-
淹水胁迫对植物生长的抑制作用除了低氧环境引起的根系活力下降、呼吸抑制以及矿质元素吸收受阻外,长时间淹水胁迫引起的叶绿素合成受阻与降解加速导致了叶光合色素含量下降、光能利用与转化活性改变,进而引起光合能力的大幅度下降[1]。光合作用是植物生存和繁衍的物质基础,在这个复杂的生理生化过程中,受到伤害的最原初部位是与光系统Ⅱ(PSⅡ)紧密联系的[2-5]。植物淹水后会导致PSⅡ光化学活性和电子传递速率降低[6],PSⅡ捕光色素蛋白复合物(LHCⅡa,LHCⅡb,LHCⅡc)各组分的变化,从而引起光合二氧化碳同化效率的降低[7]。另一方面,植物也可以以热的形式耗散过剩光能[8],PSⅡ反应中心的失活和周转[9]及Mehler反应[10]等减轻光抑制过程,从而保护光合机构免受破坏。叶绿素荧光参数最大光化学效率(Fv/Fm),PSⅡ实际光化学效率(Fv′/Fm′),光化学荧光猝灭系数(qP)和非光化学猝灭系数(qN),PSⅡ的实际光化学量子产量(Yyield),表观光合电子传递速率(RET)等的变化可反映逆境胁迫对PSⅡ的损伤程度[11-12],已经广泛应用于光抑制、水分、高温、低温等逆境生理研究[13-14]。竹子是集经济、生态和社会效益于一体的优良林种,是区域农村经济社会发展的重要资源和生态环境保护的重要屏障。水分、温度、光照等环境条件的变化直接影响着竹子的生长发育和分布。随着全球气候的变化,水资源不均匀分布造成近年来极端干旱和洪涝灾害频发,水分胁迫已经成为影响竹子生长发育的主要逆境因子之一,研究竹子对水分胁迫的适应能力越来越受到关注[15]。目前,国内外相关研究主要集中在短期干旱或水淹对竹子生长和生理生态的影响[16-21],而对于长期处于浸渍环境中的竹子生理生态响应及其机制研究甚少[22]。河竹Phyllostachys rivalis隶属禾本科Gramineae倭竹族Shibataeeae刚竹属Phyllostachys,主要分布于浙江、福建等地,生于溪涧边、山沟旁,性喜水湿,鞭根系统极为发达,竹鞭韧皮部密生一圈肉眼可见的气孔,具有耐淹植物的特征。我们前期的研究表明,河竹鞭根系统可以通过抗氧化系统平衡调节、生物量合理分配和异速生长调节等来适应长期淹水环境,维持生长和更新[23-24],而长期水淹胁迫下河竹叶绿素荧光变化特征、能量耗散过程及其与河竹耐受水淹的关系尚不清楚。为此,本研究以2年生河竹盆栽苗为试材,设置不同的水淹深度处理,测定分析不同水淹时间下叶片荧光参数和能量耗散的变化规律,探讨持续淹水对河竹光能的吸收和转化、能量的传递与分配、反应中心的活性、过剩能量的耗散以及光合作用的光抑制和光破坏等的影响,并从光合系统“内在性”揭示河竹对持续淹水的响应与适应机制。
-
试验地位于浙江省临安市太湖源观赏竹种园内。该地属中亚热带湿润季风气候区,年平均气温为15.4 ℃,极端低温-10.3 ℃,极端高温44.5 ℃,年日照时数为1 850~1 950 h,日均高于10 ℃活动积温为5 100 ℃,年平均无霜期为235 d,年降水量为1 250~1 600 mm,年平均空气相对湿度80%以上。
2012年2月在河竹种苗林中挖取2年生小丛状竹苗,竹苗地径(1.0 ± 0.2)cm,全高(1.0 ± 0.4)m,保留5~6盘枝,选择规格基本一致的竹苗移栽到加仑盆中(上端直径32.0 cm,下端直径23.0 cm,高度27.0 cm),以V(红壤):V(细沙)=3:1为培养基质,填充基质约15.0 kg·盆-1,栽植竹苗10株·盆-1。移栽后正常喷灌和清除竹笋、杂草等管理。
2013年4月15日选择生长状况一致的河竹盆栽苗进行淹水处理。设3个梯度,即对照(ck),处理Ⅰ和处理Ⅱ。对照实行正常浇水,使盆栽基质相对含水率保持85.0%±5.0%;处理Ⅰ淹水水位高于土壤表面5.0 cm;处理Ⅱ淹水水位高于土壤表面10.0 cm。试验盆栽苗置于长度4.3 m,宽度3.3 m和深度0.5 m的方形水泥池中进行淹水处理,试验期间保持设定水位。设置重复10个·处理-1,即盆栽苗10盆。
-
根据已有报道,自然消落带淹水时间平均3个月左右,最长时间可达6个月[8]。而前期试验表明,淹水360 d后,河竹仍能正常生长,且表现出一定的更新能力。为了解河竹叶片荧光参数和能量耗散等方面对持续淹水的响应,本研究设置淹水处理时间分别为30,90,180,270和360 d。在设定时间,随机选取3盆·处理-1河竹盆栽苗,在9:00-10:00,采用PAM-2500便携式脉冲调制叶绿素荧光仪(德国Walz公司)测定叶片叶绿素荧光参数。对河竹顶部倒数第3~4盘枝选择4~7片成熟叶片,先将测定植株叶片用黑色布袋子罩住,暗适应30 min,使得待测叶片所处光环境一致,全部使用仪器提供的测量光、光化光及饱和脉冲光测定叶片的初始荧光(Fo)和最大荧光(Fm)。作用光打开后测定光下最小荧光(Fo′)和光下最大荧光(Fm′),以荧光慢诱导模式测定光系统Ⅱ(PSⅡ)的Fv/Fm,Fv′/Fm′,qP,qN,Yyield和RET。PSⅡ吸收光能分配百分率参照Demmig Adams和Adams公式计算[25]:光化学反应的能量(P)= Fv′/Fm′×qP;非光化学反应耗散的能量(E)=(1-qP)×Fv′/Fm′;天线色素耗散的能量(D)=1-Fv′/Fm′。
-
采用SPSS 20.0统计软件进行单因素方差分析(One-way ANOVA),用Duncan方法进行多重比较,用Excel 2010绘制图表。
-
由图 1可知:随淹水时间的延长,淹水处理的河竹叶片Fo总体呈升高趋势,而Fm总体呈下降趋势。短期淹水处理(30 d)对河竹叶片Fo和Fm并无明显影响,但淹水时间进一步延长,处理间差异增大,水深效应也日趋明显,至淹水90 d和180 d时,处理Ⅱ的河竹叶片Fo显著高于处理Ⅰ和ck(P<0.05),而Fm显著低于处理Ⅰ和ck(P<0.05),且后两者Fo和Fm均无显著差异(P>0.05),其后至淹水处理结束,淹水处理的河竹叶片Fo持续升高,Fm总体上持续下降,且水位效应更加明显,处理间差异均达显著水平(P<0.05)。
-
随着淹水时间的延长和淹水深度的增大,河竹叶片Fv/Fm呈下降趋势,Fv′/Fm′呈先升高后降低的趋势(图 2)。相对ck,短期淹水(30 d),河竹叶片Fv/Fm降低,但处理间差异并不显著(P>0.05),而Fv′/Fm′则升高,且处理Ⅱ显著高于ck(P<0.05);至淹水90 d和180 d时,淹水处理河竹叶片Fv/Fm明显下降,处理Ⅱ显著低于处理Ⅰ和ck(P<0.05),而后两者间无显著差异(P>0.05);其后至淹水处理结束,淹水处理河竹叶片Fv/Fm持续下降,处理间差异达显著水平(P<0.05),水位效应明显,但处理Ⅰ和处理Ⅱ仍有ck的89.4%和55.4%。河竹叶片Fv′/Fm′较Fv/Fm对淹水胁迫更敏感,短期淹水即会引起Fv′/Fm′的明显升高,淹水处理30 d时,处理Ⅱ就显著高于ck(P<0.05),处理90 d时,处理Ⅰ和处理Ⅱ均显著高于ck(P<0.05),但至处理180 d时各处理的Fv′/Fm′均明显下降,且处理间并无显著差异(P>0.05),其后淹水处理的Fv′/Fm′显著下降,水位效应较为明显。
-
由图 3可知:随着淹水时间的延长,不同淹水处理下的河竹叶片qP总体呈下降趋势,qN呈升高趋势,不同处理间变化幅度不同。相对ck,淹水30 d时,处理Ⅱ的qP显著升高(P<0.05);淹水90 d时,河竹叶片qP开始降低,但处理Ⅰ和处理Ⅱ与ck差异不显著(P>0.05);淹水180 d时至处理结束,河竹叶片qP为ck>处理Ⅰ>处理Ⅱ,各处理间均有显著差异(P<0.05),水位效应明显。整个淹水过程中,河竹叶片qN基本上为ck<处理Ⅰ<处理Ⅱ,总体上淹水处理显著高于ck(P<0.05),水位效应也较为明显。
-
由图 4可知:不同淹水处理的河竹叶片Yyield和RET的变化不同。随着淹水时间的延长,处理Ⅰ的Yyield先升高后降低,RET先升高后降低再升高,在淹水90 d时均达最高值。在处理180 d后,各处理间河竹叶片Yyield和RET总体上差异显著(P<0.05);处理Ⅱ的Yyield和RET均随着淹水时间的延长而逐渐降低,各处理时间点上均显著低于ck(P<0.05)。至淹水180 d后,河竹叶片的Yyield和RET均随着淹水深度的增大而显著降低(P<0.05),存在明显的水位效应。
-
由表 1可知:随着淹水时间的延长,处理Ⅰ和处理Ⅱ的河竹叶片光化学反应能量(P)均呈先升高后下降的变化趋势。淹水30 d和90 d时,处理Ⅰ和处理Ⅱ的P较ck升高,且处理Ⅱ与ck差异显著(P<0.05);淹水180,270和360 d时,处理Ⅰ和处理Ⅱ的P均显著低于ck(P<0.05),且处理Ⅰ和处理Ⅱ间差异显著(P<0.05),水位效应明显。天线色素耗散能量(D)随着淹水时间的延长呈先降低后升高的变化趋势。淹水30 d和90 d时,处理Ⅰ和处理Ⅱ的D均显著低于ck(P<0.05);淹水180 d时,处理Ⅰ和处理Ⅱ的D仍低于ck,但未达显著差异水平(P>0.05);淹水270 d和360 d时,处理Ⅰ和处理Ⅱ的D均显著高于ck(P<0.05)。整个淹水处理过程中,河竹叶片天线色素耗散能量(D)的水位效应总体上并不明显。在淹水30,90和180 d时,处理Ⅰ和处理Ⅱ的非光化学反应耗散能量(E)较ck显著升高(P<0.05),但处理Ⅰ和处理Ⅱ之间差异并不显著(P>0.05);淹水270 d时,处理Ⅰ的E较ck显著降低(P<0.05);淹水360 d时,处理Ⅰ和处理Ⅱ的E较对照降低(P>0.05),河竹叶片非光化学反应耗散能量(E)的水位效应总体上也并不明显。
表 1 持续淹水对河竹叶片吸收光能分配的影响
Table 1. Effects of long-term flooding on characteristics fractions of absorbed light utilized in leaves of Phyllostachys rivalis
参数 处理 不同淹水时间河竹叶叶片吸收光能/% 30 90 180 270 360 d 光化学反应能量(P) ck 22.8 ± 0.7 b 24.6 ± 0.6 b 23.5 ± 1.1 a 26.3 ± 0.3 a 28.1 ± 3.4 a Ⅰ 23.8 ± 0.7 b 26.1 ± 0.2 a 20.0 ± 1.2 b 19.5 ± 0.8 b 15.1 ± 0.7 b Ⅱ 25.2 ± 0.6 a 26.4 ± 0.2 a 12.6 ± 1.0 c 7.6 ± 0.3 c 8.5 ± 0.7 c 天线色素耗散能量(D) ck 45.1 ± 1.3 a 43.7 ± 3.0 a 51.3 ± 2.1 a 36.5 ± 1.1 c 41.2 ± 5.7 b Ⅰ 42.6 ± 1.6 b 38.4 ± 0.9 b 46.8 ± 3.5 a 47.3 ± 2.0 b 57.3 ± 2.5 a Ⅱ 42.2 ± 0.5 b 37.0 ± 0.5 b 51.5 ± 3.3 a 55.1 ± 2.4 a 61.7 ± 0.9 a 非光化学反应耗散能量(E) ck 32.1 ± 0.7 b 31.8 ± 2.6 b 25.2 ± 1.0 b 37.2 ± 0.8 a 30.7 ± 2.3 a Ⅰ 33.7 ± 0.9 a 35.6 ± 0.7 a 33.3 ± 2.3 a 33.3 ± 1.2 b 27.5 ± 2.8 a Ⅱ 32.5 ± 0.2 ab 36.6 ± 0.3 a 35.9 ± 2.4 a 37.3 ± 2.1 a 29.8 ± 0.6 a 说明:同列不同字母表示在0.05水平存在显著性差异。 -
环境胁迫影响植物的光合作用过程,造成光化学转换效率和电子传递速率与能量分配之间产生矛盾,从而影响光合碳同化能力,PSⅡ反应中心生理功能的稳定性是植物抵抗逆境胁迫的能力体现[26-28]。叶绿素荧光参数从能量代谢与转换的角度反映光合机构受逆境胁迫伤害的程度[29-31],Fm,Fv/Fm降低表明植物叶片发生光抑制[10],而Fv/Fm下降的同时Fo上升,表明PSⅡ反应中心受到损伤[29]。本研究中,处理Ⅰ在淹水30 d至180 d时,Fo,Fm和Fv/Fm变化不显著,说明淹水深度5 cm持续淹水180 d,河竹叶片PSⅡ的活性一直维持在正常水平,具有良好的适应能力,至淹水270 d时,处理Ⅰ的Fo显著升高,Fm和Fv/Fm降低,说明此时河竹叶片PSⅡ反应中心的內禀光能转化效率和活性随淹水时间持续而降低,光合作用的原初反应受到抑制,不利于河竹叶片捕获光能的转化。而处理Ⅱ在淹水90 d时,Fo显著上升,Fm和Fv/Fm下降,说明淹水深度10 cm持续淹水90 d,河竹叶片PSⅡ开始受到损伤。淹水360 d,相对对照,处理Ⅰ和处理Ⅱ河竹叶片的Fv/Fm显著降低,但仍具有相对较高的水平,这与长期水淹后枫杨Pterocarya stenoptera幼苗[8]的研究结果一致。说明长期淹水影响河竹叶片PSⅡ反应中心的活性,但对PSⅡ的功能反应中心影响较小。
荧光猝灭是植物内光合量子效率调节的一个方面,分为光化学荧光猝灭(qP)和非光化学猝灭(qN)2类[32]。qP值的大小反映PSⅡ反应中心开放部分的比例及电子传递速率[33-34]。本研究中,淹水30 d时,处理Ⅰ维持相稳定对的qP,Yyield和RET值,有效地避免或减轻因PSⅡ吸收而引起的光抑制和光氧化,保护了光合机构正常运转。处理Ⅱ的qP值上升,说明初期水淹有利于河竹叶片PSⅡ反应中心电子传递能力的提高,促进捕获的光能更高效地用于光合作用。淹水180 d后,处理Ⅰ和处理Ⅱ的qP均显著下降,说明PSⅡ反应中心电子传递受阻,在一定程度上降低了河竹叶片PSⅡ的活性。非光化学猝灭(qN)常用来评价植物耗散过剩激发能的能力[4, 35]。本研究中,淹水处理Ⅰ和处理Ⅱ条件下河竹叶片的qN随着淹水深度及持续时间而增高,热耗散保护性作用增强。这可能是河竹适应淹水环境而形成的自我保护机制。
通过叶片的化学反应的能量(P),天线色素耗散的能量(D)和非光化学反应耗散的能量(E)及其占总吸收光能的比例,可以了解植物逆境环境下的光能利用能力[36]。本研究表明,淹水30 d和90 d时,处理Ⅰ和处理Ⅱ的P,E显著升高,D降低,说明淹水初期不同水位处理均提高了光合作用碳同化电子需求,E的增加可能会引起光合机构的可逆失活甚至破坏[10]。淹水360 d时,处理Ⅰ和处理Ⅱ的P明显减少,D显著升高,而E恢复对照水平,减轻了PSⅡ的激发压,从而能及时的使单线态叶绿素(1Chl)返回三线态叶绿素(3Chl)[37],降低了形成单线态氧(1O2)的机会,表明长期淹水后河竹叶片PSⅡ能力恢复,天线色素耗散的能量(D)上升,可减少PSⅡ和电子传递的过分还原,从而防止过剩光能对光合机构的破坏。持续淹水环境下,河竹吸收光强主要以天线色素耗散(D)为主要光能分配途径,淹水后期PSⅡ反应中心的非光化学反应耗散(E)的恢复起着重要作用,这种变化充分反映了河竹对淹水的适应能力。
-
综上所述,淹水环境下河竹能通过维持相对较高的RET,qP和P值,增强qN来调节自身能量代谢,以热耗散形式散失过多的光能,有效地避免或减轻光抑制和光氧化,河竹吸收光强主要以天线色素耗散(D)为主要光能分配途径,淹水后期PSⅡ反应中心的非光化学反应耗散(E)的恢复起着重要作用。这些可能是河竹适应淹水环境的自我保护机制。
Chlorophyll fluorescence and excitation energy dissipation of pot-grown Phyllostachys rivalis leaves after long-term flooding
-
摘要: 为揭示河竹Phyllostachys rivalis对持续淹水的生理生态响应与适应机制,为河竹在水陆交错带的应用提供理论依据,以2年生河竹盆栽苗为试材,设置不同深度的淹水处理[水位高出栽培基质5 cm(处理Ⅰ),10 cm(处理Ⅱ)和正常供水(ck)],测定持续淹水30,90,180,270和360 d时河竹叶片叶绿素荧光参数,分析叶片光能的吸收和转化、能量的传递与分配、反应中心的活性、过剩能量的耗散对持续淹水胁迫的响应。结果表明:① 持续淹水胁迫下,河竹叶片能通过维持相对较高的表观光合电子传递速率(RET),光化学荧光猝灭(qP)和光化学反应能量(P),增强非光化学猝灭(qN)来调节自身能量代谢,以热耗散形式散失过多的光能,有效地避免或减轻光抑制和光氧化,河竹吸收光强主要以天线色素耗散(D)为主要光能分配途径,淹水后期PSⅡ反应中心的非光化学反应耗散(E)的恢复起着重要作用,持续淹水一定程度上会损害河竹叶片光系统Ⅱ(PSⅡ),但对于PSⅡ的功能反应中心影响较小。② 不同淹水处理叶绿素荧光参数存在差异,持续淹水30,90 d时,处理Ⅰ的初始荧光(Fo),最大荧光(Fm),最大光化学效率(Fv/Fm),qP和RET等与ck差异不显著(P > 0.05),而处理Ⅱ在淹水90 d时与ck差异显著(P < 0.05),至淹水270,360 d时,各处理间差异均达显著水平(P < 0.05),持续淹水胁迫对叶绿素荧光参数及能量耗散的影响存在明显的水位效应。Abstract: To determine the physiological and biochemical responses and adaptive mechanisms of Phyllostachys rivalis to long-term soil flooding, two-year-old potted seedlings of Ph. rivalis were subjected to different flooding depths. The flooding treatment was set with water levels of 5 cm (TreatmentⅠ) and 10 cm (TreatmentⅡ) higher than the soil surface and normal water supply (ck). Then the chlorophyll fluorescence parameters in leaves were determined after continuous flooding for 30, 90, 180, 270, and 360 d. Responses to the continuous flooding stress for light energy absorption and transformation, energy transfer and distribution, reaction center activity, and excitation energy dissipation in leaves of three leaves per seedlings and three seedlings were measured and analyzed. A one-way analysis of variance with duncan's test was conducted at a significant level of 0.05. Results showed that the chlorophyll fluorescence parameters varied with different flooding levels. When flooding for 30 d and 90 d, minimal fluorescence (Fo), maximum fluorescence (Fm), photochemical maximum efficiency of PS Ⅱ (Fv/Fm), photochemical quenching coefficient (qP), and electron transport rate(RET) of Treatment Ⅰ were not significantly different (P > 0.05) compared with ck; however, Treatment Ⅱ when flooding for 90 d compared with ck was significantly increased for Fo while significantly decreased for Fm, Fv/Fm and RET (P < 0.05). With flooding treatments of 270 d and 360 d, Fm, Fv/Fm, qP and RET of Treatment Ⅰ and Ⅱ were both significant decreased while Fo were significant increased than that of ck (P < 0.05). The effect of flooding on chlorophyll fluorescence parameters and energy dissipation was also dependent on the water level. In leaves of Ph. rivalis, Fm, Fv/Fm, and qP were significantly decreased (P < 0.05) with continuous flooding stress; whereas, Fo and non-photochemical quenching coefficient (qN) increased gradually but not reached significant level (P > 0.05). The amount of absorbed light in photochemistry (P) and excess energy (E) increased first and then decreased (P < 0.05), but the energy of dissipation of the antenna heat dissipation (D) observed were opposite. Taken together, Ph. rivalis could maintain a relatively high RET, qP, and P in the early stages of flooding, and enhance qN to regulate their energy metabolism, dissipate excess light energy via heat dissipation, thereby alleviating the light photoinhibition and photooxidation; however, continuous long-term soil flooding could damage photosystem Ⅱ (PS Ⅱ) even though there was minimal adverse effect on the functional center of PS Ⅱ (P < 0.05). It can be inferred that Ph. rivalis can tolerate a short term flooding which facilitate its possible application in plantation restoration of riparion zone.
-
黄河流域作为具有复杂内部结构的整体系统,兼有黄土高原、青藏高原等生态屏障的综合优势,发挥着水土保持、涵养水源等功能[1]。但黄土高原生态环境脆弱,水土流失严重[2],是黄河流域需要解决的重要问题之一。晋西黄土区因其水土流失、植被恢复困难,成为了黄土高原水土保持与植被建设工程的重点区域。为恢复和改善生态环境、控制水土流失,晋西黄土区营造了大量以刺槐Robinia pseudoacacia、油松Pinus tabulaeformis纯林为主的人工林[3−4],在改善林下灌草植物多样性方面发挥关键作用。但是由于造林密度或树种选择不合理,造成树木生长缓慢和林下植被匮乏等问题[5−6],进而影响植被稳定以及林地灌草植物多样性。
林下灌草作为森林生态系统的重要组成部分,在提高生物多样性、改善立地环境、提升水土保持功能、维持森林生态系统功能稳定等方面发挥着至关重要的作用[7−8]。林分密度是林分结构的重要指标之一,影响着林内光照、湿度以及土壤等条件,进而对林下植物种类与多样性产生影响[9]。林分密度可操作性较强[10],合理的林分密度对改善林下灌草植物多样性、提高林地水土保持功能具有重要作用,因此,已有较多关于林分密度对云杉Picea[11]、杉木Cunninghamia lanceolata [12]、马尾松Pinus massoniana[13]、油松[14]等人工纯林林下植物多样性影响方面的研究,并探寻合理的造林密度。当林分密度相同,林分类型不同,同样会对植物多样性产生影响。闫玮明等[15]对亚热带地区深山含笑Michelia maudiae、乐昌含笑M. chapensis、红锥Castanopsis hystrix等人工林和天然次生林植物多样性进行研究,得出科红锥与含笑人工林林下灌木Shannon-Wiener 指数低于天然次生林,其林下草本Shannon-Wiener 指数高于天然次生林的结论;宋霞等[16]对广东化州3种不同林龄人工林植物多样性的研究表明:营造人工混交林对提高林下植物多样性更加有利;赵耀等[17]、张桐等[18]在晋西黄土区对人工林、天然林的灌草植物多样性也进行了相关研究。然而以上研究是基于相同的密度条件,并未考虑各林分类型在不同林分密度条件下灌草植物多样性特点,缺乏关于晋西黄土区不同林分类型在不同密度下林下灌草组成和植物多样性的深入研究。本研究以晋西黄土区刺槐林人工林、油松林人工林、刺槐-油松人工混交林以及山杨Populus davidiana-栎类Quercus spp.天然次生林为研究对象,研究4种林分在低密度(800~1 200株·hm−2)、中密度(1 200~1 600株·hm−2)以及高密度(1 600~2 000株·hm−2)条件下灌草组成和植物多样性特征,以期为晋西黄土区植被建设和水土保持功能提升提供理论基础。
1. 材料与方法
1.1 研究区概况
研究区位于山西省吉县蔡家川流域(36°14′27″~36°18′23″N,110°39′45″~110°47′45″E),面积约40.15 km2,海拔为897~1 515 m。属于温带大陆性季风气候,该流域年均降水量约579.2 mm,且降水集中在6—9月,约占全年降水的80.6%。具有典型黄土残塬沟壑地貌,水土流失严重,主要土壤类型为褐土,黄土母质,呈弱碱性。该地区乔木以刺槐、油松、侧柏Platycladus orientalis等人工林和山杨-辽东栎Quercus wutaishansea等天然次生林为主。灌木以黄刺玫Rosa xanthine、杠柳Periploca sepium和丁香Syringa oblata等为主。草本主要有薹草Carex spp.、茜草Rubia cordifolia等。
1.2 样地选择与调查方法
于2020年7—8月在山西省吉县蔡家川流域进行全面的野外调查,以不同林分类型和林分密度为依据,选择具有典型性和代表性的刺槐人工林、油松人工林、刺槐-油松人工混交林、山杨-栎类天然次生林。4种林分均为22~25年生的中幼龄林,将每种林分划分为低密度(800~1 200株·hm−2)、中密度(1 200~1 600株·hm−2)、高密度(1 600~2 000株·hm−2)等3种密度,每种密度设置3块20 m × 20 m的样地,共计36块(表1)。每个样地四角及中心设置5个灌木样方(5 m × 5 m)和5个草本样方(1 m × 1 m),调查每个样方内植物种类、株数、盖度等,将藤本植物及树高<2 m的乔木幼苗记录在灌木层。
表 1 样地基本情况Table 1 Basic information of the sample plot林分类型 海拔/m 坡度/(°) 胸径/cm 树高/m 郁闭度 林分密度/(株·hm−2) 林分密度 样地1 样地2 样地3 刺槐人工林 1 210 24 9.85±2.68 7.79±1.86 0.38 975 1 000 1 125 低密度 1 150 25 9.98±3.45 7.49±2.34 0.56 1 500 1 550 1 600 中密度 1 150 30 8.15±3.93 7.67±2.86 0.35 1 775 1 850 2 000 高密度 油松人工林 1 130 29 13.04±2.91 6.96±0.85 0.57 900 950 1 050 低密度 1 140 37 13.82±2.38 8.25±0.75 0.62 1 500 1 550 1 550 中密度 1 120 14 10.11±3.63 8.93±2.08 0.43 1 750 1 800 1 875 高密度 刺槐-油松人工混交林 1 120 27 10.36±3.45 7.42±1.25 0.54 1 050 1 150 1 200 低密度 1 140 15 9.93±4.04 9.10±1.89 0.52 1 550 1 550 1 600 中密度 1 140 18 9.61±4.33 7.40±1.72 0.62 1 800 1 850 2 000 高密度 山杨-栎类天然次生林 1 040 20 11.24±4.12 9.46±2.42 0.38 950 1 050 1 150 低密度 1 070 22 10.20±3.77 9.68±2.37 0.41 1 550 1 600 1 600 中密度 1 060 24 10.42±3.14 9.64±2.34 0.68 1 825 1 875 1 950 高密度 说明:胸径和树高数值为平均值±标准误。 1.3 植物多样性分析方法
采用丰富度指数[Patrick丰富度指数(S′)]、多样性指数[Simpson指数(D)、Shannon-Wiener指数(H′)]以及均匀度指数[Pielou均匀度指数(JSW)]表征各林分类型林下灌草的植物多样性[19]。
1.4 数据处理与分析
采用Excel 2019统计数据,采用SPSS 25.0中的单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)对不同林分类型在不同密度条件下灌草植物多样性进行显著性检验(P<0.05),采用双因素方差分析(two-way ANOVA)分析林分类型、林分密度及其交互作用下的林下灌草植物多样性特征。利用Origin 2021软件绘图。
2. 结果与分析
2.1 不同林分类型和密度条件下林下灌草植物组成及优势种
经调查,4种林分中共有灌草植物87种,隶属36科69属,其中灌木层植物46种,隶属22科36属(图1A),草本层植物41种,隶属17科33属(图1B)。从整体上看,山杨-栎类天然次生林中灌木层和草本层植物种数最多,油松人工林最少,且刺槐-油松人工混交林的灌木层植物种数处于较高水平,刺槐人工林草本层植物种数较刺槐-油松人工混交林丰富。不同林分类型林下灌草组成随密度变化呈现一定规律,均在中密度时植物种数最多。综合来看,4种林分灌草植物组成表现为山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时较为丰富。
4种林分灌木层主要优势种具有相似性,但也存在一定差别。由表2可知:在灌木层中,黄刺玫在3种人工林中均占较大优势,连翘Forsythia suspensa在山杨-栎类天然次生林中优势较大。可以看出:刺槐人工林在低密度时,杠柳Periploca sepium、沙棘Hippophae rhamnoides占有较大优势;在中密度时,山莓Rubus corchorifolius、杠柳优势较大;在高密度时,茅莓R. parvifolius、乌头叶蛇葡萄Ampelopsis aconitifolia比中密度林占有较大优势。油松人工林在低密度时,黄刺玫占有绝对优势,重要值达到71.87,且杠柳优势较大;在中密度时,沙棘Hippophae rhamnoides、杠柳占有较大优势,有暴马丁香Syringa reticulata var. amurensis零星分布;在高密度时,暴马丁香已占有较大优势。刺槐-油松人工混交林在低密度时,茅莓、杠柳的优势较大;在中密度时茅莓、山莓占有较大优势,此时乌头叶蛇葡萄稍占优势;高密度时,乌头叶蛇葡萄、茅莓成为主要优势种。山杨-栎类天然次生林在低密度时,榆叶梅Amygdalus triloba和黄栌Cotinus coggygria占有较大优势,有辽东栎零星分布;在中密度时,六道木Abelia biflora和鼠李Rhamnus davurica占有较大优势;在高密度时,出现了胡颓子Elaeagnus pungens等耐阴性植物。可见,不同林分类型在不同密度条件下灌木层植物呈现阳生—中生—阴生的变化规律。
表 2 主要灌草植物重要值Table 2 Important values of main shrub and grass plants林分类型 林分密度 植物种数/种 主要植物及重要值 灌木层 草本层 灌木层 草本层 刺槐人工林 低密度 9 15 黄刺玫(42.96)、杠柳(19.64)、沙棘(14.07)、 丁香(4.09) 铁杆蒿(19.88)、马唐(19.20)、风毛菊 (10.77)、益母草(0.39) 中密度 12 13 黄刺玫(34.89)、山莓(24.85)、杠柳(15.05)、 茅莓(9.45)、乌头叶蛇葡萄(4.33) 虉草(27.52)、沿阶草(13.88)、铁杆蒿 (12.34)、薹草(9.21) 高密度 7 7 黄刺玫(30.95)、茅莓(20.87)、乌头叶蛇葡 萄(16.20)、杠柳(13.97)、沙棘(7.04) 沿阶草(34.99)、虉草(30.03)、薹草 (14.43)、茜草(1.75) 油松人工林 低密度 6 7 黄刺玫(71.87)、杠柳(14.12)、沙棘(2.72) 败酱(33.78)、麻花头(29.94)、白莲蒿 (18.82)、薹草(6.68) 中密度 7 8 黄刺玫(39.83)、沙棘(15.36)、杠柳(14.37)、 暴马丁香(12.45) 败酱(34.49)、薹草(18.91)、白莲蒿 (14.23)、茜草(1.48) 高密度 3 5 暴马丁香(58.78)、黄刺玫(29.17)、沙棘 (12.05) 薹草(45.38)、败酱(31.33)、沿阶草(14.23)、 艾蒿(6.64) 刺槐-油松人工混交林 低密度 13 16 黄刺玫(34.54)、茅莓(18.96)、杠柳(17.93)、 乌头叶蛇葡萄(3.83)、丁香(0.44) 白莲蒿 (26.95)、风毛菊(14.34)、麻花头 (10.02)、黑麦草(9.91) 中密度 15 14 黄刺玫(33.10)、茅莓(17.03)、山莓(12.24)、 乌头叶蛇葡萄(11.24) 败酱(27.84)、马唐(19.40)、沿阶草(15.95)、 薹草(15.15) 高密度 11 8 乌头叶蛇葡萄(26.60)、黄刺玫(25.41)、茅 莓(13.39)、连翘(5.31)、酸枣(0.51) 败酱(35.95)、沿阶草(28.71)、薹草(14.30)、 铁杆蒿(4.00) 山杨-栎类天然次生林 低密度 19 13 连翘(30.90)、榆叶梅(14.95)、黄栌(13.09)、 辽东栎(1.70) 薹草(33.68)、天名精(15.13)、龙芽草 (14.25)、山罗花(7.86) 中密度 20 14 连翘(20.80)、六道木(10.16)、鼠李(9.57)、 乌头叶蛇葡萄(5.51) 薹草(39.47)、山罗花(15.20)、假地豆 (9.80)、泥胡菜(6.35) 高密度 12 11 连翘(38.12)、榆叶梅(17.06)、六道木(8.60)、 胡颓子(3.55) 薹草(30.91)、茜草(16.66)、蜻蜓兰(11.35)、 龙芽草(7.01)、川续断(2.12) 说明:括号中数值为重要值。灌木层酸枣Ziziphus jujuba var. spinosa。草本层艾蒿Artemisia argyi,黑麦草Lolium perenne、泥胡菜Hemisteptia lyrata、益母草Leonurus japonicus。 4种林分草本层主要优势种具有一定规律并存在一定差异。由表2可知:在草本层中,刺槐人工林在低密度时,以铁杆蒿Artemisia gmelinii、马唐Digitaria sanguinalis和风毛菊Saussurea japonica为主;中密度时,铁杆蒿较低密度林的优势有所减小,虉草Phalaris arundinacea、沿阶草Ophiopogon bodinieri占有较大优势;高密度时,沿阶草、虉草所占优势增大,薹草成为优势种之一。油松人工林在低、中、高密度时,败酱Patrinia scabiosifolia均占有较大优势,且随密度增大出现了薹草、沿阶草等优势种;刺槐-油松混交林在低密度时,以白莲蒿Artemisia stechmanniana、风毛菊和麻花头Aristolochia debilis为主;中密度时,败酱、马唐、沿阶草所占优势较大;高密度时,败酱、沿阶草较中密度林时重要值增大,且薹草也占较大优势。山杨-栎类天然次生林在不同密度时,薹草均占有较大优势。低密度山杨-栎类天然次生林中天名精Carpesium abrotanoides和龙芽草Agrimonia pilosa优势较大;中密度时,山罗花Melampyrum roseum和假地豆Desmodium heterocarpon占有较大优势;高密度时,蜻蜓兰Tulotis fuscescens成为主要优势种之一,且零星分布川续断Dipsacus asper、龙芽草等喜湿耐阴性植物。可见,不同林分类型在低密度时草本层主要优势种以阳生植物为主,中密度和高密度时,草本层主要优势种以对生长环境没有较高要求、耐阴及喜湿的植物为主。
2.2 不同林分类型和密度条件下林下灌草植物多样性特征
对不同林分类型和不同密度条件下的林下灌草植物多样性进行双因素方差分析,在林分类型和密度的单一因素作用下,林下灌木层和草本层的S′、D、H′有极显著差异(P<0.01),灌木层 Jsw在林分类型作用下有显著差异(P<0.05),在林分密度作用下差异极显著(P<0.01)。在林分类型与密度条件的交互作用下,林下灌草的D、H′有极显著差异(P<0.01),灌木层的S′有极显著差异(P<0.01),该指数在草本层有显著差异(P<0.05)。草本层Jsw在林分类型、林分密度及其交互作用下均不显著(表3)。
表 3 不同林分类型和密度条件下林下灌草植物多样性的双因素方差分析Table 3 Two-factor variance analysis of stand type and stand density on understory shrub and grass plant diversity变异来源 S′ D H′ Jsw 自由度 F P 自由度 F P 自由度 F P 自由度 F P 灌木层 林分类型 3 232.838 <0.01 3 89.562 <0.01 3 128.906 <0.01 3 3.362 <0.05 林分密度 2 48.091 <0.01 2 18.603 <0.01 2 20.530 <0.01 2 27.792 <0.01 林分类型×林分密度 6 14.232 <0.01 6 6.181 <0.01 6 5.370 <0.01 6 11.824 <0.01 草本层 林分类型 3 71.152 <0.01 3 25.589 <0.01 3 42.011 <0.01 3 0.370 0.775 林分密度 2 45.818 <0.01 2 20.084 <0.01 2 32.356 <0.01 2 0.428 0.657 林分类型×林分密度 6 2.970 <0.05 6 6.613 <0.01 6 4.382 <0.01 6 2.477 0.052 不同林分类型在相同密度条件下的S′、D、H′以及 Jsw表现出相似的变化规律,但也有所不同(表4)。不同林分类型灌木层S′、H′从大到小依次为山杨-栎类天然次生林、刺槐-油松人工混交林、刺槐人工林、油松人工林,且山杨-栎类天然次生林与人工纯林均存在显著差异(P<0.05),不同林分类型草本层S′、H′最高的均为山杨-栎类天然次生林,最低的均为油松人工林。不同林分类型灌木层和草本层的D、Jsw不存在明显规律,且3种人工林草本层的Jsw差异均不显著。不同林分类型灌木层与草本层多样性指数具有明显差异,人工纯林灌木层多样性指数低于草本层,而山杨-栎类天然次生林灌木层多样性指数高于草本层。
表 4 典型林分类型灌草植物多样性Table 4 Bush-grass plant diversity index of typical stand types林分类型 密度类型 灌木层 草本层 S′ D H′ Jsw S′ D H′ Jsw 刺槐人工林 低密度 5.67±0.33 BCb 0.69±0.04 Ba 1.38±0.10 Ba 0.79±0.04 Ab 9.67±0.33 Aa 0.81±0.03 Aa 1.91±0.10 Aa 0.84±0.03 Aab 中密度 9.00±0.33 Ba 0.76±0.01 Ba 1.68±0.04 Ba 0.75±0.01 Bb 8.00±0.58 BCa 0.82±0.01 ABa 1.84±0.08 ABa 0.89±0.01 Aa 高密度 5.00±0.58 Bb 0.74±0.04 Aa 1.45±0.15 Ba 0.91±0.03 ABa 6.67±0.33 Bb 0.74±0.01 ABb 1.56±0.04 Bb 0.82±0.00 Ac 油松人工林 低密度 4.00±0.00 Ca 0.45±0.02 Cb 0.88±0.03 Cb 0.63±0.02 Bb 5.00±0.00 Cb 0.71±0.01 Ba 1.38±0.03 Bb 0.86±0.02 Aa 中密度 4.33±0.33 Ca 0.69±0.04 Ca 1.29±0.11 Ca 0.88±0.03 Aa 6.67±0.33 Ca 0.77±0.01 Ba 1.64±0.05 Ba 0.87±0.01 Aa 高密度 2.00±0.00 Cb 0.48±0.01 Bb 0.67±0.01 Cb 0.96±0.02 Aa 3.00±0.00 Cc 0.56±0.03 Cb 0.89±0.07 Cc 0.81±0.07 Aa 刺槐-油松人工混交林 低密度 7.67±0.33 Ba 0.74±0.02 Ba 1.54±0.08 Ba 0.76±0.03 Aa 7.67±0.88 Ba 0.77±0.03 ABab 1.63±0.12 Bab 0.81±0.05 Aa 中密度 9.33±0.58 Aa 0.80±0.02 Aa 1.81±0.11 Aa 0.82±0.03 Ca 9.00±0.00 Ba 0.84±0.01 Aa 1.97±0.03 Aa 0.90±0.01 Aa 高密度 9.21±0.00 Ba 0.77±0.03 Ba 1.71±0.08 Ba 0.78±0.04 Ba 6.00±0.58 Ba 0.75±0.00 Bc 1.48±0.04 Bc 0.84±0.03 Aa 山杨-栎类天然次生林 低密度 16.33±1.33 Aa 0.85±0.01 Ab 2.30±0.08 Ab 0.83±0.01 Ab 9.67±0.33 Ab 0.81±0.00 Aa 1.91±0.03 Aa 0.84±0.00 Aa 中密度 18.67±0.67 Aa 0.90±0.00 Aa 2.58±0.03 Aa 0.88±0.01 Aa 12.33±0.67 Aa 0.78±0.02 ABa 1.93±0.10 Aa 0.77±0.03 Bb 高密度 10.00±0.58 Ab 0.80±0.01 Ac 1.92±0.04 Ac 0.83±0.01 BCb 8.33±0.33 Ab 0.81±0.02 Aa 1.86±0.08 Aa 0.88±0.02 Aa 说明:大写字母代表相同密度下不同林分类型间差异显著(P<0.05);小写字母代表同一林分类型不同林分密度间差异显著(P<0.05)。 同一林分类型不同密度条件下,随着密度增大,4种林分林下灌木层和草本层植物多样性指数大多呈现先增大后减小的趋势。其中刺槐人工林灌木层D、H′在中密度最大,其次为高密度、低密度,其Jsw在高密度时最大;而刺槐人工林草本层各指数随密度的增大不存在明显规律,但D、Jsw在中密度时最大。油松人工林灌木层D、H′与刺槐人工林表现规律一致,且Jsw在高密度时最大;油松人工林草本层S′、H′从大到小依次为中密度、低密度、高密度,且在不同密度间差异显著(P<0.05)。刺槐-油松人工混交林灌木层S′、D、H′从大到小依次为中密度、高密度、低密度,且在中密度时均匀度指数
$ {J}_{{\rm{SW}}} $ 最大;草本层多样性指数从大到小依次为中密度、低密度、高密度,在中密度时均匀度最好。山杨-栎类天然次生林灌木层和草本层D、H′均表现为中密度最大,低密度次之,高密度最小。综上所述,山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时的植物多样性较好。3. 讨论
3.1 林分类型对其林下灌草植物组成、结构及多样性的影响
植物组成和结构是植物群落的基本特征,并反映灌木层及草本层的植物种类和分布情况。不同林分类型林下植物组成存在一定规律。本研究中,4种林分灌木层植物种数在不同密度下整体表现为山杨-栎类天然次生林多于人工林,刺槐-油松人工混交林较人工纯林丰富。可能与山杨-栎类天然次生林及刺槐-油松人工混交林的生态位较宽有关,其林内环境复杂,具有较高的空间异质性,更适于不同需求植物的生长。这与赵耀等[17]对晋西黄土区不同林地植物多样性的研究结果近似。本研究中,草本层植物数量表现为山杨-栎类天然次生林处于较高水平,油松人工林草本植物种数最少,说明天然林较人工纯林更有利于草本植物的发育。这与张桐等[18]得出的人工纯林的植物种数高于天然林的研究结果有所差别,可能与立地条件、气候等因素有关。可见,山杨-栎类天然次生林、刺槐-油松人工混交林在各密度下植物组成和结构较好,灌木和草本植物种数量充足。在因地制宜的原则下,可通过相应的林草措施,提升林地植被稳定性[20],对控制水土流失具有较好的效果。
植物多样性可以通过植物丰富度与植物分布均匀度进行体现,在维持生态系统稳定方面发挥基础性作用[21]。本研究中不同林分类型灌木层的S′、H′在不同密度条件下从大到小均依次为山杨-栎类天然次生林、刺槐-油松人工混交林、刺槐人工林、油松人工林,究其原因是天然次生林是自然封育生长,灌木层受外界条件影响较小。刺槐-油松人工混交林植物组成较人工纯林丰富,与武文娟等[22]的研究结果一致。油松人工林不仅在各密度下灌木层多样性指数最低,在草本层也是如此,可能是油松人工林下难以分解的油性枯枝落叶较多,降低了土壤结构稳定性,造成林下植物多样性较小,不利于发挥水土保持功能[23]。综合来看,在造林时,刺槐-油松人工混交林较人工纯林更具优势。
3.2 林分密度对其林下灌草植物组成、结构及多样性的影响
本研究结果表明:4种林分的灌草植物随林分密度增大呈现由阳生向中生、阴生植物过渡的变化规律,且山杨-栎类天然次生林与人工林的植物种类差别较大。黄刺玫在3种人工林不同密度条件下均有分布,并且是主要优势种,表明黄刺玫是研究区林分灌草的主要适生种,对干旱少雨、土壤瘠薄的环境适应性较强。连翘在山杨-栎类天然次生林不同密度条件下均占有较大优势,不仅喜光,同时具有耐阴性,能更好地适应天然次生林的林下环境,由于低密度时有辽东栎零星分布,说明该林分可能存在自然更新的现象。薹草、沿阶草在各林分中均有分布,说明它们对不同林分类型生态环境适应性较强,是研究区的重要组成植物。山杨-栎类天然次生林在高密度时的优势种出现了蜻蜓兰,该植物对生长环境要求非常严格[18],说明山杨-栎类天然次生林的生长环境优良。因此,今后的植被建设应当加强对天然林的保护,充分发挥其水土保持功能。
本研究中不同林分类型灌木层和草本层在不同密度条件下存在差异性和规律性,由低密度到中密度时S′及H′增大,而由中密度到高密度时丰富度指数和多样性指数变小。可见,中密度林分的林下灌草种类更加丰富,多样性更高,并且分布较为均匀。这与丁继伟等[24]的研究结果近似。原因可能是林分密度过低或者过高可能都会对林下灌草的植物多样性产生抑制作用。当林分密度较低时,若光照充足,对阳生、耐旱植物的萌发有促进作用,但是阳光照射至土地上导致土壤内水分蒸发限制了林下其他类型植物的生长,导致植物多样性水平较低;随着密度的增加,中生和阴生植物逐渐增多,丰富了林下灌草组成,植物多样性处于较高水平;但密度达到一定峰值,林木直接竞争愈发激烈,且郁闭度随之也会增加,从而破坏了林下植被的生长条件,造成植物多样性降低[25]。这可能是导致刺槐人工林和油松人工林灌木层在高密度时均匀度指数最高,其丰富度指数与多样性指数处于较低水平的原因。不同林分类型灌木层与草本层多样性指数也具有明显差异。王芸等[26]研究表明:人工林和天然次生林林下植物多样性从大到小均为灌木层、草本层,但是本研究得出在人工纯林中林下植物多样性从小到大为灌木层、草本层,而山杨-栎类天然次生林中植物多样性从大到小为灌木层、草本层,与赵耀等[17]的研究结果一致。这可能与海拔、坡向、林分类型、林分密度等因素有关。综合来看,中等密度的刺槐-油松人工混交林林下植物种类较为丰富,植物多样性更高且分布较为均匀,有利于改善土壤质地,控制水土流失,可以将刺槐人工林、油松人工林向混交模式改进,扩大中等密度刺槐-油松人工混交林的造林面积。然而,人工造林与土壤条件、立地条件、混交比例等关系密切,因此有必要研究不同林分类型在不同密度下植物多样性的影响因子,制定合理的刺槐-油松混交林造林方式,以充分发挥林地的水土保持功能。
4. 结论
①不同林分类型中灌草植物组成存在一定差异。4种林分灌草植物共87种,隶属36科69属,其中灌木植物46种,隶属22科36属,草本植物41种,隶属17科33属。4种林分灌草植物组成表现为中密度山杨-栎类天然次生林和刺槐-油松人工混交林较为丰富。②4种林分灌草植物随密度增大呈现由阳生向中生、阴生植物过渡的变化规律。人工林、山杨-栎类天然次生林灌木层主要优势种分别为黄刺玫、连翘,草本层主要优势种是薹草、沿阶草等植物。③不同林分类型灌木层和草本层植物多样性指数存在一定差异。山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时的植物多样性优于人工纯林,且随林分密度的增加,灌木层和草本层植物多样性指数大多呈现先增大后减小的变化趋势。研究区中密度林分更有利于林下植物多样性的维持和改善。
建议通过人工抚育调整林分密度,并向中密度刺槐-油松人工混交林或近自然林进行改造,为黄刺玫、连翘等灌木植物及薹草、沿阶草等草本植物建立良好生长条件,同时保护研究区的山杨-栎类天然次生林,以促进植被恢复建设和强化其水土保持功能。
-
表 1 持续淹水对河竹叶片吸收光能分配的影响
Table 1. Effects of long-term flooding on characteristics fractions of absorbed light utilized in leaves of Phyllostachys rivalis
参数 处理 不同淹水时间河竹叶叶片吸收光能/% 30 90 180 270 360 d 光化学反应能量(P) ck 22.8 ± 0.7 b 24.6 ± 0.6 b 23.5 ± 1.1 a 26.3 ± 0.3 a 28.1 ± 3.4 a Ⅰ 23.8 ± 0.7 b 26.1 ± 0.2 a 20.0 ± 1.2 b 19.5 ± 0.8 b 15.1 ± 0.7 b Ⅱ 25.2 ± 0.6 a 26.4 ± 0.2 a 12.6 ± 1.0 c 7.6 ± 0.3 c 8.5 ± 0.7 c 天线色素耗散能量(D) ck 45.1 ± 1.3 a 43.7 ± 3.0 a 51.3 ± 2.1 a 36.5 ± 1.1 c 41.2 ± 5.7 b Ⅰ 42.6 ± 1.6 b 38.4 ± 0.9 b 46.8 ± 3.5 a 47.3 ± 2.0 b 57.3 ± 2.5 a Ⅱ 42.2 ± 0.5 b 37.0 ± 0.5 b 51.5 ± 3.3 a 55.1 ± 2.4 a 61.7 ± 0.9 a 非光化学反应耗散能量(E) ck 32.1 ± 0.7 b 31.8 ± 2.6 b 25.2 ± 1.0 b 37.2 ± 0.8 a 30.7 ± 2.3 a Ⅰ 33.7 ± 0.9 a 35.6 ± 0.7 a 33.3 ± 2.3 a 33.3 ± 1.2 b 27.5 ± 2.8 a Ⅱ 32.5 ± 0.2 ab 36.6 ± 0.3 a 35.9 ± 2.4 a 37.3 ± 2.1 a 29.8 ± 0.6 a 说明:同列不同字母表示在0.05水平存在显著性差异。 -
[1] DREENWAY H, ARMSTRONG W, COLMER T D. Conditions leading to high CO2 ( > 5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism [J]. Ann Bot, 2006, 98(1): 9-32. [2] WEIS E, BERRY J A. Plants and high temperature stress [J]. Symp Soc Exp Biol, 1988, 42: 329-346. [3] HAVAUX M, TARDY F. Temperature-dependent adjustment of the thermal stability of photosystem Ⅱ in vivo: possible involvement of xanthophyll-cycle pigments [J]. Planta, 1996, 198(3): 324-333. [4] 史胜青, 袁玉欣, 杨敏生, 等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响[J].林业科学, 2004, 40(1):168-172. SHI Shengqing, YUAN Yuxin, YANG Minsheng, et al. Effects of water stress on photochemical quenching and non-photochemical quenching of chlorophyll a fluorescence in four tree seedlings [J]. Sci Silv Sin, 2004, 40(1): 168-172. [5] 罗俊, 张木清, 吕建林, 等.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J].福建农业大学学报, 2000, 29(1):18-22. LUO Jun, ZHANG Muqing, LÜ Jianglin, et al. Effects of water stress on the chlorophyll a fluorescence induction kinetics of sugarcane genotypes [J]. J Fujian Agric Univ, 2000, 29(1): 18-22. [6] 衣英华, 樊大勇, 谢宗强, 等.模拟淹水对枫杨和栓皮栎气孔交换、叶绿素荧光和水势的影响[J].植物生态学报, 2006, 30(6):960-968. YI Yinghua, FAN Dayong, XIE Zongqiang, et al. Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of Quercus variabilis and Pterocarya stenoptera [J]. J Plant Ecol, 2006, 30(6): 960-968. [7] 韦振泉, 林宏辉, 何军贤, 等.水分胁迫对小麦捕光色素蛋白复合物的影响[J].西北植物学报, 2000, 20(4):555-560. WEI Zhenquan, LIN Honghui, HE Junxian, et al. Effects of water stress on the light-harvesting complexes in wheat leaves [J]. Acta Bot Boreal-Occident Sini, 2000, 20(4): 555-560. [8] 贾中民, 魏虹, 田晓峰, 等.长期水淹对枫杨幼苗光合生理和叶绿素荧光特性的影响[J].西南大学学报(自然科学版), 2009, 31(5):124-129. JIA Zhongmin, WEI Hong, TIAN Xiaofeng, et al. Effects of long-term flooding on photosynthesis and chlorophyll fluorescence parameters of Pterocarya stenoptera seedlings [J]. J Southwest Univ Nat Sci Ed, 2009, 31(5): 124-129. [9] 陈贻竹, 李晓萍, 夏丽, 等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报, 1995, 3(4):79-86. CHEN Yizhu, LI Xiaoping, XIA Li, et al. The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses [J]. J Trop Subtrop Bot, 1995, 3(4): 79-86. [10] 胡文海, 肖宜安, 喻景权, 等.低夜温后不同光强对榕树叶片PSⅡ功能和光能分配的影响[J].植物研究, 2005, 25(2):159-162. HU Wenhai, XIAO Yian, YU Jingquan, et al. Effects of different light intensity after low night temperature stress on PSⅡ functions and absorbed light allocation in leaves of Ficus microcarpa [J]. Bull Bot Res, 2005, 25(2): 159-162. [11] 刘云峰, 秦洪文, 石雷, 等.水淹对水芹叶片结构和光系统Ⅱ光抑制的影响[J].植物学报, 2010, 45(4):426-434. LIU Yunfeng, QIN Hongwen, SHI Lei, et al. Effects of submergence on leaf anatomy and photoinhibition of photosystem Ⅱin Oenanthe javanica plants [J]. Chin Bull Bot, 2010, 45(4): 426-434. [12] 赵竑绯, 赵阳, 张驰, 等.模拟淹水对杞柳生长和光合特性的影响[J].生态学报, 2013, 33(3):898-906. ZHAO Hongfei, ZHAO Yang, ZHANG Chi, et al. Effect of flooding stress on growth and photosynthesis characteristics of Salix integra [J]. Acta Ecol Sin, 2013, 33(3): 898-906. [13] 李鹏民, 高辉远, STRASSER R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6):559-566. LI Pengmin, GAO Huiyuan, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study [J]. J Plant Physiol Mol Biol, 2005, 31(6): 559-566. [14] 王树凤, 孙海菁, 陈益泰, 等.模拟干旱胁迫下弗吉尼亚栎苗木叶片相关生理参数的分析[J].南京林业大学学报(自然科学版), 2011, 35(6):6-10. WANG Shufeng, SUN Haijing, CHEN Yitai, et al. Analysis of physiological indexes of Quercus virginiana under drought stress [J]. J Nanjing For Univ Nat Sci Ed, 2011, 35(6): 6-10. [15] 胡俊靖, 陈卫军, 郭子武, 等.水分胁迫对竹子生理特性影响的研究进展[J].西南林业大学学报, 2015, 35(1): 91-95. HU Junjing, CHEN Weijun, GUO Ziwu, et al. Review of the water stress on the physiological characteristics of bamboo [J]. J Southwest For Univ, 2015, 35(1): 91-95. [16] 李在军, 蔡孔瑜, 陈桂芳, 等.干旱胁迫和复水对麻竹渗透调节物质及细胞膜透性的影响[J].四川林业科技, 2010, 31(3):55-59. LI Zaijun, CAI Kongyu, CHEN Guifang, et al. Effect of continuous drought stress and rewatering on osmo-regulation substances and cell membrane permeability in leaves of Dendrocalamus latiflorus [J]. J Sichuan For Sci Technol, 2010, 31(3): 55-59. [17] 应叶青, 郭璟, 魏建芬, 等.自然干旱胁迫及复水处理对红秆寒竹生理特性的影响[J].浙江林学院学报, 2010, 27(4): 513-517. YING Yeqing, GUO Jing, WEI Jianfen, et al. Physiological characteristics of Chimonobambusa marmoreal f. variegate with natural drought stress and rewetting [J]. J Zhejiang For Coll, 2010, 27(4): 513-517. [18] 应叶青, 郭璟, 魏建芬, 等.干旱胁迫对毛竹幼苗生理特性的影响[J].生态杂志, 2011, 30(2):262-266. YING Yeqing, GUO Jing, WEI Jianfen, et al. Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings [J]. Chin J Ecol, 2011, 30(2): 262-266. [19] 赵兰, 邢新婷, 江泽慧, 等. 4种地被观赏竹的抗旱性研究[J].林业科学研究, 2010, 23(2):221-226. ZHAO Lan, XING Xinting, JIANG Zehui, et al. Study on drought resistance of four dwarf ornamental bamboos [J]. For Res, 2010, 23(2): 221-226. [20] 顾大形, 陈双林.四季竹对土壤水分胁迫的生理适应[J].西北植物学报, 2012, 32(4): 751-758. GU Daxing, CHEN Shuanglin. Physiological adaptation of Oligostachyum lubricum under water stress [J]. Acta Bot Boreal-Occident Sin, 2012, 32(4): 751-758. [21] 张艳华, 刘国华, 王福升.淹水胁迫下5种竹子生理生化指标的变化[J].林业科技开发, 2009, 23(5):71-74. ZHANG Yanhua, LIU Guohua, WANG Fusheng. Variation of inner physiological and biochemical characteristics of five bamboos under flooding stress [J]. China For Sci Technol, 2009, 23(5): 71-74. [22] 刘玉芳, 陈双林, 李迎春, 等.河竹鞭根对长期淹水环境的生理响应[J].林业科学研究, 2014, 27(5):621-625. LIU Yufang, CHEN Shuanglin, LI Yingchun, et al. Physiological response of Phyllostchys rivalis rhizome roots to long-term water stress [J]. For Res, 2014, 27(5): 621-625. [23] 刘玉芳, 陈双林, 郭子武, 等.淹水对河竹鞭根系统生物量分配及异速生长模式的影响[J].林业科学研究, 2015, 28(4):502-507. LIU Yufang, CHEN Shuanglin, GUO Ziwu, et al. Effect of waterlogging on biomass allocation and allometric pattern of rhizome and root system of Phyllostachys rivalis [J]. For Res, 2015, 28(4): 502-507. [24] 刘玉芳, 陈双林, 李迎春, 等.淹水环境下河竹鞭根养分吸收和积累的适应性调节[J].生态学报, 2016, 36(10):2926-2933. LIU Yufang, CHEN Shuanglin, LI Yingchun, et al. Adaptive adjustment to nutrient absorption and accumulation of Phyllostachys rivalis rhizome-roots under waterlogged conditions [J]. Acta Ecol Sin, 2016, 36(10): 2926-2933. [25] DEMMING-ADAMS B, ADAMS Ⅲ W W, BARKER D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J]. Physiol Plant, 1996, 98(2): 253-264. [26] 张会慧, 张秀丽, 王娟, 等.利用快相叶绿素荧光参数综合评价3种丁香的耐盐性[J].南京林业大学学报(自然科学版), 2013, 37(5):13-19. ZHANG Huihui, ZHANG Xiuli, WANG Juan, et al. A comprehensive evaluation of salt resistance in three clove varieties by the fast fluorescence transient parameters [J]. J Nanjing For Univ Nat Sci Ed, 2013, 37(5): 13-19. [27] 王海珍, 陈加利, 韩路, 等.地下水位对胡杨Populus euphratica和灰胡杨Populus pruinosa叶绿素荧光光响应与光合色素含量的影响[J].中国沙漠, 2013, 33(4):1054-1063. WANG Haizhen, CHEN Jiali, HAN Lu, et al. Effects of groundwater levels on photosynthetic pigments and light response of chlorophyll fluorescence parameters of Populus euphratica and Populus pruinosa [J]. J Desert Res, 2013, 33(4): 1054-1063. [28] 吴雪霞, 陈建林, 查丁石.低温胁迫对茄子幼苗叶绿素荧光特性和能量耗散的影响[J].植物营养与肥料学报, 2009, 15(1):164-169. WU Xuexia, CHEN Jianlin, ZHA Dingshi. Effects of low temperature stress on chlorophyll fluorescence characteristics and excitation energy dissipation in eggplant seeding leaves [J]. Plant Nutr Fert Sci, 2009, 15(1): 164-169. [29] van KOOTEN O, SNEL J F. The use of chlorophyll fluorescence nomenclature in plant stress physiology [J]. Photosynth Res, 1990, 25(3): 147-150. [30] 师生波, 李天才, 李妙, 等.土壤干旱和强光对高山蒿草叶片PSⅡ反应中心非光化学猝灭的交互影响分析[J].植物生理学报, 2015, 51(10):1687-1686. SHI Shengbo, LI Tiancai, LI Miao, et al. Interaction effect analysis of soil drought and strong light on PSⅡ nonphotochemical quenching in Kobresia pygmaea leaves [J]. Plant Physiol J, 2015, 51(10): 1687-1686. [31] 王巧, 聂鑫, 刘秀梅, 等.遮光对松属3个树种幼树光合特性和荧光参数的影响[J].浙江农林大学学报, 2016, 33(4):643-651. WANG Qiao, NIE Xin, LIU Xiumei, et al. Photosynthetic characteristics and chlorophyll fluorescence of three Pinus tree species with shading [J]. J Zhejiang A & F Univ, 2016, 33(4): 643-651. [32] 徐凯, 郭延平, 张上隆, 等.草莓叶片光合作用对强光的响应及其机理[J].应用生态学报, 2005, 16(1):73-78. XU Kai, GUO Yanping, ZHANG Shanglong, et al. Response of strawberry leaves photosynthesis to strong light and its mechanism [J]. Chin J Appl Ecol, 2005, 16(1): 73-78. [33] 温国胜, 田海涛, 张明如, 等.叶绿素荧光分析技术在林木培育中的应用[J].应用生态学报, 2006, 17(10):1973-1977. WEN Guosheng, TIAN Haitao, ZHANG Mingru, et al. Application of chlorophyll fluorescence analysis in forest tree cultivation [J]. Chin J Appl Ecol, 2006, 17(10): 1973-1977. [34] 黄磊, 姜国斌, 朱玉, 等.高温对北高丛蓝莓叶片气孔交换及叶绿素荧光参数的影响[J].生态学杂志, 2016, 35(4):871-879. HUANG Lei, JIANG Guobin, ZHU Yu, et al. Effects of high temperature on leaf gas exchange and chlorophyll fluorescence parameters of the north highbush blueberry [J]. Chin J Ecol, 2016, 35(4): 871-879. [35] 宫丽丹, 魏丽萍, 倪书邦, 等.持续干旱对油棕幼苗叶绿素荧光动力学参数的影响[J].中国农业通报, 2016, 32(13):1-6. GONG Lidan, WEI Liping, NI Shubang, et al. Effect of persistent drought stress on chlorophyll fluorescence parameters in leaves of oil palm [J]. Chin Agric Sci Bull, 2016, 32(13): 1-6. [36] 周艳虹, 黄黎锋, 喻景权.持续低温弱光对黄瓜叶片气孔交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学学报, 2004, 30(2):153-160. ZHOU Yanhong, HUANG Lifeng, YU Jingquan. Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves [J]. J Plant Physiol Mol Biol, 2004, 30(2): 153-160. [37] ASADA K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons [J]. Annu Rev Plant Physiol Plant Mol Boil, 1999, 50: 601-639. 期刊类型引用(10)
1. 宫正. 黄土高原森林林下植被物种多样性及其影响因素. 东北林业大学学报. 2025(02): 66-74 . 百度学术
2. 郭艳杰,毕华兴,赵丹阳,刘泽晖,林丹丹,韩金丹,黄浩博. 不同密度油松林地土壤水碳分布特征及其耦合关系. 应用生态学报. 2025(01): 50-58 . 百度学术
3. 王宇,王冬梅,王彦辉,云慧雅,张梦棋,张莹莹. 黄土高原退耕刺槐中龄林密度和空间结构对灌草多样性的影响. 生态学报. 2025(02): 822-836 . 百度学术
4. 张犇,赵廷宁,张海强,杨建英,贾亚倢,赵炯昌,胡亚伟,李阳. 晋西黄土区不同坡向刺槐林下植物种间关联及群落稳定性. 东北林业大学学报. 2024(05): 19-27 . 百度学术
5. 李志鑫. 陇东黄土高原刺槐林分特征和林下灌草多样性对林分密度的响应. 甘肃林业科技. 2024(03): 45-50+83 . 百度学术
6. 杨扬,彭祚登,刘伟韬,王鑫喆,王书婷,王少明. 不同经营世代刺槐人工林多功能经营的密度管理图研建. 北京林业大学学报. 2024(10): 11-21 . 百度学术
7. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 . 本站查看
8. 王思淇,张建军,张彦勤,赵炯昌,胡亚伟,李阳,唐鹏,卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性. 干旱区研究. 2023(07): 1141-1151 . 百度学术
9. 李转桃,徐先英,赵鹏,罗永忠. 海拔对祁连山东段青海云杉林林下灌草多样性的影响. 植物资源与环境学报. 2023(06): 59-66 . 百度学术
10. 刘春梅,韩东苗,陈水莲,谭瑞坤,赵苗菲,龚昕怡. 林下套种草珊瑚栽培技术. 安徽农学通报. 2023(21): 51-54 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.05.015