-
香椿属Toona是楝科Meliaceae中一个较为重要的属,该属树种材质优良、纹理直、具光泽,为上等家具及室内装饰用材,被称为“中国桃花心木”[1]。其中香椿T. sinensis是中国特有的珍贵速生用材树种,落叶乔木,树冠庞大,树干通直,生长迅速,一般10 a左右即可成材,其木材细密富有弹性,纹理通直美观、色泽红润,耐腐。同时,香椿嫩叶具有浓郁的香气,在中国具有悠久的栽培历史[2],早在明代徐光启就将其作为救饥植物载入《农政全书》,是国人喜食的山珍野菜。香椿经济价值较高,具有极大的开发利用潜力。
目前,对香椿的研究集中在分类[3−4]、栽培繁育[5−6]、营养价值应用[7−8]、药用[9]和遗传改良[10−14]等方面。香椿作为珍贵优质阔叶用材树种,育种研究起步较晚。20世纪80年代,孙鸿有等[10]开展了香椿种源试验,综合选育出浙江丽水、湖南邵阳等6个优良种源。随后河南[11]、江苏[12]、湖北[13]和陕西[14]等省陆续开展了香椿遗传改良的研究,在推动香椿人工林发展中起到了重要作用。香椿分布区较广,蕴藏着丰富的遗传变异。前期通过全面收集香椿分布区24个种源种子,开展了苗期测定,筛选出苗期表现比较优异的7个种源[15]。
种源和家系选择是林木遗传改良的重要手段之一。国内外开展的主要造林树种种源试验,证明种源选择能取得良好的改良效果。国内前期虽营建了多个香椿种源试验林,但香椿育种周期长,多数试验林没有得到有效保存和维护,未对其种源试验结果进行长期跟踪评价。鉴于此,本研究利用浙江省开化县林场保存完好的10年生香椿种源试验林,研究其生长和形质性状的地理种源变异,通过聚类分析开展种源区划分,并筛选速生优质的香椿种源,为香椿的种质资源选择评价提供理论基础,也为今后的香椿良种选育工作提供参考。
-
研究区位于浙江省开化县林场国家杉木良种基地。该区属中亚热带季风气候区,四季分明,冬夏长,春秋短。年平均气温为16.6 ℃,无霜期为254.0 d,年平均降水量为1 830.8 mm。土壤以红壤为主,质地中壤至轻黏,酸性。造林地前期为杉木Cunninghamia lanceolata林,于2011年被砍伐。2012年春季营建香椿种源试验林。试验采用随机区组设计,10株单列小区,3次重复,即每个种源30株,株行距为2.0 m×2.5 m。
-
研究材料包括香椿种源24个(表1)。2021年12月初对试验林进行全林调查,测定树高、胸径、枝下高、冠幅等性状,并计算获得树干圆满度(用树干下部3 m高处直径与胸径之比)和树冠圆满度(冠幅与其树冠长度之比) [16−17]。
表 1 香椿24个种源的地理位置
Table 1. Locations of the twenty-four provenances of T. sinensis
种源编号 种源 经度(E) 纬度(N) 海拔/m 种源编号 种源 经度(E) 纬度(N) 海拔/m 1 三门峡 111.047° 34.054° 779 15 峨眉山 103.480° 29.590° 877 2 郴州 113.032° 25.793° 402 20 凭祥 106.755° 22.105° 348 3 湘西 109.601° 27.948° 389 21 晴隆 105.218° 25.834° 1102 4 武汉 114.298° 30.584° 26 23 潍坊 118.544° 36.512° 492 5 新宁 110.851° 26.429° 859 24 聊城 117.635° 26.265° 361 8 邯郸 114.490° 36.612° 91 25 杭州 119.960° 30.048° 100 9 九江 115.992° 29.712° 17 26 阜阳 115.621° 33.160° 34 10 南京 118.767° 32.041° 14 27 运城 112.549° 37.857° 885 11 新乡 113.805° 35.190° 76 34 恩施 109.479° 30.295° 718 12 南阳 111.481° 33.297° 376 36 乳源 113.280° 23.125° 120 13 伏牛山 119.419° 32.042° 33 38 元谋 101.877° 25.704° 1 652 14 天水 105.724° 34.578° 1 355 42 安康 109.760° 32.804° 526 -
从瑞士联邦森林、雪和景观研究所网站(Chelsa Climate, http://chelsa-climate. org/ downloads/)下载高分辨率气象因子。土壤数据采自 HWSD-V 1.2 数据。
-
材积计算公式如下:
$$ V= 0.000\; 052\; 76D ^{1.882 \;161}H^{ 1.009\; 317}。 $$ (1) 式(1)中:V为单株材积(m3) ;D为胸径(cm);H为树高(m)。统计分析以小区平均数为单位,按常规统计方法进行。计算采用DPS软件在计算机上进行,对测定的性状值以及数据转换值进行单因素方差分析。线性模型为:
$$ X_{i j}=\mu+\alpha_i+\varepsilon_{i j} 。 $$ (2) 式(2)中:Xij为第i个种源某性状的第j个观察值,µ为总体平均值,αi为种源的某性状效应, εij为随机误差。对各性状的广义遗传力进行估算,公式为:
$$ h^{ 2} = 1-1/F。 $$ (3) 式(3)中:h 2为表型遗传力,F为方差分析中的F值。优良种源评价及选择参考李广友等[18]和胡兴峰等[19]的综合选择指数方程,公式为:
$$ {I}_{i}=\sum _{i=1}^{n}{w}_{i}{h}^{2}{P}_{n} 。 $$ (4) 式(4):Ii为种源选择指数值,wi为某性状的经济权重,h 2为性状遗传力,Pn为某种源第n个性状的表型值。遗传增益计算公式为:
$$ \Delta G_i=\frac{s h^2}{\overline X} \times 100 \%。 $$ (5) 式(5)中:ΔGi为第i个种源的遗传增益;s为选择差;h 2为性状遗传力;$ \overline{X} $为种源表型均值。
-
主成分、相关分析等采用R语言corrplot、FactoMineR、factoextra等程序包进行。
-
香椿种源生长和形质性状方差分析结果(表2)显示:树高、胸径、枝下高、冠幅和材积在重复间差异显著(P<0.05)或极显著(P<0.01);不同种源间树高、胸径、树干圆满度和材积差异极显著(P<0.01),这说明其地理种源间的遗传变异丰富,优良种源选择的潜力很大。10年生时种源树高平均为8.86 m,变幅为6.10~10.90 m;胸径均值为8.07 cm,变幅为5.57~10.61 cm,胸径生长量最大种源是最小种源的1.9倍。种源单株材积均值为0.026 m3,变幅为0.008~0.042 m3,其变异幅度较大,材积生长量最大种源是最小种源的5.25倍。香椿不同种源间树干圆满度差异极显著(P<0.01),而树冠圆满度在种源间差异不显著。树高、胸径、冠幅、枝下高、树干圆满度、树冠圆满度和材积等7个性状变异系数分别为9.5%、13.1%、12.3%、15.7%、2.9%、12.3%和35.9%,从变异系数也可看出:材积的变异最大,其次为枝下高和胸径。以上7个性状的广义遗传力分别为0.65、0.69、0.33、0.42、0.76、0.42和0.57,说明香椿树高、胸径、树干圆满度和材积等性状在种源水平上受较强的遗传控制。
表 2 香椿种源生长和形质性状的方差分析及主要遗传参数估计
Table 2. Variance analysis and main genetic parameters of growth and stem-form of T. sinensis
性状 变异来源 遗传参数 重复 种源 误差 均值 变幅 变异系数/% 树高 46.285 7** 60.273 2** 42.210 8.86 6.10~10.90 9.5 胸径 72.938 1** 93.919 4** 57.900 8.07 5.57~10.61 13.1 冠幅 1.389 9* 5.865 2 7.851 2.97 2.19~3.51 12.3 枝下高 10.944 8** 20.060 2 23.200 3.89 2.51~4.66 15.7 树干圆满度 0.036 3** 0.561 2** 0.028 0.80 0.56~0.93 2.9 树冠圆满度 0.080 4 0.540 6 0.626 0.62 0.46~0.79 12.3 材积 0.004 7** 0.005 1** 0.004 0.026 0.008~0.042 35.9 说明:*. P<0.05;**. P<0.01。遗传参数中的树高、胸径、冠幅、枝下高和材积的单位分别是m、cm、m、m和m3。 -
从香椿不同种源树高、胸径、冠幅、枝下高、树干圆满度、树冠圆满度和材积等生长和形质性状与产地生态因子之间的相关关系(图1A)可知:香椿种源胸径与年平均气温、最冷月平均日最低气温和最干季日平均气温显著(P<0.05)正相关,与纬度、温度季节性、气温年变幅显著(P<0.05)负相关,说明香椿种源以上这些生长、形质性状呈现典型的纬度变异模式,但冠幅圆满度与纬度相关性不显著,表明其为随机的地理变异模式。香椿种源枝下高与年降水量、最干旱月降水量(bio14)、最干季月平均降水量显著(P<0.05)正相关,而与平均日气温范围和降水季节性极显著(P<0.01)负相关。香椿种源材积与最冷月平均日最低气温(bio6)显著(P<0.05)正相关。香椿种源生长、形质性状与产地土壤因子相关不显著,说明产地土壤对香椿种源生长影响较小(图1B)。
-
香椿种源生长和形质性状表型相关和遗传相关分析发现(表3):10年生香椿种源胸径与冠幅、枝下高和材积之间的遗传相关和表型相关均呈极显著(P<0.01)或显著(P<0.05)正相关,说明在进行香椿种源胸径改良的同时,可以改良其冠幅、枝下高和材积等生长性状。
表 3 香椿种源生长、形质性状表型相关和遗传相关
Table 3. Phenotypic and genetic correlation between growth and stem-form qualities traits of T. sinensis
性状 树高 胸径 冠幅 枝下高 材积 树干圆满度 树冠圆满度 树高 1 0.569 8 0.549 7 0.990 7** 0.755 9 0.214 8 −0.394 5 胸径 0.614 8* 1 0.965 8** 0.988 8** 0.990 9** −0.276 5 0.605 9 冠幅 0.491 7 0.750 4** 1 0.976 9** 0.970 4** −0.370 5 0.752 8 枝下高 0.752 5** 0.651 2* 0.576 0 1 0.990 8** −0.198 1 0.025 6 材积 0.772 0** 0.951 9** 0.695 9* 0.712 7** 1 −0.091 7 0.367 3 树干圆满度 0.187 6 −0.185 9 −0.181 5 −0.080 3 −0.017 1 1 −0.762 1 树冠圆满度 −0.360 3 0.232 5 0.489 0 0.223 1 0.049 5 −0.460 5 1 说明:对角线下为表型相关系数,对角线上为遗传相关系数;*. P<0.05;**. P<0.01。 -
香椿生长和形质性状主成分分析结果(表4)显示:主成分1特征值为3.822 8,贡献率为54.611%,其中树高、胸径、冠幅、枝下高和材积的特征值的绝对值相对较高,分别为0.390 8、0.474 7、0.428 0、0.427 1和0.482 2。主成分2的特征值为1.791 5,贡献率为25.593%,其中树冠圆满度和树干圆满度的特征值绝对值相对较高,分别为0.659 1和0.555 8。因此,主成分1可代表生长性状,主成分2可代表形质性状,能够综合反映香椿种源生长和形质性状的大部分信息。以特征值大于1为标准提取的前2个主成分,累计贡献率达80.204%,说明这2个主成分可以包含所有性状的80.204%信息。由表4中各生长和形质性状的载荷量可以得到主成分的线性方程,用 x1、x2、x3、x4、x5、x6、x7 分别表示树高、胸径、冠幅、枝下高、材积、树干圆满度和树冠圆满度,用 y1、y2分别表示主成分1和主成分2,得到如下线性方程:y1=0.390 8x1+0.474 7x2+0.428 0x3+0.427 1x4+0.482 2x5−0.078 3 x6+0.133 0x7;y2=0.433 5x1−0.059 2x2−0.219 3x3+0.073 7 x4+0.108 3x5+0.555 8x6−0.659 1x7。
表 4 香椿种源各性状主成分分析
Table 4. Principal component analysis of different traits for provenances of T. sinensis
主成分 树高 胸径 冠幅 枝下高 材积 树干圆满度 树冠圆满度 特征值 贡献率/% 累积贡献率/% 主成分1 0.390 8 0.474 7 0.428 0 0.427 1 0.482 2 −0.078 3 0.133 0 3.822 8 54.611 54.611 主成分2 0.433 5 −0.059 2 −0.219 3 0.073 7 0.108 3 0.555 8 −0.659 1 1.791 5 25.593 80.204 主成分3 0.221 5 0.013 6 −0.343 0 0.095 8 0.008 9 −0.809 0 −0.411 5 0.635 9 9.084 89.287 主成分4 0.181 8 −0.432 6 −0.138 8 0.755 5 −0.335 2 0.047 7 0.274 2 0.477 3 6.820 96.106 主成分5 0.349 3 −0.372 8 0.722 1 −0.232 0 −0.325 1 −0.153 4 −0.185 7 0.247 0 3.529 99.635 主成分6 0.154 7 −0.630 2 −0.105 5 −0.194 5 0.686 5 −0.058 5 0.235 1 0.021 0 0.299 99.934 主成分7 0.656 8 0.218 5 −0.315 0 −0.374 9 −0.257 4 0.034 8 0.462 2 0.004 6 0.066 100.000 以主成分1和主成分2绘制了香椿所有种源主成分样点图以及性状与主成分的关系图(图2)。结合表2和图2可以看出:树高、胸径、材积、枝下高和冠幅5个性状距离x轴更接近,说明主成分1的差异主要是这5个性状的贡献,其中材积的贡献最大,其次为胸径。树干圆满度和树冠圆满度2个性状与y轴接近,说明主成分2的差异主要是这2个性状的贡献。从各种源某个主成分代表性的特征值(cos2)和分布来看,元谋、恩施和太和等种源具有速生的特点,新乡、邯郸和四川等种源生长速度较慢。
-
采用树高、胸径和材积3个生长性状的种源均值,对所有种源进行聚类(图3),可以将24个种源划分为2个组,即南部种源区和北部种源区。南部种源区可划分为3个亚组:亚组SouthⅠ包括了华南和西南区域的凭祥、晴隆、元谋和乳源等,亚组SouthⅡ包括了华中和长江以南华东区域的郴州和湘西、九江和恩施等,亚组SouthⅢ包括了伏牛山以南和皖北淮河流域的阜阳和南阳等。北部种源区也可划分为3个亚组:亚组NorthⅠ包括西北区域的天水等,亚组NorthⅡ包括了秦岭山区的安康等,亚组NorthⅢ包括伏牛山区、太行山区和山东丘陵区域的三门峡和新乡、邯郸和潍坊等。
-
把主成分1和主成分2的贡献率作为权重(y1, y2),计算各种源综合评价得分。由主成分分析结果可知:前2个主成分的权重分别为54.611%和25.593%,所以,综合评价得分(W)计算公式为:W=54.611%×y1+25.593%×y2。利用该计算公式,获得香椿各种源的综合评价得分(表5)。
表 5 香椿种源综合评价得分和排名表
Table 5. Comprehensive evaluation scores and ranking of provenances
种源 综合评价得分 排名 种源 综合评价得分 排名 种源 综合评价得分 排名 阜阳 7.496 1 九江 6.732 9 南京 6.166 17 恩施 7.253 2 武汉 6.721 10 聊城 6.166 18 凭祥 6.977 3 运城 6.566 11 安康 6.087 19 南阳 6.913 4 晴隆 6.423 12 天水 6.008 20 元谋 6.883 5 杭州 6.372 13 三门峡 5.729 21 湘西 6.844 6 乳源 6.355 14 潍坊 5.418 22 新宁 6.827 7 峨眉山 6.351 15 邯郸 5.350 23 郴州 6.752 8 伏牛山 6.348 16 新乡 4.376 24 基于主成分分析和各种源综合评价得分结果,筛选出元谋、恩施和阜阳等3个优良种源,其树高、胸径、材积、冠幅、枝下高、树干圆满度和树冠圆满度获得的平均遗传增益分别为5.21%、16.50%、32.88%、3.56%、3.13%、6.65%和4.74% (表6)。
表 6 香椿3个优良种源各性状均值和遗传增益
Table 6. Means and genetic gain of various traits of the top 3 provenances of T. sinensis
种源 树高/m 胸径/cm 材积/m3 冠幅/m 枝下高/m 树干圆满度 树冠圆满度 元谋 8.4 10.61 0.039 8 3.25 3.92 0.87 0.71 恩施 9.4 9.95 0.042 2 3.51 4.43 0.88 0.72 阜阳 10.9 9.43 0.042 1 3.10 4.19 0.85 0.65 总体均值 8.86 8.07 0.0260 2.97 3.89 0.80 0.62 入选种源平均值 9.57 10.00 0.041 0 3.29 4.18 0.87 0.69 遗传增益/% 5.21 16.50 32.88 3.56 3.13 6.65 4.74 -
本研究利用已达半个轮伐期的香椿地理种源试验发现:10年生香椿种源间树高、胸径、树干圆满度和材积等性状差异显著。树高、胸径、冠幅、枝下高和材积等性状均与纬度呈负相关,其中胸径与纬度显著负相关,南方种源的生产力明显高于北方种源。这个结果与香椿早期研究结果一致[10 , 15],证实了香椿地理种源生长性状基本上呈现纬度变异形式。生长、 形质性状与种源产地生态因子的相关分析表明:树高、胸径、冠幅、枝下高和树干圆满度等纬度变异主要与产地气温和降水有关,而枝下高还与土壤容重和黏土质量分数有关。这与马尾松Pinus massoniana[19]、文冠果Xanthoceras sorbifolia [20]、杉木 [21]的研究结果相似,香椿种源生长性状与产地水热条件相关。在对杉木[21]研究发现:影响种源生长的主要因素是冬季平均气温和秋冬季降水,而本研究发现香椿种源产地年平均气温、最冷月平均日最低气温和最干季日平均气温等生态因子是影响胸径生长的主要因素。SILVESTRO等[22]对云杉Picea asperata研究也发现:产地温度升高1 ℃,其生长速度增加0.1 cm·d−1。但这有异于MADSEN等[23]的相关研究结果:栎Quercus树的生存主要取决于产地的气温,而生长更多地依赖于产地的降水。从香椿种源生长、形质性状与产地土壤因子相关不显著来看,其生长和形质性状主要与造林地土壤相关理化因子有关。
本研究发现:香椿种源胸径与冠幅、枝下高和材积之间呈极显著的正遗传相关,这与香椿已有的研究结果一致[10]。对香椿胸径进行选择,同时也可对冠幅、枝下高和材积等性状进行改良,但对形质性状没有明显的改良效果。所以今后对香椿进行材积改良时,胸径可以作为重要的目标性状。
林木种源区划分能指导种子的合理调拨,提高林木的生产力[24−25]。本研究根据10年生香椿的生长性状将香椿种源划分为南部和北部两大种源区,基本上以秦岭—淮河为南、北部种源区分界线。南部种源区包括了乳源、元谋、凭祥和晴隆等华南和西南区域;郴州、湘西、新宁、武汉、恩施和杭州等华中和长江以南华东区域,南阳和阜阳等伏牛山以南和皖北淮河流域。北部种源区包括了天水等西北区域;安康、峨眉山等秦巴山区;新乡、三门峡、邯郸、潍坊和运城等伏牛山区、太行山区和山东丘陵区域。本研究根据种源性状主成分分析和综合评价得分,选出了3个优良种源,均来自南部种源区。孙鸿有等[10]确定的优良种源也是来自南部种源区,由于采样地点不同,种源来源地略有差异,但本研究结果与刘军等[15]的苗期种源选择结果差异较大。
Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis
-
摘要:
目的 通过分析10年生香椿Toona sinensis生长与形质性状的种源变异,揭示不同性状在地理种源上的变异规律,并进行种源区划及优良种源选择。 方法 以浙江开化县林场的10年生香椿种源林为试材,测定其树高、胸径、枝下高、冠幅、材积、树干圆满度和树冠圆满度,获取各种源生态环境因子,进行方差、主成分、相关性和聚类等分析,计算广义遗传力、综合选择指数和遗传增益,阐明生长和形质性状地理变异模式及与产地生态因子关系。 结果 树高、胸径、树干圆满度和材积存在极显著(P<0.01)种源差异,种源胸径、树高、冠幅、枝下高和材积呈典型的纬向变异模式。种源胸径与冠幅、枝下高和材积之间均呈极显著(P<0.01)正相关。胸径与产地年平均气温、最冷月平均日最低气温和最干燥季节日平均气温等显著(P<0.05)正相关。根据种源聚类结果,可将香椿划分为南部和北部2个种源区,并筛选出3个优良种源,分别为元谋、恩施和太和。 结论 10年生香椿种源间差异显著,并且树高、胸径、材积等性状存在从南向北逐渐减小的变异规律,对其进行选择时胸径是主要的遗传改良性状,可为材用型香椿良种选择提供可靠依据。图3表6参25 Abstract:Objective The purpose of this study is to examine the provenance variations in growth, shape and quality traits of 10-year-old Toona sinensis, to reveal the variation of different traits in geographical provenance, and to carry out provenance division and selection. Method Using the 10-year-old T. sinensis provenance test in Kaihua County, Zhejiang Province as material, the tree height, diameter at breast height (DBH), height under the branch, crown width, volume, trunk completeness, and crown completeness were measured, and various ecological and environmental factors were obtained. Variance, principal component, correlation, and cluster analysis were applied to calculate the general heritability, comprehensive selection index, and genetic gain to elucidate the geographical variation patterns of growth, shape, and quality traits and their relationship with ecological factors of different origin. Result There were significant provenance differences (P<0.01) in tree height, DBH, trunk completeness, and volume. The DBH, tree height, crown width, height under branches, and volume of the provenances displayed typical zonal variation patterns. There was a highly significant positive correlation (P<0.01) between DBH and crown width, height under branches and volume. DBH was positively correlated (P<0.05) with the annual mean temperature, the average daily minimum temperature in the coldest month, and the average daily mean temperature in the driest season. According to the clustering results of all provenances, T. sinensis could be divided into two provenance zones: south and north. Three excellent provenances were selected, namely Yuanmou, Enshi and Taihe. Conclusion There are significant differences among the provenances of 10-year-old T. sinensis, with a gradual decrease in the variation of tree height, DBH, and volume from south to north. DBH is the main genetic improvement trait during selection, which can provide a reliable basis for the selection of high-quality T. sinensis varieties for timber use. [Ch, 3 fig. 6 tab. 25 ref.] -
Key words:
- Toona sinensis /
- genetic variation /
- latitude variation /
- temperature /
- provenance zone
-
开展珍稀濒危植物的群落生态学研究有助于野生植物资源的保护、恢复和可持续更新。群落生态学研究一般通过探究物种的分布范围、群落结构及种内与种间联结关系等,揭示群落生活史、适应性、生长趋势等[1-3]。物种组成与群落结构在一定程度上展现植物对资源的利用能力和群落的稳定程度[4]。汪国海等[5]通过研究濒危植物单性木兰Kmeria septentrionalis的群落结构与空间分布格局,探究其聚集方式和传播途径。濒危物种的生态位宽度与群落总体关联度能够反映物种间的相互关系(竞争或促进作用)及对生境条件的适应状况和资源利用情况等[6-8]。刘万德等[9]对藤枣Eleutharrhena macrocarpa的生境特征和种间联结研究发现:藤枣与下层木呈极显著负相关,减少群落内下层木可以促进藤枣群落可持续生长[3, 9-11]。杨国平等[12]通过建立预测景东翅子树Pterospermum kingtungense群落动态的Lefkovitch矩阵模型,探究濒危物种在特定的小生境片段中的分布区间。因此,基于群落生态学的研究方法,有助于全面评估珍稀濒危物种的内外致濒因子,缓解其濒危态势,实现有效的拯救保护[10-11]。
细果秤锤树Sinojackia microcarpa为中国特有的极小群落野生植物,多分布在浙江临安、建德等地,处于极度濒危和受胁迫状态[13-17]。目前,对秤锤属Sinojackia的研究相对较多。杨国栋等[18]采用生态学理论结合自组织特征映射网络(SOM)方法,划分了野生秤锤树群落的群丛类型。徐惠明等[19]分析了狭果秤锤树S. rehderiana的群落年龄结构,发现该群落具有良好的更新潜力。周赛霞等[20]研究发现:受密度制约或种子扩散限制等,狭果秤锤树的空间聚集分布趋势逐渐减弱。秤锤属物种多表现出竞争能力相对较弱,对外界干扰的响应较为显著[18-19]。本研究通过对细果秤锤树群落的长期动态监测,分析细果秤锤树群落的物种组成、生态位宽度及其与主要树种的种间关联,揭示细果秤锤树的生境适应性与竞争强度,有助于在就地、迁地保护回归实践中建立适宜的生存环境。
1. 研究区概况与研究方法
1.1 研究区概况
浙江省建德市属亚热带北缘季风气候,雨量充沛,四季分明,年平均气温为17.4 ℃。土壤类型以凝灰岩发育的红壤、黄棕色壤土为主,土层浅薄且质地较为疏松,钱塘江水系中上游,境内以低山丘陵地貌为主。细果秤锤树集中分布于浙江省建德市建德林场乌石滩林区(29°32′56″~29°35′43″N,119°33′08″~119°34′05″E),主要分布在林区乌石滩、富家坞和灵山顶,海拔为23~429 m。多生长在岩石裸露率较大的山谷溪沟边的灌丛林中,呈条带状分布,群落生境数年前遭受人为砍伐干扰较严重。
1.2 样地设置与调查
细果秤锤树为典型极小群落野生植物,残存数量较少,因适存的小流域生境使得群落呈带状分布,样地设置受限。2020年8—9月,在全面踏查细果秤锤树野生群落的基础上,参照热带森林科学研究中心(CTFS)的样地建设技术规程,建立0.18 hm2的固定监测样地。使用全站仪在乌石滩、富家坞和灵山顶分别设置3个典型样方开展群落调查,共计9个10 m×20 m样方;在每个样方内设置3个5 m×5 m的下层木样地以及3个1 m×1 m的草本层样地。开展树种定位、地形测定(海拔、经纬度、坡向坡位等)、生境因子测定(土壤理化性质等)。
1.3 物种重要值计算
本研究计算上层木与下层木的物种重要值。上层木重要值=(相对多度+相对频度+相对显著度)/3;下层木重要值=(相对多度+相对频度)/2;相对多度=(某种植物的数量/样地植物的总数量)×100%;相对频度=(某种植物的频度/样地所有植物物种的频度总和)×100%;相对优势度=(某种植物的胸高断面积之和/样地所有物种的胸高断面积之和)×100%。
1.4 生态位特征与种间联结性
物种生态位特征主要采用Levins指数、Shannon-Wiener指数[21-23]反映生态位宽度,Schoener生态位相似性[24-25]与Pianka生态位重叠指数[26]反映生态相似与重叠程度。种间联结分析主要采用总体联结指数[6, 8]、卡方检验(χ2)、联结系数(AC)[24]和Pearson相关系数[8, 22]探究物种间关联性。采用R 4.1.0中spaa包计算生态位宽度、生态位相似性和生态位重叠程度、χ2检验、Pearson相关系数检验结果。
2. 结果与分析
2.1 细果秤锤树群落野外分布与生境分析
细果秤锤树总计509株,其中富家坞分布个体数量最多(243株),灵山顶最少(71株)。群落里单丛萌蘖枝干中的最大胸径为8.10 cm,平均树高为5.40 m(表1)。乌石滩、富家坞、灵山顶细果秤锤树群落的胸径变异系数分别为34%、33%和33%,均表现为较低变异性。
表 1 细果秤锤树群落资源组成Table 1 Composition of population resources of S. microcarpa分布区 数量/
株胸径/
cm树高/
m胸径变异
系数/%树高变异
系数/%乌石滩 195 3.07±1.05 5.00±1.87 34 38 富家坞 243 3.05±1.02 5.40±1.98 33 41 灵山顶 71 2.95±0.98 4.90±2.41 33 54 说明:胸径和树高数值为平均值±标准差 细果秤锤树分布在海拔23~429 m的区域(表2和表3),乌石滩和富家坞受人工干预程度较高,存在人为滥砍及割灌除草等抚育过程。土壤呈较疏松多孔的黏质土,土壤容重为1.06~1.19 g·cm−3,pH为4.72~5.79,偏酸性土壤,有效磷和速效钾偏低。细果秤锤树群落土壤有机质、氮、磷、钾及其速效成分中等,土壤养分条件一般。
表 2 细果秤锤树群落生境调查Table 2 Environmental survey of S. microcarpa population分布区 样地 海拔/m 纬度(N) 经度(E) 坡向 群落特征 乌石滩 P1 58 29°34′16″ 119°33′10″ 西 樟树Cinnamomum camphora-板栗Castanea mollissima混交林 P2 45 29°34′18″ 119°33′60″ 西 板栗林 P3 64 29°34′17″ 119°33′00″ 东北 板栗林 富家坞 P4 58 29°34′57″ 119°33′42″ 东南 柏木Cupressus funebris-南酸枣Choerospondias axiliaris混交林 P5 95 29°34′57″ 119°33′36″ 东南 柏木林 P6 128 29°35′20″ 119°33′24″ 东 柏木-拟赤杨Alniphyllum fortunei混交林 灵山顶 P7 190 29°35′35″ 119°33′52″ 东北 樟树林 P8 384 29°35′11″ 119°33′11″ 东北 毛竹Phyllostachys edulis林 P9 396 29°35′40″ 119°33′10″ 东北 毛竹林 表 3 细果秤锤树群落的生境因素Table 3 Habitat factors of S. microcarpa分布区 海拔/m 土壤容重/
(g·cm−3)土壤pH 土壤有机
质/(g·kg−1)土壤总孔
隙度/%土壤碱解氮/
(mg·kg−1)土壤有效磷/
(mg·kg−1)土壤速效钾/
(mg·kg−1)乌石滩 70±26 a 1.01±0.10 a 5.46±0.20 a 38.84±3.66 a 61.74±3.67 a 103.41±3.08 a 6.23±0.82 a 82.46±3.22 a 富家坞 109±39 a 1.12±0.06 a 5.47±0.43 a 40.76±1.22 a 57.72±2.25 a 97.61±6.90 a 5.79±1.26 a 82.93±6.82 a 灵山顶 370±110 a 1.07±0.09 a 5.23±0.15 a 45.74±3.42 a 59.72±3.44 a 107.71±8.72 a 5.54±1.45 a 95.48±14.02 a 变化范围 23~429 1.00~1.19 4.72~5.79 36.81~48.38 55.20~62.42 91.04~113.67 5.30~7.84 75.69~102.80 说明:数值为平均值±标准差。同列不同小写字母表示同一指标不同分布区之间差异显著(P<0.05) 2.2 细果秤锤树群落物种组成
细果秤锤树样地内共记录到胸径≥1 cm的木本植物401株,隶属于35科50属51种。其中优势科有樟科Lauraceae (5属6种)、山茶科Theaceae (3属4种)、壳斗科Fagaceae (3属3种)、马鞭草科Verbenaceae (3属3种)、安息香科Styracaceae (2属3种)、大戟科Euphorbiaceae (2属2种)、金缕梅科Hamamelidaceae (2属2种)、漆树科Anacardiaceae (2属2种)、茜草科Rubiaceae (2属2种)、榆科Ulmaceae (2属2种)。樟树的平均胸径最大,达30.8 cm,有22株;平均胸径较大的树种有臭椿Ailanthus altissima、枫香Liquidambar formosana、柏木、南酸枣和毛竹。
样地中重要值≥1%的上层木物种共16种,重要值排前4位的物种是毛竹、柏木、板栗和细果秤锤树,这4个物种重要值之和为49.85%,是群落优势树种(表4)。下层中阔叶箬竹Indocalamus latifolius的重要值最高,为15.48%;重要值排前3位的物种有水团花Adina pilulifera、毛花连蕊茶Camellia fraterna和细果秤锤树(表5)。细果秤锤树在上、下木层中重要值分别为9.50%和4.60%,是主要建群种之一。
表 4 细果秤锤树群落上层木主要物种的重要值和生态位宽度Table 4 Important values and niche breadth of the dominant species in upper wood layer of S. microcarpa community编号 物种 重要值/
%生态位宽度 编号 物种 重要值/
%生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 毛竹 19.63 1.96 0.68 11 杉木 2.00 1.78 0.63 2 柏木 10.84 2.48 1.00 12 黄檀 1.95 2.29 0.90 3 板栗 9.88 2.80 1.13 13 白花泡桐 1.70 1.00 0.00 4 细果秤锤树 9.50 5.87 1.92 14 盐肤木 1.51 1.00 0.00 5 樟树 8.44 1.82 0.64 15 木油桐 1.27 1.96 0.68 6 南酸枣 2.75 1.83 0.80 16 大叶白纸扇 1.21 2.00 0.69 7 拟赤杨 2.34 1.95 0.68 17 厚壳树 0.99 1.00 0.00 8 枫香 2.32 1.00 0.00 18 臭椿 0.96 1.00 0.00 9 木蜡树 2.18 2.70 1.05 19 檵木 0.88 1.63 0.00 10 棕榈 2.09 2.78 1.06 说明:木蜡树Toxicodendron sylvestr;棕榈Trachycarpus fortunei;杉木Cunninghamia lanceolata;黄檀Dalbergia hupeana;白花泡桐Paulownia fortunei;盐肤木Rhus chinensis;木油桐Vernicia montana;大叶白纸扇Mussaenda shikokiana;厚壳树Ehretia thysiflora;檵木Loropetalum chinensis 表 5 细果秤锤树群落下层木主要物种的重要值和生态位宽度值Table 5 Important value and niche breadth of the dominant species in lower wood layer of S. microcarpa community编号 物种 重要值/% 生态位宽度 编号 物种 重要值/% 生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 阔叶箬竹 15.48 1.98 0.84 9 短柄枹栎 2.41 1.84 0.65 2 水团花 8.45 3.43 1.30 10 紫麻 2.30 1.08 0.16 3 细果秤锤树 4.60 6.82 2.00 11 木荷 1.86 1.00 0.00 4 毛花连蕊茶 4.58 4.95 1.77 12 华箬竹 1.63 1.00 0.00 5 茶 4.44 4.09 1.73 13 杉木 1.59 1.28 0.38 6 檵木 3.05 4.39 1.60 14 海金子 1.58 1.92 0.74 7 窄基红褐柃 2.98 1.00 0.00 15 黄檀 1.54 2.81 1.06 8 杭州榆 2.69 1.00 0.00 16 朱砂根 1.45 3.90 1.57 说明:窄基红褐柃Eurya rubiginosa var. attenuata;杭州榆Ulmus changii;短柄枹栎Quercus glandulifera;木荷Schima superba;华箬竹Sasa sinica;朱砂根Ardisia crenata 2.3 细果秤锤树群落生态位宽度
细果秤锤树具有最大的生态位宽度,Levins的生态位宽度指数及Shannon-Wiener的生态位宽度指数在上层木中分别为5.87%和1.92%(表5),板栗、棕榈、木蜡树与柏木的生态位宽度依次降低。细果秤锤树在上层木林层与下层木林层中生态位宽度差异不明显,说明细果秤锤树的种对竞争具有一定优势,在所调查的小流域生境中具有较强的适应能力,分布幅度较广。
2.4 细果秤锤树群落生态位相似性与重叠程度
细果秤锤树群落上层木物种生态位相似性和生态位重叠值最大均为盐肤木-臭椿(表6)。细果秤锤树与上层优势树种樟树生态相似性值最高(0.62),白花泡桐次之(0.59)。生态位宽度较大的柏木和黄檀的生态位相似性达0.65,而生态位宽度较窄的枫香和臭椿的生态位相似性为0,说明生态位相似性与生态位宽度有一定关联。生态位重叠值在0.8~1.0的种对有杉木-盐肤木和南酸枣-枫香,大于0.5的种对有39对(占20.53%),其中生态位重叠值小于0.1的种对共有90对(占47.37%)。上层木树种间生态位重叠值总体偏低,对资源利用的利用策略存在差异。细果秤锤树与樟树(0.62)和黄檀(0.59)具有较大的生态位重叠,存在较大的生态和资源利用相似性。
表 6 细果秤锤树群落上层木主要优势种间的生态位相似性比例和生态位重叠指数Table 6 Niche similarity and niche overlap of dominant plant species in S. microcarpa community in the upper wood layer编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 0 0 0.06 0 0 0.14 0 0 0.27 0.58 0 0.07 0.42 0 0 0 0.42 0 2 0 0.04 0.34 0 0.23 0.41 0.45 0.26 0.43 0 0.52 0 0 0.19 0.74 0.19 0 0.55 3 0 0.02 0.35 0.15 0.41 0.04 0.04 0 0.04 0 0.04 0.52 0 0.04 0.04 0.04 0 0 4 0.09 0.54 0.47 0.42 0.43 0.18 0.15 0.13 0.25 0.20 0.21 0.38 0.04 0.02 0.21 0.16 0.04 0.19 5 0 0 0.11 0.62 0.40 0 0 0 0 0.42 0 0.34 0 0 0 0.52 0 0 6 0 0.15 0.49 0.48 0.68 0.23 0.23 0.09 0.14 0.40 0.14 0.27 0 0.14 0.14 0.54 0 0 7 0.12 0.46 0.01 0.33 0 0.22 0.57 0.71 0.29 0.14 0.15 0 0.14 0.15 0.15 0.15 0.14 0 8 0 0.49 0.05 0.22 0 0.32 0.72 0.42 0.49 0 0.58 0 0 0.58 0.42 0.48 0 0 9 0 0.41 0 0.32 0 0.17 0.96 0.59 0 0 0 0 0 0 0 0 0 0 10 0.27 0.58 0.05 0.25 0 0.22 0.24 0.65 0 0.27 0.73 0 0.27 0.49 0.66 0.48 0.27 0.24 11 0.64 0 0 0.32 0.62 0.54 0.12 0 0 0.28 0 0.07 0.38 0 0 0.42 0.38 0 12 0 0.65 0.06 0.24 0 0.25 0.18 0.73 0 0.89 0 0 0 0.68 0.75 0.48 0 0.32 13 0.09 0 0.63 0.59 0.30 0.39 0 0 0 0 0.04 0 0 0 0 0 0 0 14 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 0 0 0 1.00 0 15 0 0.30 0.06 0.04 0 0.27 0.20 0.81 0 0.80 0 0.90 0 0 0.42 0.48 0 0 16 0 0.87 0.04 0.40 0 0.16 0.12 0.48 0 0.79 0 0.88 0 0 0.59 0.42 0 0.58 17 0 0.20 0.04 0.28 0.66 0.75 0.13 0.55 0 0.54 0.52 0.61 0 0 0.67 0.40 0 0 18 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 1.00 0 0 0 0 19 0 0.86 0 0.46 0 0 0 0 0 0.39 0 0.43 0 0 0 0.80 0 0 说明:编号所代表物种见表4。对角线下方为生态位相似性,对角线上方为生态位重叠值 下层木物种生态位相似性为0~0.96,生态位重叠为0~0.10,最大值种对均为海金子Pittosporum illiciodes-紫麻Oreocnide frutescens。细果秤锤树与下层优势树种檵木生态相似性值最高(0.86);与水团花(0.51)和茶Camellia sinensis (0.48)具有较大生态重叠(表7)。下层木主要物种生态位重叠平均值为0.23,且多数种对的生态位重叠在其平均值附近,表明下层木主要物种的竞争关系相对稳定。
表 7 细果秤锤树群落下层木主要优势种间的生态位相似性比例和生态位重叠指数Table 7 Niche similarity and niche overlap of dominant plant species in S.microcarpa community in the lower wood layer编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 0.09 0.32 0.21 0.16 0.20 0.34 0.02 0.25 0 0 0.09 0.09 0 0 0 2 0.04 0.51 0.43 0.53 0.52 0.29 0.46 0 0 0.13 0.56 0.19 0 0 0 3 0.30 0.65 0.36 0.48 0.63 0.33 0.38 0.23 0.01 0.10 0.07 0 0.01 0 0 4 0.34 0.58 0.38 0.59 0.53 0.46 0.54 0 0.08 0.39 0.24 0.11 0.11 0.17 0.08 5 0.18 0.58 0.53 0.64 0.55 0.27 0.47 0 0.34 0.19 0.21 0.11 0.34 0.06 0 6 0.19 0.65 0.86 0.52 0.62 0.44 0.34 0.04 0.04 0.24 0.13 0.13 0.07 0.09 0.12 7 0.31 0.27 0.32 0.47 0.21 0.36 0.14 0.34 0 0.39 0.29 0.24 0.04 0.17 0.16 8 0.02 0.56 0.47 0.75 0.48 0.41 0.15 0 0.05 0.18 0.17 0 0.06 0.03 0.01 9 0.35 0 0.41 0 0 0.09 0.70 0 0 0 0 0 0 0 0 10 0 0 0.02 0.20 0.75 0.07 0 0.08 0 0.01 0 0 0.96 0 0 11 0 0.12 0.03 0.41 0.10 0.29 0.44 0.10 0 0.01 0.11 0 0.05 0.22 0.64 12 0.06 0.77 0.12 0.44 0.32 0.12 0.33 0.24 0 0 0.14 0.35 0 0 0 13 0.13 0.35 0 0.29 0.23 0.26 0.50 0.01 0 0 0 0.48 0 0 0 14 0 0 0.02 0.21 0.75 0.08 0.01 0.08 0 1.00 0.05 0 0 0 0.04 15 0 0 0 0.45 0.13 0.19 0.35 0.05 0 0 0.32 0 0 0 0 16 0 0 0 0.21 0 0.24 0.33 0.02 0 0 0.93 0 0 0.04 0 说明:编号所代表物种见表5。对角线下方为生态位相似性,对角线上方为生态位重叠值 2.5 细果秤锤树群落联结性与Pearson相关分析
细果秤锤树群落上层木12个优势种间总体联结性方差比率为1.23,大于1,即种间存在一定程度正联结;其显著检验统计量为11.05,高于χ2分布临界值,表明上层木群落间总体上呈显著的正联结关系。下层木12个优势种间总体联结性方差比率为0.58,小于1,即种间存在一定程度负联结;其显著检验统计量为5.19,介于χ2分布临界值之间,即下层木12个优势种间呈不显著负联结关系。
χ2检验主要反映不同种对之间联结的显著度。联结系数检验结果显示:上层和下层各12个优势木中,正、负联结种对数相接近。细果秤锤树群落上层木中正、负联结的种对分别为27和28个(各占种对数的40.91%和42.42%),正负关联比为0.96∶1.00。种对间总体显著率为12.12%,种间联结较松散,无联结的种对占16.67%,细果秤锤树与其他种之间都不存在联结性。下层木种对联结显著度的分布大致与上层木相似,正负关联比0.83∶1.00。细果秤锤树与水团花呈显著正联结关系。细果秤锤树-阔叶箬竹、细果秤锤树-茶、细果秤锤树-檵木、细果秤锤树-窄基红褐柃表现出极显著负关联(表8)。
表 8 细果秤锤树群落12个优势种χ2检验、联结系数(AC)及Pearson相关检验结果Table 8 Result of χ2 test, association coefficient (AC) and Pearson correlation coefficient of the 12 dominant species in S. microcarpa community检验方法 检验结果 数值范围 上层木 下层木 检验方法 检验结果 数值范围 上层木 下层木 种对数 占比/% 种对数 占比/% 种对数 占比/% 种对数 占比/% χ2 正相关 P≤0.01 0 0 0 0 AC 负相关 −0.2≤AC<0 2 3.03 2 3.03 0.01<P≤0.05 2 3.03 7 10.61 −0.6≤AC<−0.2 3 4.54 3 4.54 P>0.05 25 37.88 22 33.33 AC≤−0.6 23 34.85 30 45.46 无关联 χ2=0 11 16.67 2 3.03 负相关 P≤0.01 0 0 0 0 Pearson
相关检验正相关 P≤0.01 13 19.70 0 0 0.01<P≤0.05 6 9.09 5 7.58 0.01<P≤0.05 0 0 0 0 P>0.05 22 33.33 30 45.45 P>0.05 25 37.88 31 46.97 无关联 0<P<0.20 0 0 0 0 AC 正相关 AC≥0.6 9 13.64 20 30.30 负相关 P≤0.01 0 0 0 0 0.2≤AC<0.6 8 12.12 2 3.03 0.01<P≤0.05 0 0 0 0 0<AC<0.2 8 12.12 7 10.61 P>0.05 28 42.42 35 53.03 无关联 AC =0 13 19.70 2 3.03 上层木中总体显著率为19.70%(极显著正关联13个,P<0.01),不显著(P>0.05)正关联25个,占37.88%;不显著负关联28个,占比42.42%。细果秤锤树与其他树种为无联结关系,整个细果秤锤树群落处于优势发展趋势(表8)。下层木中总体显著率为0,不显著正关联31个,占46.97%;不显著负关联35个,占53.03%。细果秤锤树与水团花、毛花连蕊茶、杭州榆、短柄枹栎呈不显著正关联,与阔叶箬竹、茶、檵木、窄基红褐柃呈不显著负关联。
3. 讨论
3.1 物种组成与群落结构
建德市野生细果秤锤树群落动态监测样地内树种组成相对简单,细果秤锤树多生长在次生常绿阔叶林和针阔混交林中,群落优势树种主要为毛竹、柏木、板栗和细果秤锤树。这与秤锤属调查样地内的物种组成及数量相类似[13, 15-16]。调查发现:细果秤锤树群落中缺乏小径级个体或幼苗,这可能是因为秤锤属的种子萌发困难或遭受了人为的抚育等干扰,影响了幼苗的更新[13-14]。细果秤锤树是小流域生境群落中的优势种,早期生长喜较为荫蔽的环境,群落中高大上层木树种如樟树、毛竹、柏木等可在其幼苗更新时期起到遮光作用,以保护幼苗不受高温、强光照影响。在细果秤锤树生长后期,对光照需求增强,可间伐上层木,对高度接近细果秤锤树的树种进行一定程度的抚育,降低群落郁闭度[12, 16-17]。
3.2 生态位宽度与生态位重叠程度
生态位宽度作为植物群落的环境适应力和资源利用能力的衡量性指标,值越大,反映物种适应能力越强,在群落中更具优势[22, 27]。细果秤锤树在群落物种中重要值排在第4位,但生态位宽度却排在首位。可能是其喜光、耐贫瘠、喜微酸性土壤等生长特性有利于细果秤锤树在小溪流水域附近广泛分布。细果秤锤树的生态位宽度较大还可能与本研究的样地设置有关。本研究以细果秤锤树生长的位置为核心展开设置并调查,且呈聚集分布均匀的群落使得其占较大资源位或较大资源量,与极小群落植物圆叶玉兰Magnolia sinensis[28]、小花木兰Oyama sieboldii[29]、缙云秋海棠Begonia jinyunensis[30]在所处群落中生态位宽度均较大这一研究结果相同,表明在该分布点的研究区域生境条件下,生态位宽度大小与细果秤锤树致濒机制无必然联系。研究中有一些物种的生态位宽度大小排序与其重要值大小排序不同,如樟树、南酸枣等,这说明生态位宽度和重要值在物种之间的表现方式略有不同且并无显著关联性。
生态位相似性特征反映种间资源利用的相似程度,重叠值特征衡量生态位相似的树种在特定空间环境下资源利用的差异性,两者结合衡量种间资源竞争程度[31-33]。细果秤锤树与上层优势树种樟树和黄檀的生态相似性与生态重叠性均最高。可能是因为樟树、黄檀是对环境适应性广泛的泛化种,也可能是适合调查区域环境的特化种,因此出现与细果秤锤树较高的生态位重叠值,也表明这些种对间生态学特性比较一致,或者对生境的要求比较相似[8]。一般来说,当多个物种同时具有较大的生态位宽度时,它们之间存在较高生态位重叠的可能性更大[21]。但是,具有较大生态位宽度的物种也可能与较小生态位宽度的物种间存在较大的生态位重叠[21, 31]。这是因为细果秤锤树与水团花、毛花连蕊茶为中生植物,在资源有限的条件下,它们对资源环境的竞争比较大,且对资源的利用和需求相近[32],因此,它们之间的联系也更为紧密,具有较高的生态位重叠[22, 26]。且细果秤锤树所在群落中物种之间的生态位重叠程度总体偏低,说明细果秤锤树群落中大多物种对资源利用的相似程度降低,物种之间竞争较弱,生态位可通过产生分化来降低种间竞争使得物种间在群落的结构与功能上互补且稳定[7, 22]。本研究发现:细果秤锤树群落大部分种对间的相关性比较弱,表明物种联结性较弱。种间负联结关系占主导,但大部分优势种种对间关联性比较低,说明样地中的不同物种间不存在紧密的相互关系,缺乏竞争或相互促进的趋势,物种间具有独立性,受外界的干扰较小[30]。
4. 结论
细果秤锤树群落中物种组成较为简单,群落结构相对单一,细果秤锤树群落幼树较少,更新相对较差。细果秤锤树生态位宽度最大,在时空上占据着优势地位,属于稍耐阴、耐贫瘠、适应力较强的植物,能更好利用资源和空间。调查样地中多数树种生态位重叠度较高,大部分物种间的竞争较强,对资源利用的相似程度高。树种间不存在较显著的种间相关联结,植物种间缺乏较强的相互依赖或竞争趋势。本研究明确了细果秤锤树生存的独特环境结构和群落间相互关系,对维持其野生群落的幼苗更新和群落规模增长具有重要作用。
-
表 1 香椿24个种源的地理位置
Table 1. Locations of the twenty-four provenances of T. sinensis
种源编号 种源 经度(E) 纬度(N) 海拔/m 种源编号 种源 经度(E) 纬度(N) 海拔/m 1 三门峡 111.047° 34.054° 779 15 峨眉山 103.480° 29.590° 877 2 郴州 113.032° 25.793° 402 20 凭祥 106.755° 22.105° 348 3 湘西 109.601° 27.948° 389 21 晴隆 105.218° 25.834° 1102 4 武汉 114.298° 30.584° 26 23 潍坊 118.544° 36.512° 492 5 新宁 110.851° 26.429° 859 24 聊城 117.635° 26.265° 361 8 邯郸 114.490° 36.612° 91 25 杭州 119.960° 30.048° 100 9 九江 115.992° 29.712° 17 26 阜阳 115.621° 33.160° 34 10 南京 118.767° 32.041° 14 27 运城 112.549° 37.857° 885 11 新乡 113.805° 35.190° 76 34 恩施 109.479° 30.295° 718 12 南阳 111.481° 33.297° 376 36 乳源 113.280° 23.125° 120 13 伏牛山 119.419° 32.042° 33 38 元谋 101.877° 25.704° 1 652 14 天水 105.724° 34.578° 1 355 42 安康 109.760° 32.804° 526 表 2 香椿种源生长和形质性状的方差分析及主要遗传参数估计
Table 2. Variance analysis and main genetic parameters of growth and stem-form of T. sinensis
性状 变异来源 遗传参数 重复 种源 误差 均值 变幅 变异系数/% 树高 46.285 7** 60.273 2** 42.210 8.86 6.10~10.90 9.5 胸径 72.938 1** 93.919 4** 57.900 8.07 5.57~10.61 13.1 冠幅 1.389 9* 5.865 2 7.851 2.97 2.19~3.51 12.3 枝下高 10.944 8** 20.060 2 23.200 3.89 2.51~4.66 15.7 树干圆满度 0.036 3** 0.561 2** 0.028 0.80 0.56~0.93 2.9 树冠圆满度 0.080 4 0.540 6 0.626 0.62 0.46~0.79 12.3 材积 0.004 7** 0.005 1** 0.004 0.026 0.008~0.042 35.9 说明:*. P<0.05;**. P<0.01。遗传参数中的树高、胸径、冠幅、枝下高和材积的单位分别是m、cm、m、m和m3。 表 3 香椿种源生长、形质性状表型相关和遗传相关
Table 3. Phenotypic and genetic correlation between growth and stem-form qualities traits of T. sinensis
性状 树高 胸径 冠幅 枝下高 材积 树干圆满度 树冠圆满度 树高 1 0.569 8 0.549 7 0.990 7** 0.755 9 0.214 8 −0.394 5 胸径 0.614 8* 1 0.965 8** 0.988 8** 0.990 9** −0.276 5 0.605 9 冠幅 0.491 7 0.750 4** 1 0.976 9** 0.970 4** −0.370 5 0.752 8 枝下高 0.752 5** 0.651 2* 0.576 0 1 0.990 8** −0.198 1 0.025 6 材积 0.772 0** 0.951 9** 0.695 9* 0.712 7** 1 −0.091 7 0.367 3 树干圆满度 0.187 6 −0.185 9 −0.181 5 −0.080 3 −0.017 1 1 −0.762 1 树冠圆满度 −0.360 3 0.232 5 0.489 0 0.223 1 0.049 5 −0.460 5 1 说明:对角线下为表型相关系数,对角线上为遗传相关系数;*. P<0.05;**. P<0.01。 表 4 香椿种源各性状主成分分析
Table 4. Principal component analysis of different traits for provenances of T. sinensis
主成分 树高 胸径 冠幅 枝下高 材积 树干圆满度 树冠圆满度 特征值 贡献率/% 累积贡献率/% 主成分1 0.390 8 0.474 7 0.428 0 0.427 1 0.482 2 −0.078 3 0.133 0 3.822 8 54.611 54.611 主成分2 0.433 5 −0.059 2 −0.219 3 0.073 7 0.108 3 0.555 8 −0.659 1 1.791 5 25.593 80.204 主成分3 0.221 5 0.013 6 −0.343 0 0.095 8 0.008 9 −0.809 0 −0.411 5 0.635 9 9.084 89.287 主成分4 0.181 8 −0.432 6 −0.138 8 0.755 5 −0.335 2 0.047 7 0.274 2 0.477 3 6.820 96.106 主成分5 0.349 3 −0.372 8 0.722 1 −0.232 0 −0.325 1 −0.153 4 −0.185 7 0.247 0 3.529 99.635 主成分6 0.154 7 −0.630 2 −0.105 5 −0.194 5 0.686 5 −0.058 5 0.235 1 0.021 0 0.299 99.934 主成分7 0.656 8 0.218 5 −0.315 0 −0.374 9 −0.257 4 0.034 8 0.462 2 0.004 6 0.066 100.000 表 5 香椿种源综合评价得分和排名表
Table 5. Comprehensive evaluation scores and ranking of provenances
种源 综合评价得分 排名 种源 综合评价得分 排名 种源 综合评价得分 排名 阜阳 7.496 1 九江 6.732 9 南京 6.166 17 恩施 7.253 2 武汉 6.721 10 聊城 6.166 18 凭祥 6.977 3 运城 6.566 11 安康 6.087 19 南阳 6.913 4 晴隆 6.423 12 天水 6.008 20 元谋 6.883 5 杭州 6.372 13 三门峡 5.729 21 湘西 6.844 6 乳源 6.355 14 潍坊 5.418 22 新宁 6.827 7 峨眉山 6.351 15 邯郸 5.350 23 郴州 6.752 8 伏牛山 6.348 16 新乡 4.376 24 表 6 香椿3个优良种源各性状均值和遗传增益
Table 6. Means and genetic gain of various traits of the top 3 provenances of T. sinensis
种源 树高/m 胸径/cm 材积/m3 冠幅/m 枝下高/m 树干圆满度 树冠圆满度 元谋 8.4 10.61 0.039 8 3.25 3.92 0.87 0.71 恩施 9.4 9.95 0.042 2 3.51 4.43 0.88 0.72 阜阳 10.9 9.43 0.042 1 3.10 4.19 0.85 0.65 总体均值 8.86 8.07 0.0260 2.97 3.89 0.80 0.62 入选种源平均值 9.57 10.00 0.041 0 3.29 4.18 0.87 0.69 遗传增益/% 5.21 16.50 32.88 3.56 3.13 6.65 4.74 -
[1] 周翔宇. 中国香椿属的研究[D]. 南京: 南京林业大学, 2005. ZHOU Xiangyu. Study on Toona in China [D]. Nanjing: Nanjing Forestry University, 2005. [2] 彭方仁, 梁有旺. 香椿的生物学特性及开发利用前景[J]. 林业科技开发, 2005, 19(3): 3 − 6. PENG Fangren, LIANG Youwang. Biological characteristics and development and utilization prospects of Toona sinensis [J]. China Forestry Science and Technology, 2005, 19(3): 3 − 6. [3] 陈锡沐, 梁宝汉, 李秉滔. 广东楝科植物分类的初步研究[J]. 武汉植物学研究, 1986, 4(2): 167 − 194. CHEN Ximu, LIAGN Baohan, LI Bingtao. A preliminary taxonomic study on Meliaceae in Guangdong [J]. Journal of Wuhan Botanical Research, 1986, 4(2): 167 − 194. [4] 陆长旬, 张德纯, 王德槟. 香椿起源和分类地位的研究[J]. 植物研究, 2001, 21(2): 195 − 199. LU Changxun, ZHANG Dechun, WANG Debin. Origin and taxonomic position of Chinese Toon [Toona sinensis (A. Juss. ) Roem. ] [J]. Bulletin of Botanical Research, 2001, 21(2): 195 − 199. [5] 王希英, 王海宏, 乔勇进. 香椿优质丰产栽培关键技术[J]. 防护林科技, 2008(5): 133 − 134. WANG Xiying, WANG Haihong, QIAO Yongjin. Key techniques of high quality and high yield cultivation of Toona sinensis [J]. Protection Forest Science and Technology, 2008(5): 133 − 134. [6] MROGINSKI E, REY H Y, MROGINSKI L A. In vitro plantlet regeneration from Australian Red Cedar (Toona ciliata, Meliaceae) [J]. New Forests, 2003, 25(3): 177 − 184. [7] 杨玉珍, 彭方仁, 李洪岩. 不同种源香椿芽菜营养成分的变化研究[J]. 河南农业科学, 2007(4): 83 − 85. YANG Yuzhen, PENG Fangren, LI Hongyan. Changes of the nutritive compositions of Toona sinenesis bud in different provenances [J]. Journal of Henan Agricultural Sciences, 2007(4): 83 − 85. [8] 葛多云, 邹盛勤. 香椿叶中氨基酸和营养元素分析[J]. 微量元素与健康研究, 2005, 22(6): 23 − 24. GE Duoyun, ZOU Shengqin. Determination of amino acids and nutrient elements in Toona sinensis Roem. leaves [J]. Studies of Trace Elements and Health, 2005, 22(6): 23 − 24. [9] WANG Peihwei, TSAI M J, HSU C Y, et al. Toona sinensis Roem (Meliaceae) leaf extract alleviates hyperglycemia via altering adipose glucose transporter 4 [J]. Food and Chemical Toxicology, 2008, 46(7): 2554 − 2560. [10] 孙鸿有, 王鹏飞, 方炳法, 等. 香椿地理变异与种源选择[J]. 浙江林学院学报, 1992, 9(3): 237 − 245. SUN Hongyou, WANG Pengfei, FANG Bingfa, et al. Geographic variation and provenance selection of Chinese mahogany [J]. Journal of Zhejiang Forestry College, 1992, 9(3): 237 − 245. [11] 李淑玲, 桑玉强, 王平, 等. 不同种源香椿性状遗传分析[J]. 河南农业大学学报, 2000, 34(4): 363 − 366. LI Shuling, SANG Yuqiang, WANG Ping, et al. The genetic analysis on different species of Toona sinensis [J]. Journal of Henan Agricultural University, 2000, 34(4): 363 − 366. [12] 梁有旺, 彭方仁, 陈德平. 不同种源香椿苗期生长差异比较[J]. 林业科技开发, 2007, 21(2): 38 − 41. LIANG Youwang, PENG Fangren, CHEN Deping. The variations of seedling growth among provenances in Toona sinensis [J]. China Forestry Science and Technology, 2007, 21(2): 38 − 41. [13] 雷小华, 涂炳坤, 王茂丽, 等. 主成分分析在香椿性状评价和优良单株选择中的运用[J]. 华中农业大学学报, 2006, 25(4): 441 − 444. LEI Xiaohua, TU Bingkun, WANG Maoli, et al. Character evaluation and superior selection of Toona sinensis by principal component analysis [J]. Journal of Huazhong Agricultural University, 2006, 25(4): 441 − 444. [14] 崔宏安, 陈铁山, 范龙霞, 等. 陕西省种源香椿天然类型叶的结构与抗逆性研究[J]. 西北林学院学报, 2008, 23(2): 39 − 41. CUI Hongan, CHEN Tieshan, FAN Longxia, et al. Natural types of leaf structure and resistance of Toona sinensis Shaanxi Provenance [J]. Journal of Northwest Forestry University, 2008, 23(2): 39 − 41. [15] 刘军, 陈益泰, 姜景民, 等. 香椿种源苗期性状变异与原产地生态因子典型相关分析[J]. 东北林业大学学报, 2010, 38(11): 27 − 29. LIU Jun, CHEN Yitai, JIANG Jingmin, et al. Canonical correlation analysis between trait variation of Toona sinensis seedlings from different provenances and ecological factors in their original region [J]. Journal of Northeast Forestry University, 2010, 38(11): 27 − 29. [16] 徐成立, 张景兰, 陈东来. 树冠圆满度对树木生长的影响及作用研究[J]. 河北农业大学学报, 2005, 28(3): 45 − 48. XU Chengli, ZHANG Jinglan, CHEN Donglai. Study on the affect of the crown-fullness ratio on the growth of the tree and the form of the tree-trunk [J]. Journal of Agricultural Universtiy of Hebei, 2005, 28(3): 45 − 48. [17] 刘青华, 金国庆, 张蕊, 等. 24 年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J]. 林业科学, 2009, 45(10): 55 − 61. LIU Qinghua, JIN Guoqing, ZHANG Rui, et al. Provenance variation in growth, stem-form and wood density of masson pine at 24-year-old and the provenance division [J]. Scientia Silvae Sinicae, 2009, 45(10): 55 − 61. [18] 李光友, 徐建民, 陆钊华, 等. 尾叶桉二代测定林家系的综合评选[J]. 林业科学研究, 2005, 18(1): 57 − 61. LI Guangyou, XU Jianmin, LU Zhaohua, et al. Studies on index selections of Eucalyptus urophylla families [J]. Forest Research, 2005, 18(1): 57 − 61. [19] 胡兴峰, 吴帆, 孙晓波, 等. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203 − 212. HU Xingfeng, WU Fan, SUN Xiaobo, et al. Joint analysis of growth and wood property of 38-year-old Pinus massoniana from 55 provenances [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(3): 203 − 212. [20] 张毅, 敖妍, 刘觉非, 等. 不同分布区文冠果的生长性状差异及其与地理-气候因子的相关性分析[J]. 植物资源与环境学报, 2019, 28(3): 44 − 50, 57. ZHANG Yi, AO Yan, LIU Juefei, et al. Differences in growth characters of Xanthoceras sorbifolium from different distribution areas and analysis on its correlation with geographical-climatic factors [J]. Journal of Plant Resources and Environment, 2019, 28(3): 44 − 50, 57. [21] WU Hanbin, DUAN Aiguan, ZHANG Jianguo. Long-term growth variation and selection of geographical provenances of Cunninghamia lanceolata (Lamb. ) Hook [J/OL]. Forests, 2019, 10: 876[2023-08-21]. doi:10.3390/f10100876. [22] SILVESTRO R, BRASSEUR S, KLISZ M, et al. Bioclimatic distance and performance of apical shoot extension: disentangling the role of growth rate and duration in ecotypic differentiation [J/OL]. Forest Ecology and Management, 2020, 477: 118483[2023-08-20]. doi: 10.1016/j. foreco.2020.118483. [23] MADSEN C L, KJARE D, RABILD A. Climatic criteria for successful introduction of Quercus species identified by use of Arboretum data [J]. Forestry:An International Journal of Forest Research, 2021, 94(4): 526 − 537. [24] 杨传平, 杨书文, 夏德安, 等. 兴安落叶松种源试验研究 (Ⅲ)种源区划[J]. 东北林业大学学报, 1991, 19(增刊 2): 77 − 83. YANG Chuanping, YANG Shuwen, XIA De’an, et al. Study on the provenance test of Larix gmelinii (Ⅲ) the provenance division [J]. Journal of Northeast Forest University, 1991, 19(suppl 2): 77 − 83. [25] 王军辉, 顾万春, 李斌, 等. 桤木优良种源/家系的选择研究——生长的适应性和遗传稳定性分析[J]. 林业科学, 2000, 36(3): 59 − 66. WANG Junhui, GU Wanchun, LI Bin, et al. Study on selection of Alnus cremastogyne provenance/family-analysis of growth adaptation and genetic stability [J]. Scientia Silvae Sinicae, 2000, 36(3): 59 − 66. 期刊类型引用(8)
1. 李琨,胡兆贵,张茂付,甘燕玲,李苏春,刘芳,林海萍. 巾子峰国家森林公园常绿阔叶林木本植物优势种的生态位和种间联结性. 浙江农林大学学报. 2025(01): 45-54 . 本站查看
2. 阳艳芳,罗来开,尹明月,台昌锐,童跃伟,赵凯. 濒危植物细果秤锤树果实浸提液化感作用. 安徽农业科学. 2024(04): 93-96+102 . 百度学术
3. 黄安玲,姜金香,任志琴,胡优琼,王志威. 基于MaxEnt模型的玉竹潜在适生区及关键生态因子分析. 中国实验方剂学杂志. 2024(18): 178-185 . 百度学术
4. 吴卫华,吴家森,吴文骁,吕江波,傅国林,张晔华,郑小军,屠娟丽,梅旭东. 珍稀植物浙江安息香群落种间生态位及种间联结. 东北林业大学学报. 2024(12): 46-54 . 百度学术
5. 郑永敏,吕江波,吴文骁,邓建平,周燕,吴家森. 新安江森林公园阔叶林木本植物生态位与种间联结性. 森林与环境学报. 2024(06): 619-627 . 百度学术
6. 郝秀东,韦嘉胜,欧阳绪红,秦琳娟. 国内外近20年珍稀濒危植物的研究现状与发展趋势. 南宁师范大学学报(自然科学版). 2024(04): 122-130 . 百度学术
7. 张孟文,钟才荣,吕晓波,方赞山,程成. 海南清澜港海南海桑群落中物种生态位特征和种间联结性. 植物资源与环境学报. 2023(05): 70-77 . 百度学术
8. 朱子丞,戚春林,杨小波,李东海,苏凡. 鹦哥岭野茶群落物种组成与竞争关系研究. 林草资源研究. 2023(06): 129-136 . 百度学术
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230481