达的影响,计算得到的基因表达量可直接用于比较不同样品间的基因差异表达。将候选响应基因利用RefSeq non-redundant proteins(NR)数据库、Swiss-Prot数据库、Gene Ontology(GO)数据库和Kyoto Encyclopedia of Genes and Genomes(KEGG)数据库进行Blast比对,获得候选响应基因的注释信息。用WEGO软件[15]对差异基因做GO功能分类统计,利用Omicshare在线工具库中的动态KEGG富集分析程序进行候选响应基因的注释及功能预测。

    • 将反转录产物cDNA稀释10倍,使用SYRB Premix Ex Tap Ⅱ (TAKARA:Code No.RR820A)实时定量PCR试剂盒,使用Light Cycler 480 Ⅱ(Roche)实时定量PCR仪进行定量分析。反应体系为SYRB Premix Ex Tap Ⅱ10 μL,cDNA模板2 μL,上下游引物各0.8 μL(10 μmol·L−1),ddH2O 6.4 μL,共20 μL体系。每个样品3次重复,扩增反应程序为:95 ℃预变性30 s,95 ℃变性5 s,60 ℃预变性30 s,共40个循环。然后95 ℃持续5 s,60 ℃持续1 min,95 ℃持续15 s作为溶解曲线分析程序,进行溶解曲线分析。最后根${{\text{2}}^{\text{-}\Delta \Delta {{C}_{t}}}} $法计算目的基因的相对表达量。

    • 与对照相比,高温胁迫下24和48 h时景宁木兰的果糖、葡萄糖和蔗糖质量分数增加(图1A~C),除高温胁迫24 h的葡萄糖质量分数与对照无显著差异外(图1B),其他均呈显著差异(P<0.05)。与对照相比,高温胁迫24 h时的淀粉质量分数显著降低(P<0.05),而胁迫48 h时的淀粉质量分数显著升高(P<0.05)(图1D)。FBPase和SPS是蔗糖合成的关键酶,与对照相比,FBPase活性在胁迫24 h时先显著升高(P<0.05),在48 h时下降,但差异不显著(P>0.05)(图1E)。在高温胁迫下,SPS活性相比对照在24 h下降,48 h时有所上升,但并无显著差异(P>0.05)(图1F)。相关性分析结果表明(表1):蔗糖与果糖变化成极显著正相关(P<0.01),淀粉、SPS活性与FBPase活性成负相关。

      图  1  不同热胁迫处理对景宁木兰碳水化合物同化过程的影响

      Figure 1.  Effects of different heat stress treatments on the carbohydrates assimilation process of M. sinostellata

      表 1  高温胁迫下景宁木兰碳水化合物质量分数与酶活性的相关系数

      Table 1.  Correlation coefficient between carbohydrate contents and enzyme activities of M. sinostellata under high temperature stress

      指标果糖葡萄糖蔗糖淀粉FBPase活性SPS活性
      果糖 1
      葡萄糖 0.945 1
      蔗糖 0.999** 0.937 1
      淀粉 0.697 0.853 0.670 1
      FBPase活性 0.261 0.030 0.298 −0.493 1
      SPS活性 0.707 0.738 0.680 0.891 −0.432 1
        说明:**表示差异极显著(P<0.01)
    • 转录组数据(表2)显示:测序碱基对总数为7 054万~ 7 313万条 。每个原始读取从一端测序,长度为50 bp。去除低质量序列后(即含有<1%的不确定碱基),各测序样本共获得70 547 818(ck-24)、72 966 866(ck-48)、73 134 592(H-24)和73 140 464(H-48) 条。每个库中clean reads的比例平均为99.53%。来自对照和高温样本的转录组都有至少7 000万个clean reads,这表明景宁木兰转录组数据质量较高,能够开展后续的生物信息学分析。数据筛选后得到的17 884个不同长度的差异unigenes[错误发生率(FDR)≤0.001, log2R≥1]。H-24与ck-24相比,4 662个基因的表达下调,6 611个基因的表达上调;H-48与ck-48相比,4 658个基因的表达下调,5 131个基因的表达上调;H-48与H-24相比,4 548个基因的表达下调,4 056个基因的表达上调(表3)。

      表 2  高温胁迫和非高温胁迫下景宁木兰的叶片测序结果与参考基因序列的对比率

      Table 2.  Ratio of leaf sequencing results to reference gene sequences of M. sinotellata under heat stress and non-heat stress

      处理总读数总碱基对总比对数高质量比对数丢失对比数单一比对数非单一读数总未比对读数
      ck-2470 547 818
      (100)
      7 054 781 800
      (100)
      52 601 172
      (74.56)
      33 257 776
      (47.14)
      19 343 396
      (27.42)
      38 336 892
      (54.34)
      14 264 280
      (20.22)
      17 946 644
      (25.44)
      ck-4872 966 866
      (100)
      7 296 686 600
      (100)
      55 252 592
      (75.72)
      35 172 380
      (48.20)
      20 080 212
      (27.52)
      39 734 140
      (54.46)
      15 518 452
      (21.27)
      17 714 272
      (24.28)
      H-2473 134 592
      (100)
      73 134 592 009
      (100)
      52 733 028
      (72.10)
      33 645 473
      (46.00)
      19 087 555
      (26.10)
      38 257 910
      (52.31)
      14 475 118
      (19.79)
      20 401 562
      (27.90)
      H-4873 140 464
      (100)
      7 314 046 400
      (100)
      54 165 208
      (74.06)
      34 404 377
      (47.04)
      19 760 831
      (27.02)
      40 219 158
      (54.99)
      13 946 050
      (19.07)
      18 975 254
      (25.94)
        说明:括号内为参考基因序列的对比率(%)

      表 3  差异表达基因统计

      Table 3.  Statistic of differentially expressed genes

      总计 ck-24/H-24 ck-48/H-48 H-24/H-48
      上调 6611 5131 4056
      下调 4662 4958 4548
    • GO数据库定义了3类系统来描述基因产物的具体功能:生物过程(biological process)、细胞组分(cellar component)和分子功能(molecular function),这些基因又被具体分为56个小类,从而发挥生物功能。将组装的景宁木兰unigene与GO数据库比对分析,图2A~C显示:景宁木兰序列中有81 573条unigene可以进行功能分类。其中33.03%的基因显著富集于生物过程、34.31%的富集于细胞组分,32.66%的分子功能。生物学过程中的主要途径是细胞途径和代谢过程相关的转录调控,细胞组分中最多的是膜的构成,分子功能中最多的是结合和催化活性。

      图  2  3个比较组差异基因的GO分类(A~C)和KEGG富集图(D~F)

      Figure 2.  GO classification (A−C) and KEGG enrichment map (D−F) of DEGs in 3 comparison groups

    • 将组装的景宁木兰unigene与KEGG数据库比对及KEGG富集分析(图2D~E),结果发现:在景宁木兰高温胁迫的3个比较组中,ck-24与H-24、H-24与H-48代谢相关通路高度富集;ck-24与H-24、ck-48与H-48淀粉和蔗糖代谢通路富集排名第3位,H-24与H-48排名第4位。这些结果表明:淀粉和蔗糖代谢途径在景宁木兰高温胁迫响应机制中具有重要作用。

    • 在淀粉代谢通路中共有105个差异基因。在该通路中,8个DEGs调控ADP-glucose以促进淀粉酶合成,5个DEGs调控淀粉酶以生产淀粉;淀粉也可以通过同样的途径调控ADP-glucose产生α-D-Glucose-1P,然后再形成UDP-glucose,UDP-glucose再在蔗糖合成酶基因和蔗糖6磷酸合成酶基因的作用下形成蔗糖;蔗糖代谢通路中有17个差异基因,其中有6个属于蔗糖合酶基因,5个属于蔗糖磷酸合成酶(图3A~D)。选取6个淀粉和蔗糖代谢途径高表达基因,即GP(CL3087.contig2)、SS(Unigene40295)、Glc-1-pa(Unigene38453)、GBE(CL4668.contig3)、SUS(Unigene42760)、SPS(CL651.contig6),通过qPCR定量分析,结果显示(图4):与对照相比,高温胁迫48 h处理下淀粉和糖代谢途径上的GP(CL3087.contig2)、SS(Unigene40295)、Glc-1-pa(Unigene38453)、GBE(CL4668.contig3)基因表达显著上调(P<0.05),SUS(Unigene42760)、SPS(CL651.contig6)基因表达显著下降(P<0.05)。由此说明,在高温胁迫下,淀粉合成酶基因及蔗糖6磷酸合成酶基因表达均呈现上调的趋势,以促进蔗糖产生。

      图  3  高温胁迫下淀粉-糖代谢途径及相关基因表达分析图

      Figure 3.  Analysis of starch and sugar metabolic pathway and related gene expression under high temperature stress metabolism

      图  4  淀粉与蔗糖代谢途径6个DEGs在不同时间点的相对表达

      Figure 4.  Relative expression of 6 DEGs in starch and sucrose metabolism pathways at different time points

    • 极端高温天气势必影响植物的生长发育,最终导致部分植物处于濒危状态。本研究转录组数据显示:极端高温处理景宁木兰之后,其大部分基因可注释到生物进程,代谢功能途径中基因分布最多,这与非洲菊Gerbera jamesonii[16]牡丹Paeonia suffruticosa[1]等相似。景宁木兰的KEGG数据库显示:在高温处理后,大部分基因高度富集于代谢通路,同时淀粉与糖代谢通路中占据重要的比例。由此推断,淀粉和蔗糖代谢对景宁木兰响应高温胁迫机制具有重要的作用。

      植物叶片光合作用同化吸收的碳用于叶绿体淀粉的形成,或者运输到细胞质中合成蔗糖,蔗糖随后被运输到植物的非光合位置。不同植物叶片淀粉和蔗糖积累水平差异很大,环境因子(如温度、光照等)也影响着植物叶片所固定碳在蔗糖和淀粉之间的分配[17]。本研究中,随着高温胁迫的加深,24和48 h处理下景宁木兰叶片蔗糖和淀粉质量分数差异不显著,但是均显著高于对照。本研究中FBPase与淀粉显著正相关,与蔗糖负相关。这与马铃薯Solanum tuberosum[18]、拟南芥Arabidopsis thaliana[19]的研究结果一致。FBPase在24 h达到最高值之后,说明景宁木兰对高温具有一定的适应性,然而48 h时与对照相比差异不显著,说明高温对景宁木兰FBPase影响不大。

      植物的生长发育所需要的光合产物大部分以蔗糖的形式供应和运输,其中,SPS是蔗糖合成途径的一个重要控制点,同时也是蔗糖进入各种代谢途径所必需的关键酶之一,它的活性可反映蔗糖生物合成途径的能力[20-21]。一些研究指出SPS与淀粉积累呈现负相关,而与蔗糖形成呈正相关[5-6]。本研究结果与之相似。在温州蜜柑Citurs unshiu ‘Miyagawawase’[22]、灌浆期水稻Oryza sativa ‘Koshihikari’和O. sativa ‘Sasanishiki’[23]的研究中也发现了同样的问题,可能是因为光合细胞中同化的碳水化合物在蔗糖和淀粉之间的分配受SPS的调节,但SPS不起主要作用,蔗糖和淀粉的合成还受其他因子的影响[24-25]

      淀粉和蔗糖代谢途径和多种酶密切相关,植物一般利用糖苷键将蔗糖[β-D-frucose-(2→1)-α-D-glucose]和海藻糖[α-D-glucose-(2→1)-α-D-glucose]中的己糖残基连接在一起,蔗糖和海藻糖的形成掩盖了葡萄糖和果糖的活性基团,两者反应活性低于葡萄糖[16]。本研究果糖、葡萄糖质量分数随着胁迫的加深有所下降,从而促进了淀粉质量分数的增加,虽然差异不显著,但是调节淀粉合成的SS(Unigene40295)、Glc-1-pa(Unigene38453)、GBE(CL4668.contig3)基因的表达量增加,进一步证明了高温可能促进胞质蔗糖质量分数的变化,通过ADP-glucose催化促进淀粉的合成[16]。虽然ADP-glucose是否是催化淀粉合成的关键酶还存在争议[16],但是本研究定量结果显示:SPS(CL651.contig6)基因随着高温胁迫的加深,呈现下降趋势,这进一步说明了淀粉积累与蔗糖积累之间存在相关性,但是具体机制还需要深入研究。

      综上所述,景宁木兰在高温胁迫下,积累糖和淀粉以提升抵抗胁迫能力,且淀粉与蔗糖途径的关键基因表达也反映了景宁木兰响应高温胁迫的机制。具体基因的功能验证还需进一步研究。

参考文献 (25)

目录

/

返回文章
返回