留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美洲黑杨杂交子代苗期性状遗传变异及选择

严艳兵 潘惠新

李琨, 胡兆贵, 张茂付, 等. 巾子峰国家森林公园常绿阔叶林木本植物优势种的生态位和种间联结性[J]. 浙江农林大学学报, 2025, 42(1): 45−54 doi:  10.11833/j.issn.2095-0756.20240307
引用本文: 严艳兵, 潘惠新. 美洲黑杨杂交子代苗期性状遗传变异及选择[J]. 浙江农林大学学报, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803
LI Kun, HU Zhaogui, ZHANG Maofu, et al. Niche and interspecific connectivity of dominant species of woody plants in evergreen broad-leaved forest of Jinzifeng National Forest Park[J]. Journal of Zhejiang A&F University, 2025, 42(1): 45−54 doi:  10.11833/j.issn.2095-0756.20240307
Citation: YAN Yanbing, PAN Huixin. Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803

美洲黑杨杂交子代苗期性状遗传变异及选择

DOI: 10.11833/j.issn.2095-0756.20200803
基金项目: 江苏省科技计划项目(BE2016387)
详细信息
    作者简介: 严艳兵(ORCID: 0000-0003-4877-4761),从事杨树遗传改良研究。E-mail: 1447025861@qq.com
    通信作者: 潘惠新(ORCID: 0000-0001-5231-6937),教授,从事杨树遗传改良研究。E-mail: hxpan@njfu.com.cn
  • 中图分类号: S722.5

Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides

  • 摘要:   目的  分析美洲黑杨Populus deltoides杂种苗期生长性状和叶片性状的遗传变异及遗传相关性,为杨树新品种选育提供材料。  方法  以美洲黑杨不同品种为亲本进行杂交试验,测定了9个杂交组合子代苗期生长性状和叶片性状,并通过方差分析、遗传参数估算、遗传相关分析及通径分析等,了解美洲黑杨杂种生长性状和叶片性状的遗传变异规律及性状间遗传互作,并依此开展美洲黑杨优良杂交组合的联合选择。  结果  杂交组合间3个生长性状与5个叶片性状存在显著(P<0.05)或极显著(P<0.01)差异。苗高、地径、材积与叶长、叶宽、叶柄长、叶周长、叶面积的家系遗传力均达0.8以上,受强度遗传控制,遗传变异系数为8.6%(叶长)~31.13%(材积),有利于优良杂交组合的选择。相关分析表明:叶长、叶宽、叶柄长、叶周长、叶面积与苗高、地径、材积间均达极显著正遗传相关(P<0.01)。相关遗传进度分析表明:除叶形指数、侧脉夹角和叶宽基距外,其他叶片性状对3个生长性状的遗传相关进度和间接选择效率较高。通径分析表明:苗高和地径对材积的直接遗传控制作用较大,叶长、叶宽、叶柄长、叶面积和叶周长通过苗高和地径对材积产生较大的间接遗传控制作用。利用综合指数选择法开展美洲黑杨9个杂交组合的生长与叶片性状联合选择,选出3个速生优质的杂交组合(B106×NL15、S3239×NL15、NL447×SY2),材积遗传增益达26.90%。  结论  美洲黑杨杂交组合子代1年生苗的3个生长性状和5个叶片性状均存在丰富变异,遗传互作显著;苗高和地径对材积的直接作用最大,5个叶片性状对材积也产生较大的间接控制效应。综合指数选择法能有效地选出速生优质杂交组合,材积遗传增益较高,杨树遗传改良效果较好。表8参18
  • 森林群落内包含着复杂的种间关系,如竞争、寄生、互利共生等[1]。生态位在研究群落物种组成、生物多样性和物种共存等方面有着重要作用[2],它是植物群落中各种群所能利用各种资源的总和及其与相关种群之间的功能关系,体现了种群在群落中的地位、作用和重要性[3],以生态位宽度和生态位重叠指数表征分别体现物种在群落中的地位和种间的联系[4]。种间联结是指不同物种在空间分布上的相互关联性,对生物多样性保护和自然植被的恢复具有一定的指导作用,对揭示群落内的种间关系、演替动态有着重要的理论意义和参考价值[5]。种间关系可分为正联结、无联结和负联结等3种。方庆等[6]认为可以保护与细果秤锤树Sinojackia microcarpa正联结性较高的物种,以期达到保护该濒危物种的目的;丁茂等[7]对落叶阔叶林进行动态监测后发现,种对间正关联数量有所增加,植被群落趋向于稳定的正演替方向发展,说明物种间的正联结性的增加能够提高森林群落的稳定性和物种多样性;杨春玉等[8]发现退化的喀斯特森林从乔灌阶段恢复到乔林阶段,物种种间正联结对数持续增加,直至形成顶级群落,解释了森林群落最终是朝着物种间互利共生和结构稳定的方向发展。但这些研究主要集中于低海拔区域,对于中高海拔地区亚热带森林群落的研究则较少。

    浙江巾子峰国家森林公园拥有原生亚热带常绿阔叶林,平均海拔800 m以上,人为活动较少,使得该区域保存有较为丰富且处于不同演替阶段的植被群落,开展该区域森林群落生态位和种间联结的研究,对于中高海拔地区常绿阔叶林的生物多样性保护具有积极意义[9]。对于研究区周边植物群落的研究主要集中在常绿阔叶林种群结构与分布格局[10]、物种组成与群落结构[11]、甜槠Castanopsis eyrei种群特征[12]等,而该地区常绿阔叶林的生态位和种间联结性的研究还未见报道。因此,本研究选取浙江巾子峰国家森林公园境内百丈林区常绿阔叶林作为研究对象,在野外调查的基础上,采用Levins生态位宽度(BL)、Shannon生态位宽度(BS)、Pianka生态位重叠指数(Oik)、Schoener系数(Cik)、方差比率(VR)、卡方($ {\chi}^{2} $)检验、Pearson相关系数和Spearman秩相关系数等方法,研究常绿阔叶林群落的木本植物组成以及优势种的生态位和种间联结性的关系,旨在为亚热带常绿阔叶林生物多样性和植被的保护与恢复提供参考。

    浙江巾子峰国家森林公园位于浙江省庆元县(27°27′~27°39′N,118°50′~119°06′E),属武夷山系洞宫山脉,总面积为5 752 hm2[13]。年均气温为17.2 ℃,最热月平均气温为26.9 ℃,最冷月平均气温为7.0 ℃,年均降水量为1 689.0 mm,相对湿度为75.8%,年均无霜期为256 d,主要植被类型包括常绿阔叶林、常绿-落叶阔叶混交林、针阔混交林、针叶林、毛竹Phyllostachys edulis林等。样地所在地土壤为黄壤。

    参照美国热带森林研究中心(CTFS)的方法[14],在浙江巾子峰国家森林公园境内的百丈林区(27°38′N,118°91′E)建立了1个1.4 hm2 (140 m×100 m)和6个0.4 hm2 (20 m×20 m)的常绿阔叶林长期监测样地。对样地内所有胸径(DBH)≥1 cm的木本植物进行每木检尺,并记录种名、胸径、树高、枝下高、空间坐标及生活状态等,样地基本情况如表1

    表 1  研究区常绿阔叶林群落样地基本情况
    Table 1  Basic situation of survey sites for broadleaf evergreen forest community survey in the study area
    样地号 类型 海拔/m 群落类型 样地面积/m2 坡位 密度/(株·hm−2) 平均胸径/cm 郁闭度
    1 天然林 1 163 常绿阔叶林 14 000 3 698 7.20 75.8
    2 天然林 1 163 常绿阔叶林 400 2 750 9.87 93.9
    3 天然林 1 146 常绿阔叶林 400 4 775 8.39 94.5
    4 天然林 1 136 常绿阔叶林 400 2 100 12.15 90.7
    5 天然林 1 151 常绿阔叶林 400 4 150 6.25 88.2
    6 天然林 1 121 常绿阔叶林 400 1 525 16.86 93.4
    7 天然林 1 176 常绿阔叶林 400 2 300 11.82 94.0
    下载: 导出CSV 
    | 显示表格
    1.3.1   重要值计算

    依据马克平等[15]的方法计算物种重要值确定优势种。

    1.3.2   生态位宽度和生态位重叠值

    依据王刚等[16]的方法计算木本植物优势种的Levins生态位宽度指数(BL)和Shannon生态位宽度指数(BS)。依据郭平平等[17]的方法计算Pianka生态位重叠指数(Oik);依据SCHOENER[18]的方法计算Schoener系数(Cik)。

    1.3.3   总体联结性和种间联结性计算

    计算方法参照SCHLUTER[19]提出的方差比率法(VR)和检验统计量(W)。参照江常春等[20]的方法,卡方($ {\chi}^{2}) $检验采用YATES连续矫正公式;参照吕增伟等[21]的方法计算Spearman秩相关系数和Pearson相关系数。

    重要值、生态位和种间联结性采用R 4.3.1软件(“spaa”“corrplot”“ggplot”“psych”“vegan”“tidyverse”工具包)[22]和WPS 2021进行数据计算以及绘图。

    调查样地中木本植物共有113种,隶属于31科62属。由表2可知:在该常绿阔叶林群落木本植物中,筛选出重要值$\geqslant $1%的优势种,共21种,重要值总和为80.32%。在木本植物优势种重要值大小排序中,木荷Schima superba的重要值最大,为14.30%,其次为甜槠和黄山松Pinus taiwanensis,分别为12.85%和12.23%。薄叶山矾Symplocos anomala和华中樱Cerasus conradinae的重要值最小,都为1.02%。这21个优势种的BLBS平均值分别为17.38和3.03。木荷、甜槠、黄山松、锥栗Castanea henryi和野漆树Toxicodendron succedaneum的生态位宽度相对较大,且BLBS分别大于20.00和3.30。

    表 2  优势植物重要值与生态位宽度
    Table 2  Important value and niche breadth of dominant plant species
    编号 种名 个体数 分布频度 重要值/% Levins生态位宽度(BL) Shannon生态位宽度(BS)
    sp1 木荷 Schima superba 984 41 14.30 25.91 3.42
    sp2 甜槠 Castanopsis eyrei 682 41 12.85 28.20 3.49
    sp3 黄山松 Pinus taiwanensis 245 40 12.23 29.67 3.52
    sp4 锥栗 Castanea henryi 261 38 6.02 21.39 3.30
    sp5 马银花 Rhododendron ovatum 665 38 5.47 19.43 3.23
    sp6 麂角杜鹃 Rhododendron latoucheae 500 35 4.30 18.47 3.19
    sp7 大萼黄瑞木Adinandra glischroloma var. macrosepala 284 33 2.83 4.85 2.44
    sp8 江南山柳 Clethra delavayi 189 35 2.45 17.07 3.17
    sp9 野漆树 Toxicodendron succedaneum 112 33 2.21 24.31 3.32
    sp10 浙江新木姜子 Neolitsea chekiangensis 157 28 1.91 11.83 2.79
    sp11 微毛柃 Eurya hebeclados 152 27 1.87 12.21 2.89
    sp12 短柄枹栎 Quercus glandulifera 115 27 1.86 19.59 3.11
    sp13 江南越橘 Vaccinium mandarinorum 135 29 1.75 16.06 3.04
    sp14 小叶青冈 Cyclobalanopsis gracilis 90 23 1.62 10.83 2.69
    sp15 黄背越橘 Vaccinium iteophyllum 100 27 1.53 19.38 3.11
    sp16 树参 Dendropanax dentiger 97 23 1.48 10.04 2.64
    sp17 云山青冈 Cyclobalanopsis sessilifolia 72 22 1.37 14.64 2.84
    sp18 红楠 Machilus thunbergii 50 22 1.15 13.30 2.82
    sp19 吴茱萸五加 Gamblea ciliata var. evodiifolia 47 22 1.09 17.96 2.98
    sp20 薄叶山矾 Symplocos anomala 43 20 1.02 14.11 2.81
    sp21 华中樱 Cerasus conradinae 38 21 1.02 15.70 2.89
    下载: 导出CSV 
    | 显示表格

    图1A所示:浙江巾子峰国家森林公园常绿阔叶林木本植物优势种共有210个种对,Oik为0.09~0.84。Oik≥0.5的共有89个种对,占总对数的42.4%,说明这些种对在资源不足时,可能会发生激烈的竞争。Oik<0.5的共有121对,占总对数的57.6%。

    图 1  主要优势树种生态位重叠指数
    Figure 1  Niche overlap index of dominant tree species

    图1B所示:群落中木本植物优势种的Cik为0.17~0.74。Cik≥0.5的种对共50对,占总对数的23.8%,这些种对的生态习性较为相似。Cik<0.5的种对共160对,占总对数的76.2%。

    对木本植物优势种总体关联性分析可知(表3),方差比率(VR)= 2.84>1,表明该常绿阔叶林木本植物优势种之间总体联结呈现正联结。卡方临界值χ2(0.95, 41)= 27.33,χ2(0.05, 41)= 56.94,检验统计量(W)= 116.73,不在临界值之间,表明木本植物优势种之间联结显著(P<0.05)。该群落木本植物优势种种间总体呈现显著正联结(P<0.05),该群落处于稳定阶段。

    表 3  优势植物总体关联性
    Table 3  Overall associations of dominant plant species
    方差比率(VR) 检验统计量(W) 卡方临界值(0.95, 41) 卡方临界值(0.05, 41) 检验结果
    2.84 116.73 27.33 56.94 显著正联结
    下载: 导出CSV 
    | 显示表格

    通过卡方检验观察到的频数与期望频数之间的差异,结果如表4表5所示。在21个木本植物优势树种组成的210个种对中,39个种对间无关联,占总对数的18.57%;112个种对间呈不显著正联结(P>0.05),占总对数的53.33%;49个种对间呈不显著负联结(P>0.05),占总对数的23.33%;2个种对间呈极显著正联结(P<0.01);8个种对间呈显著正联结(P<0.05)。

    表 4  主要优势树种χ2统计量检验
    Table 4  χ2 correlation test of dominant population of dominant tree species
    编号 sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15 sp16 sp17 sp18 sp19 sp20
    sp2 0.00
    sp3 0.00 0.00
    sp4 0.00 0.00 2.75
    sp5 0.00 0.00 2.75 0.42
    sp6 0.00 0.00 1.03 3.24 3.24
    sp7 0.00 0.00 0.61 0.02 1.92 2.20
    sp8 0.00 0.00 1.03 0.01 0.01 4.11 0.13
    sp9 0.00 0.00 0.61 0.02 0.02 6.75 0.87 2.20
    sp10 0.00 0.00 0.16 0.34 0.34 0.15 0.00 2.30 0.67
    sp11 0.00 0.00 0.11 0.36 0.36 1.83 2.16 1.83 0.04 0.00
    sp12 0.00 0.00 0.11 3.48 0.36 10.34 5.29 1.83 5.29 0.00 1.43
    sp13 0.00 0.00 0.21 0.67 4.57 0.52 3.50 0.06 0.02 0.26 0.19 3.02
    sp14 0.00 0.00 0.02 0.05 0.05 0.59 0.00 0.59 0.00 0.02 0.81 0.06 1.50
    sp15 0.00 0.00 0.11 0.36 3.48 1.83 2.16 1.83 0.41 2.13 1.43 3.57 6.07 0.06
    sp16 0.00 0.00 0.02 0.97 0.05 0.01 0.00 0.01 0.62 0.02 0.06 0.81 0.73 0.79 0.06
    sp17 0.00 0.00 0.01 0.02 1.15 1.29 0.03 0.06 0.03 0.10 0.00 0.43 1.78 1.35 0.00 0.53
    sp18 0.00 0.00 0.01 0.02 0.02 0.41 0.39 0.06 0.39 0.10 0.00 3.96 1.78 0.28 1.77 0.53 0.04
    sp19 0.00 0.00 0.01 0.02 0.02 0.41 2.01 0.06 2.01 0.10 1.77 3.96 0.42 0.01 3.96 1.86 2.10 0.19
    sp20 0.00 0.00 0.00 0.00 1.34 1.59 0.10 0.14 0.22 0.01 0.77 0.05 0.86 0.03 0.05 1.17 0.02 0.02 0.02
    sp21 0.00 0.00 0.00 0.00 0.00 0.26 0.22 0.26 0.22 0.61 0.20 0.05 1.28 0.21 0.05 0.21 0.60 0.02 0.02 0.03
      说明:sp1. 木荷;sp2. 甜槠;sp3. 黄山松;sp4. 锥栗;sp5. 马银花;sp6. 麂角杜鹃;sp7. 大萼黄瑞木;sp8. 江南山柳;sp9. 野漆树;sp10. 浙江新木姜子;sp11. 微毛柃;sp12. 短柄枹栎;sp13. 江南越橘;sp14. 小叶青冈;sp15. 黄背越橘;sp16. 树参;sp17. 云山青冈;sp18. 红楠;sp19. 吴茱萸五加;sp20. 薄叶山矾;sp21. 华中樱。
    下载: 导出CSV 
    | 显示表格
    表 5  主要优势树种的Spearman秩相关系数、Pearson相关系数检验结果比较
    Table 5  Comparison of the results of Spearman rank correlation and Pearson rank correlation test of dominant tree species
    检验方法 正联结(相关)/对 负联结(相关)/对 无联结/对
    极显著 显著 不显著 总数 极显著 显著 不显著 总数 总数
    χ2检验 2 8 112 122 0 0 49 49 39
    Spearman秩相关系数 21 14 108 142 1 4 63 68 0
    Pearson相关系数 25 14 89 128 1 2 79 82 0
      说明:极显著P<0.01;显著P<0.05;不显著P>0.05。
    下载: 导出CSV 
    | 显示表格

    Spearman检验结果如图2A表5所示。呈正联结的种对有142对,占总种对数的67.6%。其中,呈极显著正联结(P<0.01)的种对有21对,显著正联结(P<0.05)的种对有14对。呈负联结的种对有68对,占总种对数的32.4%。其中,呈现显著负联结(P<0.01)的种对有1对,显著负联结(P<0.05)的种对有4对。极显著和显著正、负联结比值为7∶1。Spearman秩相关系数分析仍保持与卡方检验相一致的结果。

    图 2  相关系数半矩阵
    Figure 2  Semi-matrix of correlation coefficients

    Pearson检验结果如图2B表5所示。在210个种对中,呈正联结的有128对,占总对数的60.96%;呈负联结的有82对,占总对数的39.04%。在正联结的128个种对中,呈极显著正联结(P<0.01)的有25对,显著正联结(P<0.05)的有14对;在负联结的82个种对中,呈极显著负联结(P<0.01)的有1对,显著负联结(P<0.05)的有2对。极显著和显著正、负联结比值为13∶1。Pearson相关系数分析发现,不显著联结(P>0.05)的种对数仍保持较大一部分,这符合卡方检验结果。

    木本植物优势种的Pearson相关系数与生态位重叠指数的回归分析如图3所示,木本植物优势种种间联结与生态位重叠呈极显著正相关(P<0.01)。

    图 3  主要优势树种Pearson与生态位重叠值的回归分析
    Figure 3  Regression analysis of Pearson rank correlation with niche overlap of dominant tree species

    在浙江巾子峰国家森林公园常绿阔叶林中,木荷、甜槠和黄山松的重要值、生态位宽度较大。在一个群落中,某一物种的重要值与生态位宽度呈正相关,即重要值越大,其生态位宽度也越大[23],但叶兴状等[24]研究发现,福建天台山半枫荷Semiliquidambar cathayensis群落中重要值排第2位的半枫荷,其生态位宽度却排第4位。本研究中,黄山松的生态位宽度最大,其次是甜槠和木荷;木荷虽然在该群落中的重要值最大,但其生态位宽度略低于黄山松和甜槠。大萼黄瑞木Adinandra glischroloma var. macrosepala的重要值虽然排在第7位,但其生态位宽度最小,结合实际野外调查,大萼黄瑞木高度聚集分布在同一个样方中,其重要值大小和生态位宽度在一定程度上受到分布频度的影响,这与刘雨婷等[25]的研究结果相似,表明它对该群落环境的适应性和资源的利用能力不全面,竞争性较弱,有可能发展为特化种。

    生态位重叠指数和生态位相似比系数可以反映物种对资源的利用程度和环境的适应性[26]。物种的生态位宽度越大,则生态位重叠指数越大,对有共同需求的资源竞争压力也越大[27]。本研究发现,生态位宽度最大的黄山松与甜槠、锥栗、马银花Rhododendron ovatum、麂角杜鹃Rhododendron latoucheae、江南山柳Clethra delavayi、野漆树、短柄枹栎Quercus serrata、江南越橘Vaccinium mandarinorum、黄背越橘Vaccinium iteophyllum和薄叶山矾的生态位重叠指数和生态位相似比系数均超过0.50。吴友贵等[28]发现生态位宽度最大的多脉青冈Cyclobalanopsis multinervis、麂角杜鹃和窄基红褐柃Eurya rubiginosa之间的生态位相似比系数都大于0.7。本研究表明:生态位宽度较小的微毛柃Eurya hebeclados-大萼黄瑞木的生态位重叠值和生态位相似比系数均较大,其值分别为0.82 和0.52,与栾兆平等[29]研究结果相似,即生态位宽度较小的物种,其生态位重叠指数超过了0.90。

    种间联结是物种在空间上的不同关系,是物种对环境的适应性和对资源利用相似性的体现[30]。浙江巾子峰国家森林公园常绿阔叶林木本植物优势种总体呈显著正联结。结合卡方检验、Spearman秩相关系数和Pearson相关系数可以较好地判断群落中木本植物优势种种对间的联结性,发现呈正联结的种对数大于负联结的种对数,极显著或显著正联结的种对数也大于极显著或显著负联结的种对数,表明该群落属于演替中期,种间的竞争和协作逐渐平衡。可能与该样地海拔较高,人为活动较少有关[26]。张滋芳等[31]认为物种间有相似环境适应性和资源需求,往往会产生正向联系。本研究马银花与麂角杜鹃、黄背越橘,江南越橘与黄背越橘、麂角杜鹃均呈极显著正联结,因为4种植物均为杜鹃花科灌木,有着相似的生态习性;短柄枹栎与锥栗、吴茱萸五加Gamblea ciliataevodiifolia的生态位宽度在木本植物优势种中占据较高位置,也呈极显著正联结,这与张盟等[4]发现有着紧密正联结的物种往往占据较高生态位宽度相似。而红楠Machilus thunbergii-甜槠呈极显著负联结,可能是甜槠多为大径个体,红楠以小径个体为主,高大繁茂的甜槠限制了树高较小的红楠生长。短柄枹栎-木荷呈显著负联结,因为木荷为常绿树种,短柄枹栎为落叶树种,2个物种对光照、水分等需求不同,这与罗敏贤等[32]认为常绿树种和落叶树种生长所需光性不同,会导致物种间呈显著负联结相一致。

    植物之间生态位重叠值与种间联结若呈正联结,表明其存在不同程度的生态位重叠,反之亦然[33]。在本研究发现,浙江巾子峰国家森林公园主要优势树种的Pearson相关系数与生态位重叠的回归分析呈极显著正相关,如马银花-麂角杜鹃种对间呈极显著正联结,种对间的Pianka重叠值为0.84,其Pearson相关系数为0.69,呈正向关系,这与郑俊鸣等[34]认为物种种间正联结越强,其生态位重叠指数也越大的研究结果相似。

    浙江巾子峰国家森林公园常绿阔叶林属于比较稳定的生态系统,可以选择具有较宽的生态位和适应性较强的树种,如木荷、甜槠、锥栗、马尾松、马银花、麂角杜鹃和短柄枹栎等作为自然植被恢复的优先树种;而对于小叶青冈Cyclobalanopsis gracilis、大萼黄瑞木、薄叶山矾、云山青冈Cyclobalanopsis sessilifolia和红楠等树种,其生态位重叠值和生态位相似系数较低,生态位宽度也较低,应在自然植被恢复和生物多样性保护中进行一定调控。

    巾子峰国家森林公园常绿阔叶林群落物种多样性较丰富,部分物种对资源的需求有一定的相似性;物种总体呈显著正联结,种间关系较松散,各种对间的关联较弱,该群落逐渐趋于平衡阶段,各物种之间竞争较小。因此,在该地区可以选择有相似的生境需求和较宽生态位的优势乡土树种,调控生态位较小的树种,以期实现该地区群落正向演替。

  • 表  1  美洲黑杨杂交亲本信息

    Table  1.   Basic information of parents in hybrid experiment of P. deltoides

    杂交亲本来源
    S3239、SH3(洪3)、SH2(洪2)、
     NL3804(南林3804杨)
    起源于美国密西西比河下游的美洲黑杨无性系,属美洲黑杨,原产地美国密西西比河下游第38号
     洲,1991年从美国南方林业试验站引进,2008年从美洲黑杨种质资源库中选出
    NL447(南林447杨)来源于I-69×445杂种无性系(属于欧美杨,开花早)
    NL780(南林780杨)来源于85杨半同胞家系
    B106来源于小叶杨与美洲黑杨优良亲本回交F1代杂种无性系
    SY2(泗杨2号)来源于母本I-69杨×S3239杂种无性系
    NL15(南林15杨)来源于I-69×S3244杂种无性系,母本I-69杨来源20世纪70年代引自意大利杨树研究所,父本S3244来 自美国密西西比河下游第32号洲
    下载: 导出CSV

    表  2  美洲黑杨不同杂交组合生长性状与叶片性状方差分析

    Table  2.   Variance analysis of growth and leaf traits of different hybrid combinations in P. deltoides

    性状  变异来源自由度FP性状  变异来源自由度FP
    苗高  组合间88.3720.000***叶柄长 组合间86.8650.000***
    地径  组合间85.9510.000***侧脉夹角组合间83.2880.009**
    材积  组合间85.0550.001***叶宽基距组合间83.4690.007**
    叶长  组合间86.6960.000***叶面积 组合间86.7480.000***
    叶宽  组合间88.0970.000***叶周长 组合间86.6770.000***
    叶形指数组合间83.8850.004**
      说明:***表示P<0.001;**表示P<0.01
    下载: 导出CSV

    表  3  美洲黑杨杂种苗期生长性状和叶片性状变异分析

    Table  3.   Analysis on variation of growth traits and leaf traits of P. deltoides hybrids at seedling stage

    性状     苗高/cm地径/mm材积/cm3叶长/cm叶宽/cm叶形指数叶柄长/cm侧脉夹角/(°)叶宽基距/cm叶面积/cm2叶周长/cm
    平均值    150.109.9541.1613.6313.131.0417.2772.622.46142.2558.59
    最小值    119.948.2321.9012.0411.320.9686.1869.522.00110.9551.16
    最大值    170.6311.7160.6215.9815.251.0938.6475.423.05188.7169.15
    遗传变异系数/%12.2111.9731.138.609.373.3610.522.5612.3416.659.45
    表型变异系数/%15.5416.0943.8811.2211.725.1813.644.2519.9821.6912.34
    家系遗传力  0.8810.8320.8020.8510.8770.7430.8540.6960.7120.8520.850
    单株遗传力  0.6480.5530.5030.5880.6400.4190.5950.3640.3820.5900.587
    下载: 导出CSV

    表  4  美洲黑杨不同杂交组合叶片性状与生长性状的相关性分析

    Table  4.   Correlation analysis between leaf and growth traits of different hybrid combinations of P. deltoides

    性状  苗高地径材积叶长叶宽叶形指数叶柄长侧脉夹角叶宽基距叶面积叶周长
    苗高  0.788**0.880**0.653*0.792**−0.615*0.708**−0.0780.0890.697**0.735**
    地径  0.711**0.988**0.857**0.969**−0.570*0.960**0.2060.2870.967**0.978**
    材积  0.833**0.977**0.882**1.010**−0.628*0.958**0.2040.3110.980**1.004**
    叶长  0.543*0.762**0.760**0.941**−0.1280.990**0.3880.4040.956**0.969**
    叶宽  0.672*0.881**0.892**0.923**−0.4541.063**0.3590.3570.988**0.984**
    叶形指数−0.415−0.395−0.4300.069−0.320−0.5060.0140.057−0.377−0.330
    叶柄长 0.552*0.860**0.847**0.899**0.983**−0.3290.2770.603*1.052**1.050**
    侧脉夹角0.1700.3790.3890.4440.495−0.1680.491−0.0610.4720.507
    叶宽基距−0.1420.1380.1190.3530.2870.1670.408−0.0240.3290.282
    叶面积 0.579*0.872**0.858**0.943**0.985**−0.2270.974**0.564*0.2701.001**
    叶周长 0.606*0.866**0.860**0.957**0.973**−0.1630.949**0.591*0.2280.993**
      说明:对角线下方为表型相关,对角线上方为遗传相关;*表示P<0.05,**表示P<0.01
    下载: 导出CSV

    表  5  美洲黑杨不同杂交组合叶片性状对生长性状的间接选择

    Table  5.   Indirect selection of leaf traits to growth traits in different hybrid combinations of P. deltoides

    性状  苗高地径材积
    相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%
    叶长  26.49274.802.378106.2727.106114.66
    叶宽  32.61592.102.729121.9731.508133.28
    叶形指数−23.310−65.82−1.478−66.03−18.031−76.27
    叶柄长 28.78581.282.669119.3029.505124.81
    侧脉夹角−2.862−8.080.51723.105.67023.98
    叶宽基距3.3039.330.72832.558.74236.98
    叶面积 28.29579.902.685119.9930.137127.48
    叶周长 29.81084.172.713121.2430.847130.48
    下载: 导出CSV

    表  6  美洲黑杨不同杂交组合各性状对材积的通径分析

    Table  6.   Path analysis of volume in different hybrid combinations of P. deltoides

    性状  通过叶长通过叶宽通过叶柄长通过叶面积通过叶周长通过苗高通过地径
    叶长  0.327−0.5420.1600.269−0.1820.2720.485
    叶宽  0.308−0.5750.1710.278−0.1840.3300.548
    叶柄长 0.324−0.6120.1610.296−0.1970.2950.543
    叶面积 0.313−0.5690.1700.282−0.1870.2900.547
    叶周长 0.317−0.5660.1690.282−0.1870.3070.554
    苗高  0.213−0.4550.1140.196−0.1380.4170.445
    地径  0.281−0.5590.1550.273−0.1840.3290.565
      说明:粗体为各性状对材积的直接作用,其他为各性状通过另一性状对材积的间接作用
    下载: 导出CSV

    表  7  不同性状组合指数选择方程

    Table  7.   Index selection equation of different characteristics

    指数选择方程综合育种值
    选择进展(△H)
    指数遗
    传力
    综合选择指
    数的估计准确度
    I1=0.0975X1−0.189 0X2+0.6725X3+2.5578X4+2.8459X5+0.1195X6−0.3977X710.080.8680.928
    I2=0.1047X1−1.1988X2−0.4551X3+2.036 0X4+3.6552X5+0.0774X6 8.620.8720.930
    I3=−0.1347X1+4.1451X2+13.6535X4+4.0199X5−0.7178X6 7.350.8960.937
    I4=0.0954X1+0.0249X2+2.022 0X5+0.0613X6 5.710.8620.926
    下载: 导出CSV

    表  8  美洲黑杨优良家系生长性状与叶片性状遗传增益估算

    Table  8.   Estimation of genetic gain of growth and leaf characteristics in superior families of P. deltoides

    杂交组合 苗高/%地径/%材积/%叶柄长/%叶面积/%
    B106×NL153.0614.6929.0016.0727.82
    S3239×NL159.5614.1437.9112.5419.60
    NL447×SY28.36 3.2713.80 3.135.89
    平均增益/%6.9910.7026.9011.5016.85
    下载: 导出CSV
  • [1] 徐纬英. 杨树[M]. 哈尔滨: 黑龙江人民出版社, 1988: 237 − 253.
    [2] 李善文, 张志毅, 何承忠, 等. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37 − 41.

    LI Shanwen, ZHANG Zhiyi, HE Chengzhong, et al. Progress on hybridization breeding of poplar in china [J]. For Res, 2004, 17(2): 37 − 41.
    [3] 杨洋, 张蕾, 宋菲菲, 等. 人工林速生材高值化利用研究进展[J]. 林产工业, 2020, 57(5): 53 − 55.

    YANG Yang, ZHANG Lei, SONG Feifei, et al. Research progress on high value utilization of fast-growing wood in plantation [J]. China For Prod Ind, 2020, 57(5): 53 − 55.
    [4] 李世峰, 戴咏梅, 潘惠新, 等. 杨树不同杂交组合苗期性状遗传变异[J]. 南京林业大学学报(自然科学版), 2003, 27(3): 47 − 50.

    LI Shifeng, DAI Yongmei, PAN Huixin, et al. Genetic variation of the seedling traits in various types of poplar crosses [J]. J Nanjing For Univ Nat Sci Ed, 2003, 27(3): 47 − 50.
    [5] 罗敬. 美洲黑杨杂交试验及杂种苗期重要性状变异研究[D]. 南京: 南京林业大学, 2008.

    LUO Jing. Study on Populus deltoids Hybridization and Genetic Variations of Seedling Important Traits of Hybrids [D]. Nanjing: Nanjing Forestry University, 2008.
    [6] 李火根, 黄敏仁, 王明庥. 美洲黑杨×欧美杨F1无性系一级分枝特性与生长及干形关系的研究[J]. 南京林业大学学报, 1994, 18(1): 7 − 13.

    LI Huogen, HUANG Minren, WANG Mingxiu. Study on relationship between first-order branch characteristics and growth traits, stem form for Populus deltoides×Populus euramericana F1 clones [J]. J Nanjing For Univ, 1994, 18(1): 7 − 13.
    [7] 王瑞文, 黄国伟, 李振芳, 等. 黑杨派杨树不同杂交组合F1代遗传分析及苗期选择[J]. 中国农学通报, 2017, 33(10): 48 − 52.

    WANG Ruiwen, HUANG Guowei, LI Zhenfang, et al. F1 genetic analysis and seedling selection of different cross combinations of black popular [J]. Chin Agric Sci Bull, 2017, 33(10): 48 − 52.
    [8] 王庆斌, 张玉波, 刘国刚, 等. 美洲黑杨杂种无性系引种苗期选择[J]. 东北林业大学学报, 2002, 30(5): 11 − 14.

    WANG Qingbin, ZHANG Yubo, LIU Guogang, et al. Introduction selection of Populus deltoides hybrid clones in seedling stage [J]. J Northeast For Univ, 2002, 30(5): 11 − 14.
    [9] 王明庥, 黄敏仁, 吕士行, 等. 黑杨派新无性系研究: 苗期测定[J]. 南京林业大学学报, 1987, 11(2): 1 − 12.

    WANG Mingxiu, HUANG Minren, LÜ Shixing, et al. Study on new clones of Aegeiros popular: nursery testing [J]. J Nanjing For Univ, 1987, 11(2): 1 − 12.
    [10] 王庆斌, 张玉波, 邹威, 等. 杨树新品种生长性状遗传相关及通径分析[J]. 林业科技, 2011, 36(1): 5 − 7.

    WANG Qingbin, ZHANG Yubo, ZOU Wei, et al. Correlation and path analysis on new poplar variety growth traits [J]. For Sci Technol, 2011, 36(1): 5 − 7.
    [11] 冯延芝, 乔杰, 王保平, 等. 南方低山丘陵区泡桐无性系主要性状的综合选择[J]. 林业科学研究, 2017, 30(6): 969 − 976.

    FENG Yanzhi, QIAO Jie, WANG Baoping, et al. Comprehensive selection of main phenotypic characters of Palllownia clones in the hilly area of southern China [J]. For Res, 2017, 30(6): 969 − 976.
    [12] 王明庥. 林木育种学概论[M]. 北京: 中国林业出版社, 1989: 109 − 115.
    [13] 秦光华, 姜岳忠, 乔玉玲, 等. 黑杨派杨树杂交F1子代苗期遗传测定[J]. 东北林业大学学报, 2011, 39(4): 29 − 32.

    QIN Guanghua, JIANG Yuezhong, QIAO Yuling, et al. Genetic testing of F1 hybrid progeny of Aaigeiros section at seeding stage [J]. J Northeast For Univ, 2011, 39(4): 29 − 32.
    [14] ZHU Yanhua, KANG Hongzhang, XIE Qiang, et al. Pattern of leaf vein den-sity and climate relationship of Quercus variabilis populations remains unchanged with environmental changes [J]. Trees, 2012, 26: 597 − 607.
    [15] 李金花, 张绮纹, 苏晓华, 等. 美洲黑杨与不同种源青杨杂种苗叶片和生长性状多水平变异研究[J]. 林业科学研究, 2002, 15(1): 76 − 82.

    LI Jinhua, ZHANG Qiwen, SU Xiaohua, et al. Multi-level genetic variation in leaf and growth of hybrid system between Populus deltoides and P. cathayana [J]. For Res, 2002, 15(1): 76 − 82.
    [16] 成星奇, 贾会霞, 孙佩, 等. 丹红杨×通辽1号杨杂交子代叶形性状的遗传变异分析[J]. 林业科学研究, 2019, 32(2): 100 − 110.

    CHENG Xingqi, JIA Huixia, SUN Pei, et al. Genetic variation analysis of leaf morphological traits in Populus deltoides cl. ‘Danhong’×P. simonii cl. ‘Tongliao 1’ hybrid progenies [J]. For Res, 2019, 32(2): 100 − 110.
    [17] 张勇, 朱文, 高梅, 等. 橡胶树无性系苗期生长和叶片表型性状比较分析[J]. 西部林业科学, 2020, 49(3): 66 − 73.

    ZHANG Yong, ZHU Wen, GAO Mei, et al. Comparison analysis of phenotypic growth and leaf traits of Hevea brasiliensis clones at seedling stage [J]. J West For Sci, 2020, 49(3): 66 − 73.
    [18] 李春明, 严冬, 夏辉, 等. 毛白杨种内杂交无性系苗期生长量及叶片性状变异研究[J]. 植物研究, 2016, 36(1): 62 − 67.

    LI Chunming, YAN Dong, XIA Hui, et al. Variations of growth and leaf traits of intraspecific hybridization clones of Populus tomentosa [J]. Bull Bot Res, 2016, 36(1): 62 − 67.
  • [1] 应学兵, 陈萍梅, 李璐瑶, 王宏, 吴皓天, 张毅隽, 张学荣, 臧运祥.  不同茄子品种的综合评价 . 浙江农林大学学报, 2025, 42(2): 357-364. doi: 10.11833/j.issn.2095-0756.20240394
    [2] 李柯豫, 陈荣, 刘琏, 蔡晓郡, 姜郑楚, 谢前丹, 俞晨良, 喻卫武.  雌性榧树种实性状和SSR标记的遗传变异 . 浙江农林大学学报, 2025, 42(1): 94-102. doi: 10.11833/j.issn.2095-0756.20240254
    [3] 沈汉, 郑成忠, 邱勇斌, 汪清华, 华克达, 缪强, 范艳如, 姜景民, 韦一, 刘军.  10年生香椿生长与形质性状的种源变异及选择 . 浙江农林大学学报, 2024, 41(3): 597-605. doi: 10.11833/j.issn.2095-0756.20230481
    [4] 晏姝, 韦如萍, 王润辉, 黄荣, 郑会全.  南洋楹半同胞家系苗期变异及选择 . 浙江农林大学学报, 2024, 41(2): 306-313. doi: 10.11833/j.issn.2095-0756.20230371
    [5] 陈晓蕾, 邵伟丽, 厉思源, 刘志高, 马红玲, 申亚梅, 董彬, 张超.  6个铁线莲品种杂交F1代表型性状遗传分析 . 浙江农林大学学报, 2023, 40(1): 72-80. doi: 10.11833/j.issn.2095-0756.20220214
    [6] 杨艳, 唐洁, 李永进, 汤玉喜, 黎蕾.  7个南方适生杨树无性系生长和木材纤维性状分析与评价 . 浙江农林大学学报, 2022, 39(4): 807-813. doi: 10.11833/j.issn.2095-0756.20210481
    [7] 尹焕焕, 刘青华, 周志春, 万雪琴, 余启新, 丰忠平.  马尾松无性系木材基本密度和纤维形态的变异及选择 . 浙江农林大学学报, 2020, 37(6): 1186-1192. doi: 10.11833/j.issn.2095-0756.20190720
    [8] 丁绍刚, 朱嫣然.  基于层次分析法与模糊综合评价法的医院户外环境综合评价体系构建 . 浙江农林大学学报, 2017, 34(6): 1104-1112. doi: 10.11833/j.issn.2095-0756.2017.06.019
    [9] 张晓飞, 李火根, 尤录祥, 曹健.  鹅掌楸不同交配组合子代苗期生长变异及遗传稳定性分析 . 浙江农林大学学报, 2011, 28(1): 103-108. doi: 10.11833/j.issn.2095-0756.2011.01.016
    [10] 黄信金.  柳杉种源变异与联合选择 . 浙江农林大学学报, 2010, 27(6): 884-889. doi: 10.11833/j.issn.2095-0756.2010.06.013
    [11] 黄德龙.  福建柏优树子代测定及初步选择 . 浙江农林大学学报, 2009, 26(3): 449-454.
    [12] 胡斌, 樊军锋, 高建设, 周永学.  美洲黑杨与青杨、川杨和卜氏杨人工杂交及杂种苗生长和抗病性状测定 . 浙江农林大学学报, 2009, 26(6): 778-783.
    [13] 尹增芳, 樊汝汶.  美洲黑杨次生木质部导管分化进程的超微结构分析 . 浙江农林大学学报, 2008, 25(4): 431-436.
    [14] 张飞, 房伟民, 陈发棣, 赵宏波, 贾文珂.  切花菊花器性状的遗传变异与相关性研究 . 浙江农林大学学报, 2008, 25(3): 293-297.
    [15] 郑蓉.  福建麻竹地理种源多性状综合评价及选择 . 浙江农林大学学报, 2005, 22(5): 507-512.
    [16] 刘永红, 樊军锋, 杨培华, 韩创举.  油松单亲子代苗期生长性状遗传分析 . 浙江农林大学学报, 2005, 22(5): 513-517.
    [17] 管兰华, 潘惠新, 黄敏仁, 施季森.  美洲黑杨×欧美杨F1 无性系遗传变异 . 浙江农林大学学报, 2004, 21(4): 376-381.
    [18] 郑仁华, 陈国金, 傅忠华, 俞白楠, 杨宗武, 傅玉狮, 潘琼蓉.  马尾松优树子代遗传评价及选择 . 浙江农林大学学报, 2001, 18(2): 144-149.
    [19] 童再康, 郑勇平, 罗士元, 杨惠平, 史红正.  黑杨派南方型新无性系纸浆材材性变异与遗传 . 浙江农林大学学报, 2001, 18(1): 21-25.
    [20] 林同龙.  杉木杂交后代胸径生长和木材体积质量的遗传变异及联合选择 . 浙江农林大学学报, 2000, 17(2): 142-145.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200803

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1144

计量
  • 文章访问数:  676
  • HTML全文浏览量:  139
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-06-11
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2021-12-08

美洲黑杨杂交子代苗期性状遗传变异及选择

doi: 10.11833/j.issn.2095-0756.20200803
    基金项目:  江苏省科技计划项目(BE2016387)
    作者简介:

    严艳兵(ORCID: 0000-0003-4877-4761),从事杨树遗传改良研究。E-mail: 1447025861@qq.com

    通信作者: 潘惠新(ORCID: 0000-0001-5231-6937),教授,从事杨树遗传改良研究。E-mail: hxpan@njfu.com.cn
  • 中图分类号: S722.5

摘要:   目的  分析美洲黑杨Populus deltoides杂种苗期生长性状和叶片性状的遗传变异及遗传相关性,为杨树新品种选育提供材料。  方法  以美洲黑杨不同品种为亲本进行杂交试验,测定了9个杂交组合子代苗期生长性状和叶片性状,并通过方差分析、遗传参数估算、遗传相关分析及通径分析等,了解美洲黑杨杂种生长性状和叶片性状的遗传变异规律及性状间遗传互作,并依此开展美洲黑杨优良杂交组合的联合选择。  结果  杂交组合间3个生长性状与5个叶片性状存在显著(P<0.05)或极显著(P<0.01)差异。苗高、地径、材积与叶长、叶宽、叶柄长、叶周长、叶面积的家系遗传力均达0.8以上,受强度遗传控制,遗传变异系数为8.6%(叶长)~31.13%(材积),有利于优良杂交组合的选择。相关分析表明:叶长、叶宽、叶柄长、叶周长、叶面积与苗高、地径、材积间均达极显著正遗传相关(P<0.01)。相关遗传进度分析表明:除叶形指数、侧脉夹角和叶宽基距外,其他叶片性状对3个生长性状的遗传相关进度和间接选择效率较高。通径分析表明:苗高和地径对材积的直接遗传控制作用较大,叶长、叶宽、叶柄长、叶面积和叶周长通过苗高和地径对材积产生较大的间接遗传控制作用。利用综合指数选择法开展美洲黑杨9个杂交组合的生长与叶片性状联合选择,选出3个速生优质的杂交组合(B106×NL15、S3239×NL15、NL447×SY2),材积遗传增益达26.90%。  结论  美洲黑杨杂交组合子代1年生苗的3个生长性状和5个叶片性状均存在丰富变异,遗传互作显著;苗高和地径对材积的直接作用最大,5个叶片性状对材积也产生较大的间接控制效应。综合指数选择法能有效地选出速生优质杂交组合,材积遗传增益较高,杨树遗传改良效果较好。表8参18

English Abstract

李琨, 胡兆贵, 张茂付, 等. 巾子峰国家森林公园常绿阔叶林木本植物优势种的生态位和种间联结性[J]. 浙江农林大学学报, 2025, 42(1): 45−54 doi:  10.11833/j.issn.2095-0756.20240307
引用本文: 严艳兵, 潘惠新. 美洲黑杨杂交子代苗期性状遗传变异及选择[J]. 浙江农林大学学报, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803
LI Kun, HU Zhaogui, ZHANG Maofu, et al. Niche and interspecific connectivity of dominant species of woody plants in evergreen broad-leaved forest of Jinzifeng National Forest Park[J]. Journal of Zhejiang A&F University, 2025, 42(1): 45−54 doi:  10.11833/j.issn.2095-0756.20240307
Citation: YAN Yanbing, PAN Huixin. Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803
  • 杨树为杨柳科Salicaceae杨属Populus植物,共包括五大杨派100余种,在世界范围内广泛分布,以30°~60° N的温带或暖温带地区较为常见[1],是短期轮伐的造林树种,对解决生态环境治理和木材短缺问题有利[2]。目前中国林业发展中推广的杨树新优品种主要来源于人工杂交选育,具有早期速生、材质好、抗性强等特点,创造了巨大的生态效益、经济效益以及社会效益[3]。因此杂交育种仍然是目前乃至今后培育杨树良种的重要手段。美洲黑杨Populus deltoides原产于北美密西西比河下游地区,是中国引种的南方型平原地区重要速生工业用材树种和绿化造林树种之一,是人工杂交选育新品种的常用亲本。李世峰等[4]发现:美洲黑杨杂交组合苗高和胸径平均值均超过亲本(T120和I-69)。罗敬[5]以美洲黑杨与小叶杨P. simonii为亲本进行杂交发现:获得的130株杂交子代苗高和地径在组合间和组合内都存在广泛变异。李火根等[6]以美洲黑杨与欧美杨P.×euramericana作亲本构建杂交组合,结果发现:得到的F1代13个无性系及亲本I-69杨的生长量和分枝特性在无性系间存在较大差异。王瑞文等[7]以黑杨派不同杂种无性系为亲本开展杂交试验,并估算杂种苗期生长性状遗传参数,结果表明:F1代杂种优势明显,通过综合评价可初步筛选出优良杂交组合及优良无性系。王庆斌等[8]以I-69杨为母本,青杨P. cathayana和小黑杨P. simonii×P. nigra为父本进行杂交,初选了一批杂种新无性系并进行了综合分析评价,为杨树改良和新品种选育提供了指导。但目前杨树发展过程中也存在着一些急需解决的问题,如品种单一,低产林分多,良种化率不高,飘絮严重等,严重影响长江中下游平原地区杨树生产与发展,亟待选育出适合本地速生、优质、高产及无絮的南方型美洲黑杨新品种进行更新换代。本研究选择速生、优质、高产及抗性较好的美洲黑杨作亲本构建杂交组合,对杂种苗期生长性状和叶片性状进行遗传变异分析,并通过综合指数选择法选出生长量较大的优良杂交组合,以期为长江中下游地区杨树良种化生产提供材料。

    • 研究区位于南京市栖霞区八卦洲街道外沙村南京林业大学无絮杨育种基地(32°13′N,118°48′E),该地区属亚热带季风气候区,四季分明、温暖湿润、雨量集中,全年平均气温为15.4 ℃,土壤肥沃,土壤结构良好,透气透水性较强,土壤中性偏碱。

    • 2020年3月进行杂交试验。9个杂交组合分别为:NL15 (P. deltoids ‘Nanlin 15’,♀)×S3239(P. deltoides,♂),SY2(P. deltoids ‘Siyang-2’,♀)×NL447(P. deltoides ‘Nanlin 447’,♂),NL15(♀)×NL780(P. deltoides ‘Nanlin 780’,♂),NL15(♀)×SH3(P. deltoids ‘Hong-3’,♂),NL15(♀)×B106(小叶杨回交F1代,♂),SY2(♀)×NL3804(P. deltoids ‘Nanlin 3804’,♂),NL15(♀)×SH2(P. deltoids ‘Hong-2’,♂),SY2(♀)×SH2(♂),NL15(♀)×NL447(♂),各杂交亲本遗传背景信息详见表1。5月收集所有的杂交种子带回实验室处理,随后在研究区河泥苗床上播种育苗,7月初将所有的杂种苗分区移栽到普通苗床上,遮阳数日,苗期正常水分管理。每个杂交组合按单因素随机排列,6株为1小区。

      表 1  美洲黑杨杂交亲本信息

      Table 1.  Basic information of parents in hybrid experiment of P. deltoides

      杂交亲本来源
      S3239、SH3(洪3)、SH2(洪2)、
       NL3804(南林3804杨)
      起源于美国密西西比河下游的美洲黑杨无性系,属美洲黑杨,原产地美国密西西比河下游第38号
       洲,1991年从美国南方林业试验站引进,2008年从美洲黑杨种质资源库中选出
      NL447(南林447杨)来源于I-69×445杂种无性系(属于欧美杨,开花早)
      NL780(南林780杨)来源于85杨半同胞家系
      B106来源于小叶杨与美洲黑杨优良亲本回交F1代杂种无性系
      SY2(泗杨2号)来源于母本I-69杨×S3239杂种无性系
      NL15(南林15杨)来源于I-69×S3244杂种无性系,母本I-69杨来源20世纪70年代引自意大利杨树研究所,父本S3244来 自美国密西西比河下游第32号洲
    • 2020年10月调查苗高和地径。苗高用精确到1 cm的3 m塔尺测量,地径用精确到1 mm的游标卡尺测量,材积根据王明庥等[9]的方法计算,公式为:VD2H×10−2/12。其中V为材积(cm3),H为苗高(cm),D为地径(mm)。

    • 2020年9月,从各杂交组合小区内选取2个标准株,各株采集第5~7片叶。测定叶长(cm)、叶宽(cm)、叶柄长(cm),叶宽基距(叶最宽处距叶基距离,cm)用直尺测量,侧脉夹角(主脉与最大叶宽处侧脉的夹角,°)用量角器测量,叶面积(cm2)和叶周长(cm)用IMAGE J的图像处理功能计算获得,叶形指数=叶长/叶宽。

    • 采用R语言、DPS软件和Excel 2016对试验数据进行统计分析、处理和绘图。

      用R语言进行性状方差分析,线性模型如下:Xijk=μ+ti+bj+eijkXij=u+ti+eij。其中:XijXijk为实际观测值,μ为总体平均数,ti为组合效应,bj为区组效应,eijeijk为随机误差。

      遗传参数估计公式:

      $$ {h}_{1}^{2}=\frac{r{\sigma }_{\mathrm{f}}^{2}}{{\sigma }_{\mathrm{e}}^{2}+r{\sigma }_{\mathrm{f}}^{2}}\times 100\%; $$
      $$ {h}_{2}^{2}=\frac{{\sigma }_{\mathrm{f}}^{2}}{{\sigma }_{\mathrm{e}}^{2}+{\sigma }_{\mathrm{f}}^{2}}\times 100\%; $$
      $$ {C}_{\mathrm{v}\mathrm{g}}=\frac{\sqrt{{\sigma }_{\mathrm{s}}^{2}}}{\overline X}\times 100\%; $$
      $$ {C}_{\mathrm{v}\mathrm{e}}=\frac{\sqrt{{\sigma }_{\mathrm{e}}^{2}}}{\overline X}\times 100\mathrm{\%}; $$
      $$ {C}_{\mathrm{v}\mathrm{p}}=\frac{\sqrt{{\sigma }_{\mathrm{p}}^{2}}}{\overline X}\times 100\%{\text{。}} $$

      其中:$ {h}_{1}^{2} $$ {h}_{2}^{2} $为家系和单株遗传力,r为各组合的重复数,Cvg为遗传变异系数,Cve为环境变异系数,Cvp为表型变异系数,σs为遗传标准差,σe为环境标准差,σp为表型标准差,σf为遗传方差,$ \overline X $为各性状的平均值。

      遗传进度和选择效率计算:

      $$ {G_{\rm{s}}} = q \times \sqrt {\sigma _y^2} \times \sqrt {h_y^2} \times 100\% ; $$
      $$ {G_{\rm{y}}} = q \times \sqrt {h_x^2} \times \sqrt {h_y^2} \times {r_{xy}} \times \sqrt {\sigma _{{\rm{p}}y}^2} ; $$
      $$ E = \left( {{G_{\rm{y}}}/{G_{\rm{s}}}} \right)/100\% {\text{。}} $$

      其中:Gs为直接选择遗传进度,q为选择强度,$ {\sigma }_{y}^{2} $为性状y的遗传方差,$ {h}_{y}^{2} $为性状y的遗传力;Gy为相关遗传进度,$ {h}_{x}^{2} $为性状x的遗传力,rxy为性状x与性状y的遗传相关,$ {\sigma }_{\mathrm{p}y}^{2} $为性状y的表型方差;E为选择效率。

      通径分析模型。根据遗传相关系数建立多元高斯方程组,求解方程组,计算得到直接通径系数,具体参照王庆斌等[10]方法。计算间接通径系数=rda×baY,其中rda为自变量d与自变量a之间的遗传相关系数,baY为自变量a与响应变量Y之间的直接通径系数。计算遗传增益:△G$=\dfrac{{h}_{1}^{2}S}{u}\times 100\mathrm{\%}{\text{;其中}}$S为选择差,u为某一性状总均值。

      多性状综合指数选择。指数选择法采用Smith-Hazel指数选择对各杂交组合进行综合评价,公式为:$I=\displaystyle\sum _{g=1}^{n}{b}_{{g}}{x}_{{g}}$。其中:I为选择指数值,bgg性状的指数系数,xgg性状的表型均值。指数系数计算公式为:bg=P−1GW;其中P为每个性状的表型协方差矩阵,G为遗传协方差矩阵,W为每个性状的经济权重构成的向量;利用等权重法估算杂交组合各性状的经济权重Wg,假设各性状表型标准差的单位变化具有同等重要性,即Wg=1/${\sigma }_{{g}}$[11],其中${\sigma }_{g}$表示各性状的表型标准差。

    • 表2可知:杂种苗期生长性状与叶片性状在杂交组合间均达到差异极显著水平(P<0.01),表明不同杂交组合间子代苗高、地径、材积和各叶片性状均存在较大差异。杂种苗期生长性状和叶片性状的遗传变异分析得出(表3):9个杂交组合的子代苗高、地径、材积平均值分别为150.10 cm、9.95 mm、41.16 cm3,其中NL3804×SY2子代苗高最大(170.63 cm),NL447×NL15最小(119.94 cm),两者相差42.26%。B106×NL15子代地径最大,为11.71 mm,NL447×NL15子代地径最小,为8.23 mm,前者为后者的1.17倍;S3239×NL15子代材积最大(60.62 cm3),NL447×NL15最小(21.90 cm3),两者相差2.76倍。叶片长度均值为13.63 cm,B106×NL15平均叶片长度最大,达15.98 cm,超出群体均值的17.24%,是最小组合SH3×NL15(12.04 cm)的1.32倍;叶片宽度均值为13.13 cm,B106×NL15平均叶片宽度最大,为15.25 cm,高于总均值16.14%,是叶片宽度最小组合NL780×NL15 (11.32 cm)的1.34倍;叶长/叶宽平均值为1.041,NL780×NL15长宽比最大,达1.093,SH3×NL15最小,为0.968;叶柄长度平均值为7.27 cm,组合B106×NL15最大(8.64 cm),超出总均值18.84%,是最小组合NL447×NL15(6.18 cm)的1.76倍;侧脉夹角平均值为72.62°,最大组合为S3239×NL15,达75.42°,最小为NL3804×SY2,只有69.52°;叶宽基距平均值达2.46 cm,最大组合为NL447×SY2,可达 3.05 cm,最小为SH3×NL15,只有2.00 cm;叶面积平均值为142.25 cm2,最大组合B106×NL15 (188.71 cm2)与最小组合NL780×NL15 (110.95 cm2)相差1.70倍;叶周长平均值为 58.59 cm,最大组合B106×NL15 (69.15 cm)与最小组合NL780×NL15 (51.16 cm)相差35.16%。由表3可知:各性状表型变异系数均大于遗传变异系数,其中材积的遗传变异系数(31.13%)和表型变异系数(43.88%)均最大,说明具有较大选择潜力;除叶形指数和侧脉夹角外,其他叶片性状的表型变异系数均大于10%,其中叶面积表型性状变异最大(21.69%),说明具有较大的选择空间。各性状的家系遗传力均大于单株遗传力,其中苗高、地径、材积、叶长、叶宽、叶柄长、叶面积和叶周长的家系遗传力均大于0.8;单株遗传力为0.503~0.648,均属偏强度遗传控制;叶形指数、侧脉夹角和叶宽基距的家系遗传力分别为0.743、0.696、0.712,单株遗传力分别为0.419、0.364、0.382,均为中度以上遗传控制。

      表 2  美洲黑杨不同杂交组合生长性状与叶片性状方差分析

      Table 2.  Variance analysis of growth and leaf traits of different hybrid combinations in P. deltoides

      性状  变异来源自由度FP性状  变异来源自由度FP
      苗高  组合间88.3720.000***叶柄长 组合间86.8650.000***
      地径  组合间85.9510.000***侧脉夹角组合间83.2880.009**
      材积  组合间85.0550.001***叶宽基距组合间83.4690.007**
      叶长  组合间86.6960.000***叶面积 组合间86.7480.000***
      叶宽  组合间88.0970.000***叶周长 组合间86.6770.000***
      叶形指数组合间83.8850.004**
        说明:***表示P<0.001;**表示P<0.01

      表 3  美洲黑杨杂种苗期生长性状和叶片性状变异分析

      Table 3.  Analysis on variation of growth traits and leaf traits of P. deltoides hybrids at seedling stage

      性状     苗高/cm地径/mm材积/cm3叶长/cm叶宽/cm叶形指数叶柄长/cm侧脉夹角/(°)叶宽基距/cm叶面积/cm2叶周长/cm
      平均值    150.109.9541.1613.6313.131.0417.2772.622.46142.2558.59
      最小值    119.948.2321.9012.0411.320.9686.1869.522.00110.9551.16
      最大值    170.6311.7160.6215.9815.251.0938.6475.423.05188.7169.15
      遗传变异系数/%12.2111.9731.138.609.373.3610.522.5612.3416.659.45
      表型变异系数/%15.5416.0943.8811.2211.725.1813.644.2519.9821.6912.34
      家系遗传力  0.8810.8320.8020.8510.8770.7430.8540.6960.7120.8520.850
      单株遗传力  0.6480.5530.5030.5880.6400.4190.5950.3640.3820.5900.587
    • 表4可知:在表型和遗传上,3个生长性状(苗高、地径和材积)之间均呈极显著正相关(P<0.01);叶长、叶宽、叶柄长、叶面积、叶周长分别与生长性状间呈显著(P<0.05)或极显著(P<0.01)正相关。叶形指数与生长性状间在遗传上呈显著负相关(P<0.05),在表型上负相关,但相关性不显著;侧脉夹角、叶宽基距与生长性状间相关性均不显著。叶长、叶宽、叶柄长、叶面积和叶周长相互之间存在着显著(P<0.05)或极显著(P<0.01)正相关,叶形指数、侧脉夹角和叶宽基距与其余叶片性状间呈较弱相关或负相关,相关性均未达到显著水平,表明叶形指数、侧脉夹角和叶宽基距与其他性状间的遗传互作较小。

      表 4  美洲黑杨不同杂交组合叶片性状与生长性状的相关性分析

      Table 4.  Correlation analysis between leaf and growth traits of different hybrid combinations of P. deltoides

      性状  苗高地径材积叶长叶宽叶形指数叶柄长侧脉夹角叶宽基距叶面积叶周长
      苗高  0.788**0.880**0.653*0.792**−0.615*0.708**−0.0780.0890.697**0.735**
      地径  0.711**0.988**0.857**0.969**−0.570*0.960**0.2060.2870.967**0.978**
      材积  0.833**0.977**0.882**1.010**−0.628*0.958**0.2040.3110.980**1.004**
      叶长  0.543*0.762**0.760**0.941**−0.1280.990**0.3880.4040.956**0.969**
      叶宽  0.672*0.881**0.892**0.923**−0.4541.063**0.3590.3570.988**0.984**
      叶形指数−0.415−0.395−0.4300.069−0.320−0.5060.0140.057−0.377−0.330
      叶柄长 0.552*0.860**0.847**0.899**0.983**−0.3290.2770.603*1.052**1.050**
      侧脉夹角0.1700.3790.3890.4440.495−0.1680.491−0.0610.4720.507
      叶宽基距−0.1420.1380.1190.3530.2870.1670.408−0.0240.3290.282
      叶面积 0.579*0.872**0.858**0.943**0.985**−0.2270.974**0.564*0.2701.001**
      叶周长 0.606*0.866**0.860**0.957**0.973**−0.1630.949**0.591*0.2280.993**
        说明:对角线下方为表型相关,对角线上方为遗传相关;*表示P<0.05,**表示P<0.01
    • 为进一步了解苗期叶片性状对生长性状的相关遗传进度和间接选择效率,参照王明庥[12]方法研究估算5%入选率(选择强度为2.06)下间接选择的相关遗传进度和选择效率。由表5可以看出:利用叶长、叶宽、叶柄长、叶面积和叶周长对生长性状进行间接选择,相关遗传进度较大,苗高、地径、材积分别为26.492~32.615、2.378~2.729、27.106~31.508,间接选择效率苗高、地径、材积分别为74.8%~92.1%、106.27%~121.97%、114.66%~133.28%,其中对材积的选择效率最大。叶形指数、侧脉夹角和叶宽基距对生长性状的相关遗传进度和间接选择效率均较低,表明叶形指数、侧脉夹角和叶宽基距不适合作为生长性状的间接选择性状。

      表 5  美洲黑杨不同杂交组合叶片性状对生长性状的间接选择

      Table 5.  Indirect selection of leaf traits to growth traits in different hybrid combinations of P. deltoides

      性状  苗高地径材积
      相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%
      叶长  26.49274.802.378106.2727.106114.66
      叶宽  32.61592.102.729121.9731.508133.28
      叶形指数−23.310−65.82−1.478−66.03−18.031−76.27
      叶柄长 28.78581.282.669119.3029.505124.81
      侧脉夹角−2.862−8.080.51723.105.67023.98
      叶宽基距3.3039.330.72832.558.74236.98
      叶面积 28.29579.902.685119.9930.137127.48
      叶周长 29.81084.172.713121.2430.847130.48
    • 单株材积是影响苗期生长量的主要因子。由苗高、地径、叶片性状对材积的遗传作用(表4表5)可知:苗高、地径、叶长、叶宽、叶柄长、叶面积和叶周长等7个性状对材积生长量具有较强的遗传控制作用。由表6可知:7个性状对材积生长量均呈不同程度的遗传控制,其中地径对材积的直接控制作用最大,通径系数达0.565,其次为苗高,通径系数达0.417,同时苗高通过地径对材积产生较大的间接遗传控制作用;叶长、叶宽、叶柄长、叶面积和叶周长对材积的直接通径系数均较弱,但这些性状通过地径对材积生长量的间接通径系数较大,达0.485~0.554,说明这些性状对材积生长量具有较大的正向间接遗传控制作用,并且这种间接遗传控制作用主要是通过与地径的遗传相关来实现。

      表 6  美洲黑杨不同杂交组合各性状对材积的通径分析

      Table 6.  Path analysis of volume in different hybrid combinations of P. deltoides

      性状  通过叶长通过叶宽通过叶柄长通过叶面积通过叶周长通过苗高通过地径
      叶长  0.327−0.5420.1600.269−0.1820.2720.485
      叶宽  0.308−0.5750.1710.278−0.1840.3300.548
      叶柄长 0.324−0.6120.1610.296−0.1970.2950.543
      叶面积 0.313−0.5690.1700.282−0.1870.2900.547
      叶周长 0.317−0.5660.1690.282−0.1870.3070.554
      苗高  0.213−0.4550.1140.196−0.1380.4170.445
      地径  0.281−0.5590.1550.273−0.1840.3290.565
        说明:粗体为各性状对材积的直接作用,其他为各性状通过另一性状对材积的间接作用
    • 采用多性状综合指数选择法对9个杂交组合进行综合评价。由于叶形指数、侧脉夹角和叶宽基距与生长性状间的遗传互作及对材积生长量的直接或间接遗传控制均较弱,因此利用苗高(X1)、地径(X2)、叶片长(X3)、叶片宽(X4)、叶柄长(X5)、叶面积(X6)和叶周长(X7)等7个性状构建选择指数方程,进行生长性状与叶形性状的联合选择。根据等权重法估算各性状指标的经济权重,经济权重向量分别为W=(0.085,1.059,1.088,1.166,1.721,0.056,0.238)。

      不同性状组合的指数选择方程和性状综合育种值选择进展(表7)显示:指数方程I1I2I3的综合育种值选择进展(△H)、指数遗传力和综合选择指数的估计准确度均较高,但苗高和地径的偏回归系数均存在负值,即为负向遗传进展;生长性状是育种改良的首要目标,不能以牺牲生长量的改良进行选择,所以这些方程不太理想。以苗高、地径、叶面积和叶柄长构建指数方程I4,其各性状的偏回归系数均为正值,即均为正向选择;综合育种值选择进展为5.71,指数遗传力为0.862,综合选择指数的估计准确度为0.926,方程较为理想。

      表 7  不同性状组合指数选择方程

      Table 7.  Index selection equation of different characteristics

      指数选择方程综合育种值
      选择进展(△H)
      指数遗
      传力
      综合选择指
      数的估计准确度
      I1=0.0975X1−0.189 0X2+0.6725X3+2.5578X4+2.8459X5+0.1195X6−0.3977X710.080.8680.928
      I2=0.1047X1−1.1988X2−0.4551X3+2.036 0X4+3.6552X5+0.0774X6 8.620.8720.930
      I3=−0.1347X1+4.1451X2+13.6535X4+4.0199X5−0.7178X6 7.350.8960.937
      I4=0.0954X1+0.0249X2+2.022 0X5+0.0613X6 5.710.8620.926

      根据方程I4计算各杂交组合的选择指数,按30%的入选率[12]选出B106×NL15、S3239×NL15、NL447×SY2 等3个杂交组合(表8)。其中B106×NL15、S3239×NL15的材积和叶面积的遗传增益较大,分别达29.00%、27.82%和37.91%、19.60%。从整体评价效果来看,材积生长量所获得遗传增益最大,达26.90%,超出总均值33.55%;叶片性状中叶面积所获得遗传增益最大,达16.85%,高于总均值19.78%。

      表 8  美洲黑杨优良家系生长性状与叶片性状遗传增益估算

      Table 8.  Estimation of genetic gain of growth and leaf characteristics in superior families of P. deltoides

      杂交组合 苗高/%地径/%材积/%叶柄长/%叶面积/%
      B106×NL153.0614.6929.0016.0727.82
      S3239×NL159.5614.1437.9112.5419.60
      NL447×SY28.36 3.2713.80 3.135.89
      平均增益/%6.9910.7026.9011.5016.85
    • 选育出速生、优质、高产及无絮的南方型美洲黑杨新品种进行更新换代是目前开展美洲黑杨杂交试验的主要目的,其中生长性状是黑杨派良种选育的首要目标。本研究对美洲黑杨9个杂交组合子代苗期生长性状进了遗传变异分析,发现苗高、地径和材积等3个生长性状在杂交组合间均存在极显著差异,生长性状家系遗传力均达0.80以上,均大于单株遗传力,表明生长性状受强度遗传控制[13];其中材积性状的遗传变异最大(31.13%),说明选择潜力较大,苗高次之(12.21%),地径相对较小(11.97%)。生长性状变异主要来源于杂交组合间基因型的遗传基础差异。叶片是植物重要的营养器官,尤其叶柄和叶面积对林木的同化产物运输、光合产物的积累起着重要作用。本研究中杂交组合间各叶片性状差异显著,叶长、叶宽、叶柄长、叶周长和叶面积的家系遗传力均在0.85以上,表明这些叶片性状受较强的遗传控制[14];叶柄长和叶面积的表型变异系数和遗传变异系数较大,均超过10%,说明选择空间较大;叶长、叶宽和叶周长的遗传变异系数均低于10%,选择空间相对较小。与李金花等[15]对美洲黑杨与青杨杂交子代叶形、成星奇等[16]对美洲黑杨与小叶杨杂交子代叶片的研究结果类似。叶形指数和侧脉夹角的家系遗传力相对较弱,遗传变异较低,受环境影响较明显。

      研究美洲黑杨苗期叶片性状与生长性状间的遗传互作,对美洲黑杨早期选择具有重大意义。本研究中苗高、地径和材积等3个生长性状间的遗传相关和表型相关十分密切。叶片性状中叶长、叶宽、叶柄长、叶面积和叶周长间均呈极显著正遗传相关,并与苗高和地径间也存在极显著或显著正遗传相关,而叶形指数、侧脉夹角和叶宽基距与其他性状间存在负弱相关或相关性不显著;与张勇等[17]对橡胶树Hevea brasiliensis无性系生长和叶片表型性状的研究结果相类似,表明叶长、叶宽、叶柄长、叶面积、叶周长与生长性状间的遗传互作较明显。通过叶片性状联合对苗高、地径和材积进行间接选择,发现叶长、叶宽、叶柄长、叶面积和叶周长对3个生长性状的遗传相关进度和间接选择效率较大,而叶形指数、侧脉夹角和叶宽基距的间接选择效率较弱,说明叶形指数、侧脉夹角和叶宽基距不适合作为评选优良杂交组合的标准。材积是评价苗期生长量的主要因子,利用通径分析方法分析苗高、地径和叶片性状对材积生长量的遗传控制作用大小及控制途径,结果发现苗高、地径对材积的直接遗传控制作用最大,苗高通过地径对材积的间接控制作用也较大,可知苗高和地径是影响材积生长量的首要因子,在综合评价过程中苗高和地径性状可作为主要选择目标;叶片性状中,叶柄长、叶面积对材积的直接通径系数较小,叶宽和叶周长的直接通径系数为负,即为负向选择,但这些叶片性状通过苗高和地径对材积产生的正向间接遗传控制作用较大,说明叶片性状对材积的控制途径主要通过与苗高和地径间的遗传相互作用来实现。这与李春明等[18]对毛白杨Populus tomentosa杂种无性系苗高、地径的构成因素研究结果相类似,表明开展苗期生长性状与叶片性状的联合选择是可行的。

      育种目标是杂交亲本选择与选配的首先考虑因素。美洲黑杨作为中国南方型速生工业用材和绿化造林树种,速生、优质和高产是主要育种目标。本研究选用生长量较大、干形圆满通直及抗褐斑病的主要美洲黑杨(S3239、南林3804、南林15杨和泗杨2号等)品种作亲本,研究生长性状与叶形性状间的遗传互作,进行生长性状与叶片性状的联合改良;以苗高、地径作为选择依据,选出B106×NL15、S3239×NL15、NL447×SY2等3个速生、高产的优良杂交组合,同时发现材积生长量获得的遗传增益最大(26.90%),改良效果较好。但本研究只是1年生苗和单地点试验数据,后续研究需增加多年多点的无性系苗期对比试验,以便选出性状更优良、遗传稳定的优良杂种无性系。

参考文献 (18)

目录

/

返回文章
返回