-
进入21世纪以来,随着中国经济社会的发展,对森林的功能需求逐步由传统的木材生产转为生态效益、经济效益和社会效益的多功能需求。实行森林分类经营以后,对纳入生态公益林的现有人工林如何经营,一直是中国林业主管部门、科技工作者和森林经营技术人员思考和关注的重大问题[1-2]。人工林近自然经营理论的提出,为中国人工营造的生态公益林实现长期经营提供了有力的理论支撑[3-5]。通过合理抚育森林以促进森林天然更新,或通过人工林下播种或植苗方式实现林下更新,逐步将现有单层同龄纯林转化为异龄复层混交林,以达到人工林天然化经营的目的,从而实现对森林系统的长期经营。林下幼树更新是人工林近自然化过程中的关键。幼树阶段是个体生命周期中对环境影响最为敏感和最为脆弱的时期[6-7]。光作为影响植物生长的重要生态因子[8],因冠层结构和郁闭度的差异,导致森林群落下层出现大小不等的光斑和光强度,甚至光谱成分亦有差异,并且随时间呈现出动态变化。光辐射量的变化制约着幼树的更新、存活和生长[9-10],在树木生理特征上引起直接而迅速的响应。林下幼树的暗呼吸速率、光补偿点和光饱和点均随着光强的降低而降低[11-13]。光合原初反应和叶绿素荧光存在着密切关系,叶绿素荧光技术可以快速检测植株在胁迫下光合作用的真实行为,评价光合机构的功能和环境胁迫对它的影响。慢相荧光动力学参数主要揭示了光合暗反应启动后的光能利用和分配情况[14],而快相荧光动力学JIP测定技术可以分析光合作用的光反应过程和能量流程,并因其方便、快捷、无损、信息丰富等优点开始应用于植物光合功能的研究当中[15-16]。植物在弱光环境中叶绿素的慢相荧光动力学参数PSⅡ光化学效率、非光化学猝灭系数增加,光化学猝灭系数和电子传递速率逐渐降低[11, 17-19]。针对松属Pinus树种光合作用和叶绿素荧光动力学特征对梯度光强的响应尚缺乏必要研究,快相荧光动力学技术在光逆境下的研究还未见报道。本研究以华北地区山地森林生态系统中的主要针叶树种油松Pinus tabuliformis,黑松Pinus thunbergii,赤松Pinus densiflora等3个树种为研究对象,采用人工遮光的方法模拟旷地、林隙、林下3种不同的光照强度,对不同光强下3个树种幼树的光合生理特性和快相叶绿素荧光动力学特性进行了对比研究,探讨它们在不同光辐射下的光保护机制和光合机构的光反应过程,研究3个松属树种的天然更新能力与近自然森林经营的关系,揭示3个树种对梯度光环境的适应对策,从而为华北地区山地人工林的抚育和长期经营提供理论依据。
-
分析图 1和表 1可知:在全光照条件下,油松、黑松、赤松等3个树种的净光合速率均随着光合有效辐射量的增加呈现出大幅度增加的规律,到达一定程度后趋于平稳,达到光饱和点之后,随着光强的增加,净光合速率开始下降。最大净光合速率(Pnmax)反映了植物的生长速度。赤松最大净光合速率(Pnmax)最大,黑松次之,油松最小;暗呼吸速率(Rd)反映出在没有光照条件下的呼吸速率,暗呼吸速率呈现出油松>黑松>赤松的规律;光饱和点(PLSP)和光补偿点(PLSP)反映了植物利用强光和弱光能力的大小,黑松光饱和点最高,赤松光补偿点最低;表观量子效率(EAQY)反映了植物的耐荫性以及在弱光下吸收、转化和利用光能的能力,表观量子效率呈现出赤松>油松>黑松的规律。在3种松树中,赤松最大净光合速率最大,暗呼吸速率最小,光补偿点最低,表观量子效率最高,表明赤松对弱光的利用能力最强。
图 1 松属3个树种全光照条件下光响应曲线
Figure 1. Photosynthetic light response curves of 3 pine species under 100% light regimes
表 1 3 个松属树种全光照条件下光合参数
Table 1. Photosynthetic parameters of 3 pine species under 100% light regimes
树种 拟合方程 线性方程 最大净光合速率(Pnmax)/(μmol·m-2·s-l) 暗呼吸速率(Rd)/(μmol·m-2·s-1) 光饱和点(PLSP)/(μmol·m-2·s-1) 光补偿点(PLCP)/(μmol·m-2·s-1) 表观量子效率(EAQY)/(mol·mol-1) 油松 y=-2x10-6x2+0.005 7x-0.230 8 (R2=0.958 3) y=0.006 3x-0.236 2 3.15 0.24 826 37.49 0.006 3 黑松 y=-3x10-6x2+0.007 1x-0.148 6 (R2=0.982 3) y=0.004 3x-0.142 4 3.76 0.14 1 596 33.12 0.004 3 赤松 y=-3x10-6x2+0.007 1x-0.128 6 (R2=0.957 0) y=0.00 7 7x-0.128 6 3.96 0.13 1 375 16.70 0.007 7 -
分析图 2可知:光照条件的差异对黑松、油松、赤松的光合作用能力产生了不同的影响。3种松树幼树净光合速率(Pn),蒸腾速率(Tr),胞间二氧化碳浓度(Ci)及水分利用效率(EWUE)在不同光照条件下差异显著(P<0.05)。在全光照条件下净光合速率呈现出黑松>赤松>油松的规律,而在遮光条件下,油松>赤松>黑松;赤松蒸腾速率最大,随着遮光度的增加,油松的蒸腾速率大于黑松;全光照条件下水分利用效率呈现出黑松>油松>赤松的规律,46%遮光条件下赤松>油松>黑松,81%遮光条件下黑松和油松水分利用效率大于赤松。遮光度越高,黑松幼树的净光合作用能力越低,蒸腾速率与水分利用效率也随之降低,而胞间二氧化碳摩尔分数在46%遮光条件下>81%遮光>对照,净光合速率、蒸腾速率、胞间二氧化碳摩尔分数及水分利用效率均具有显著差异(P<0.05);油松幼树的净光合速率、蒸腾速率、胞间二氧化碳摩尔分数分别呈现出46%遮光>81%遮光>对照、81%遮光>46%遮光>对照、46%遮光>对照>81%遮光的规律,不同遮光条件下的水分利用效率差异不显著(P>0.05),46%遮光条件下利用率较高;赤松幼树的净光合速率和蒸腾速率在不同遮光条件下差异不明显(P>0.05),水分利用效率在46%遮光条件下利用率最高。从黑松、油松、赤松在不同光照条件下的光合特征参数的变化可以看出,黑松幼树对光强变化的适应能力强,但是不耐阴;油松幼树有一定的耐阴能力,在46%遮光条件下光合作用能力较强;赤松幼树耐阴性强,能够很好地在光合有效辐射量低的条件下生存。
-
叶绿素荧光可以从一定程度上反映环境因子对植物的影响,快相叶绿素荧光参数能够深入地揭示以PSⅡ为主的植物光合机构对环境的适应机制。遮光条件下PSⅡ反应中心及受体侧的变化及能量流动情况如表 2所示。性能指数Iabs反应光合机构的状态,黑松和油松的性能指数优于赤松,在0.05水平上差异显著。不同遮光条件下黑松的性能指数差异不显著(P>0.05),但随着遮光度的增加性能指数降低;油松的性能指数有显著的差异(P<0.05),在46%遮光状况下最大;赤松的性能指数差异不明显(P>0.05)。3种松树在遮光条件下,PSⅡ受体侧电子受体库(PQ)的容量(Sm)均变小,从QA-进入电子传递链的电子减少,黑松和油松变化差异明显,赤松无明显变化。黑松、油松和赤松PSⅡ捕获的能量从QA传递到QB的效率(ΨO)及PSⅡ捕获的能量从QB传递到PSⅠ的效率(ΨRE)差异显著(P<0.05),赤松PSⅡ捕获的能量从QA传递到QB的效率低于油松和黑松,但是PSⅡ捕获的能量从QB传递到PSⅠ的效率高于油松和黑松。遮光程度越大,黑松PSⅡ捕获的能量从QA传递到QB的效率和PSⅡ捕获的能量从QB传递到PSⅠ的效率越小;油松在46%遮光条件下效率最高;赤松的PSⅡ捕获的能量从QA传递到QB的效率和PSⅡ捕获的能量从QB传递到PSⅠ的效率不受遮光条件的影响。
表 2 不同遮光条件对3 个松属树种快相叶绿素荧光参数的影响
Table 2. Effects on snapshot chlorophyll fluorescence parameters of 3 Pine species under different light regimes
树种 处理 Iabs Sm ψ0 ψRE ABS/RC TRo/RC ETo/RC 黑松 对照
46%遮光
81%遮光15.317±2.851 Aa
14.008±2.436 Aa
13.876±2.428 Ab22.383±1.583 Ab
21.288±1.960 Aa
16.793±0.729 Ba0.741±0.024 Aa
0.713±0.022 ABa
0.692±0.002 Bb0.187±0.018 Aa
0.180±0.012 Ab
0.136±0.006 Ba0.983±0.071 Ab
0.872±0.025 Ab
0.624±0.011 Aa0.933±0.023 Aab
0.784±0.004 Bab
0.566±0.030 Bab0.942±0.082 Aab
0.749±0.002 Bab
0.573±0.025 Ba油松 对照
46%遮光
81%遮光15.743±1.398 Ba
18.761±2.375 Aa
13.155±1.810 Ba31.881±0.763 Aa
23.692±0.605 Bb
21.645±1.727 Ca0.715±0.033 Ba
0.768±0.012 Aa
0.713±0.025 Ba0.199±0.035 ABa
0.217±0.017 Aab
0.177±0.014 Bb0.898±0.072 Bc
0.748±0.043 Bc
0.525±0.055 Bb0.950±0.077 Ab
0.804±0.012 Ab
0.614±0.008 Ab0.910±0.022 ABb
0.768±0.025 ABb
0.544±0.022 Ba赤松 对照
46%遮光
81%遮光12.220±2.153 Ab
11.862±1.679 Ab
12.288±0.550 Ab26.303±1.612 Aa
25.257±2.131 Aa
25.724±1.261 Aa0.722±0.026 Aa
0.710±0.027 Aa
0.712±0.012 Ab0.226±0.011 Aa
0.223±0.029 Aa
0.215±0.031 Aa1.092±0.054 Aa
0.914±0.041 Aa
0.694±0.016 Aa1.054±0.042 Aa
0.872±0.019 Aa
0.632±0.028 Ba1.019±0.062 Aa
0.859±0.047 Aa
0.629±0.033 Ba说明: 数据为平均值±标准差; 每一个参数中不同大写字母表示同一树种不同遮光处理间差异显著(P<0.05); 每一参数中不同小写字母表示不同树种间差异显著( P<0.05)。 3种松树在遮光条件下单位反应中心吸收的能量(ABS/RC),捕获的能量(TRo/RC)以及用于电子传递的能量(ETo/RC)有显著的差异(P<0.05)。赤松单位反应中心吸收、捕获及电子传递的能力均大于黑松和油松,PSⅡ光合机构对光能的利用能力最强。黑松单位反应中心对光能的吸收、捕获及利用能力在全光照条件下最强,随着光合有效辐射量的减小对光能的利用能力降低;油松在46%遮光条件下单位反应中心对光能的利用能力最强;光合有效辐射量的变化对赤松单位反应中心的光能利用效率无显著的影响(P>0.05)。快相叶绿素荧光参数结果表明:油松光合机构的状态以及PSⅡ反应中心捕获的能量在QA与QB间的传递效率优于黑松和赤松,但是赤松单位反应中心吸收及用于电子传递的能量均显著大于黑松和油松,能量利用效率高,致使PSⅡ捕获的能量从QB传递到PSⅠ的效率高。
Photosynthetic characteristics and chlorophyll fluorescence of three Pinus tree species with shading
-
摘要: 通过搭建遮光棚模拟空旷地(不遮光对照)、林隙(46%遮光)、林下(81%遮光)等3种光照环境,研究了黑松Pinus thunbergii,油松Pinus tabuliformis,赤松Pinus densiflora等幼树叶片光合特性和叶绿素荧光动力学特征随梯度光照强度的变化规律,以期了解3个树种对不同光环境的适应性对策,为华北地区人工林的天然更新及长期经营提供理论依据。结果表明:随着光照强度的降低,黑松幼树净光合速率(Pn),蒸腾速率(Tr),水分利用效率(EWUE),性能指数(Iabs),质体醌库的面积(Sm),PSⅡ捕获的能量从QA传递到QB的效率(ΨO),PSⅡ捕获的能量从QB传递到PSⅠ的效率(ΨRE),单位反应中心吸收(ABS/RC)、捕获(TRo/RC)、用于电子传递(ETo/RC)的能量均减小。油松幼树净光合速率(Pn),水分利用效率(EWUE),性能指数(Iabs),PSⅡ捕获的能量从QA传递到QB的效率(ΨO),PSⅡ捕获的能量从QB传递到PSⅠ的效率(ΨRE),单位反应中心吸收(ABS/RC)、捕获(TRo/RC)、用于电子传递(ETo/RC)的能量在46%遮光条件下达到最大值。赤松幼树光合特征参数及叶绿素荧光参数在不同遮光条件下差异不显著(P>0.05)。因此,赤松对弱光的利用能力最强,能够适应不同的光照环境;黑松在光照充足的环境中生长状况较好;油松适宜在轻度遮光的林隙环境中生长。Abstract: Seedling stage is the most sensitive and vulnerable period of the individual life cycle on the environment. The update, survival and growth of young trees influenced larger by the change of light radiation. This paper focused the study on the change rule of young tree leaf photosynthetic characteristics and chlorophyll fluorescence kinetics characteristics along with the change of light intensity, which were three species, Pinus thunbergii, Pinus tabuliformi, Pinus densiflora. The goal was to investigate the three species' adaptive strategy to different light environments through building shading to mimic the open place, gap, understory(i.e. 0%, 46% and 81% sun-shading) and provide theoretical for natural regeneration and long-term management of plantations in north China. Variables including Pn (net photosynthetic rate), Tr (transpiration rate), EWUE (water use efficiency), Iabs (performance index on absorption basis), Sm (normalized total complementary area above the O-J-I-P transit), ΨO (probability that a trapped exciton moves an electron into the electron transport chain beyond QA-(electron transfer mediators)), ΨRE (probability that a trapped exciton moves an electron into the electron transport chain beyond QB-(electron transfer mediators)), ABS/RC (absorption flux per RC (per QA reducing PSⅡreaction center)), TRo/RC (trapped energy flux per RC), ETo/RC (electron transport flux per RC) had been measured. The results showed that:For the photosynthetic parameters, the photosynthetic parameters of three Pinus trees were significantly different (P<0.05) and Pn was the largest with P. densiflora seedlings. Pn, Tr and EWUE of P. thunbergii decreased with the shading degree increasing; Pn of P. tabuliformis reached maximum under 46% shading degree with Tr and EWUE reaching maximum under 81% shading degree; Pn, Tr and EWUE of P. densiflora showed no obvious differences. For the chlorophyll fluorescence kinetics parameters, the Iabs, Sm, ΨO, ΨRE, ABS/RC, TRo/RC, ETo/RC under different shading degree of the three Pinus trees were significantly different (P<0.05). Iabs, Sm, ΨO, ΨRE, ABS/RC, TRo/RC and ETo/RC of P. thunbergii had the same rule with the photosynthetic parameters; Iabs, ΨO, ΨRE, ABS/RC, TRo/RC and ETo/RC of P. tabuliformis reached maximum under 46% shading degree with Sm reaching maximum under 81% shading degree; The chlorophyll fluorescence kinetics parameters of P. densiflora wasn't significantly different when the shading degree changed (P>0.05). In general, P. densiflora had the strongest ability of using weak light and could adapted to various light environments; P. thunbergii grew well with enough light while P. tabuliformis grew well in light shaded gap.
-
Key words:
- plant physiology /
- shade /
- Pinus /
- photosynthetic characteristics /
- chlorophyll fluorescence parameters
-
表 1 3 个松属树种全光照条件下光合参数
Table 1. Photosynthetic parameters of 3 pine species under 100% light regimes
树种 拟合方程 线性方程 最大净光合速率(Pnmax)/(μmol·m-2·s-l) 暗呼吸速率(Rd)/(μmol·m-2·s-1) 光饱和点(PLSP)/(μmol·m-2·s-1) 光补偿点(PLCP)/(μmol·m-2·s-1) 表观量子效率(EAQY)/(mol·mol-1) 油松 y=-2x10-6x2+0.005 7x-0.230 8 (R2=0.958 3) y=0.006 3x-0.236 2 3.15 0.24 826 37.49 0.006 3 黑松 y=-3x10-6x2+0.007 1x-0.148 6 (R2=0.982 3) y=0.004 3x-0.142 4 3.76 0.14 1 596 33.12 0.004 3 赤松 y=-3x10-6x2+0.007 1x-0.128 6 (R2=0.957 0) y=0.00 7 7x-0.128 6 3.96 0.13 1 375 16.70 0.007 7 表 2 不同遮光条件对3 个松属树种快相叶绿素荧光参数的影响
Table 2. Effects on snapshot chlorophyll fluorescence parameters of 3 Pine species under different light regimes
树种 处理 Iabs Sm ψ0 ψRE ABS/RC TRo/RC ETo/RC 黑松 对照
46%遮光
81%遮光15.317±2.851 Aa
14.008±2.436 Aa
13.876±2.428 Ab22.383±1.583 Ab
21.288±1.960 Aa
16.793±0.729 Ba0.741±0.024 Aa
0.713±0.022 ABa
0.692±0.002 Bb0.187±0.018 Aa
0.180±0.012 Ab
0.136±0.006 Ba0.983±0.071 Ab
0.872±0.025 Ab
0.624±0.011 Aa0.933±0.023 Aab
0.784±0.004 Bab
0.566±0.030 Bab0.942±0.082 Aab
0.749±0.002 Bab
0.573±0.025 Ba油松 对照
46%遮光
81%遮光15.743±1.398 Ba
18.761±2.375 Aa
13.155±1.810 Ba31.881±0.763 Aa
23.692±0.605 Bb
21.645±1.727 Ca0.715±0.033 Ba
0.768±0.012 Aa
0.713±0.025 Ba0.199±0.035 ABa
0.217±0.017 Aab
0.177±0.014 Bb0.898±0.072 Bc
0.748±0.043 Bc
0.525±0.055 Bb0.950±0.077 Ab
0.804±0.012 Ab
0.614±0.008 Ab0.910±0.022 ABb
0.768±0.025 ABb
0.544±0.022 Ba赤松 对照
46%遮光
81%遮光12.220±2.153 Ab
11.862±1.679 Ab
12.288±0.550 Ab26.303±1.612 Aa
25.257±2.131 Aa
25.724±1.261 Aa0.722±0.026 Aa
0.710±0.027 Aa
0.712±0.012 Ab0.226±0.011 Aa
0.223±0.029 Aa
0.215±0.031 Aa1.092±0.054 Aa
0.914±0.041 Aa
0.694±0.016 Aa1.054±0.042 Aa
0.872±0.019 Aa
0.632±0.028 Ba1.019±0.062 Aa
0.859±0.047 Aa
0.629±0.033 Ba说明: 数据为平均值±标准差; 每一个参数中不同大写字母表示同一树种不同遮光处理间差异显著(P<0.05); 每一参数中不同小写字母表示不同树种间差异显著( P<0.05)。 -
[1] 周建云,李荣,何景峰,等. 近自然经营对辽东栎林优势乔木更新的影响[J]. 林业科学,2013,49(8):15-20. ZHOU Jianyun, LI Rong, HE Jingfeng, et al. Regeneration of the dominant arbors after close-to-natural management of Quercus wutaishanica forest[J]. Sci Silv Sin, 2013, 49(8):15-20. [2] 李婷婷,陆元昌,庞丽峰,等. 杉木人工林近自然经营的初步效果[J]. 林业科学,2014,50(5):90-100. LI Tingting, LU Yuanchang, PANG Lifeng, et al. Initial effect of close-to-nature management of Chinese fir plantation[J]. Sci Silv Sin, 2014, 50(5):90-100. [3] KUIJPER D P J. Lack of natural control mechanisms increases wildlife-forestry conflict in managed temperate European forest systems[J]. Euro J For Res, 2011, 130(6):895-909. [4] MORADI M, MOHADJER M R M, SEFIDI K, et al. Over-mature beech trees (Fagus orientalis Lipsky) and close-to-nature forestry in northern Iran[J]. J For Res, 2012, 23(2):289-294. [5] KOHSAKA R, HANDOH I C. Perceptions of "close-to-nature forestry" by German and Japanese group:inquiry using visual materials of ‘cut’ and ‘dead’ wood[J]. J For Res, 2006, 11(1):11-19. [6] HAMRICK J L, LEE J M. Effect of soil surface topography and litter cover on the germination survival and growth of musk thistle (Garduus nutans)[J]. Am J Bot, 1987, 74(3):451-457. [7] 刘长成,刘玉国,郭柯. 4种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报,2011,35(10):1070-1082. LIU Changcheng, LIU Yuguo, GUO Ke. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats[J]. Chin J Plant Ecol, 2011, 35(10):1070-1082. [8] ROZENDAAL D M A, HURTADO V H, POORTER L. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature[J]. Funct Ecol, 2006, 20(2):207-216. [9] PORTSMUTH A, NIINEMETSÜ. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance[J]. Funct Ecol, 2007, 21(1):61-77. [10] 林波,刘庆. 4种亚高山针叶林树种的表型可塑性对不同光照强度的响应[J]. 生态学报,2008,28(10):4665-4675. LIN Bo, LIU Qing. Plasticity responses of 4 tree species in subalpine-coniferous forest to different light regimes[J]. Acta Ecol Sin, 2008, 28(10):4665-4675. [11] 刘建锋,杨文娟,江泽平,等. 遮荫对濒危植物崖柏光合作用和叶绿素荧光参数的影响[J]. 生态学报,2011,31(20):5999-6004. LIU Jianfeng, YANG Wenjuan, JIANG Zeping, et al. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of the endangered plant Thuja sutchuenensis[J]. Acta Ecol Sin, 2011, 31(20):5999-6004. [12] 刘柿良,马明东,潘远智,等. 不同光强对2种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报,2012,36(10):1062-1074. LIU Shiliang, MA Mingdong, PAN Yuanzhi, et al. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chin J Plant Ecol, 2012, 36(10):1062-1074. [13] MACEDO M F, DUARTE P, FERREIRA J G. The influence of incubation periods on photosynthesis-irradiance curves[J]. J Exp Mar Bio Ecol, 2002, 274(2):101-120. [14] 邱念伟,周峰,顾祝军,等. 5种松属树种光合功能及叶绿素快相荧光动力学特征比较[J]. 应用生态学报,2012,23(5):1181-1187. QIU Nianwei, ZHOU Feng, GU Zhujun, et al. Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species[J]. Chin J Appl Ecol, 2012, 23(5):1181-1187. [15] STIRBET A, GOVINDJEE. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem (Ⅱ) basics and applications of the OJIP fluorescence transient[J]. J Photochem Photobiol B Biol, 2011, 104(1/2):236-257. [16] 李鹏民,高辉远,STRASSER R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报,2005,31(6):559-566. LI Pengmin, GAO Huiyuan, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. J Plant Physiol Molec Biol, 2005, 31(6):559-566. [17] 王建华,任士福,史宝胜,等. 遮荫对连翘光合特性和叶绿素荧光参数的影响[J]. 生态学报,2011,31(7):1811-1817. WANG Jianhua, REN Shifu, SHI Baosheng, et al. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa[J]. Acta Ecol Sin, 2011, 31(7):1811-1817. [18] 吕铖香,张明如,邹伶俐. 模拟酸雨与光强处理对芒萁叶绿素及荧光特性的影响[J]. 浙江农林大学学报,2015,32(1):52-59. LÜChengxiang, ZHANG Mingru, ZOU Lingli. Chlorophyll fluorescence characteristics with simulated acid rain and light intensity treatments for Dicranopteris dichotoma[J]. J Zhejiang A & F Univ, 2015, 32(1):52-59. [19] DENG Yanming, LI Congcong, SHAO Qingsong, et al. Differential responses of double petal and multi petal jasmine to shading (Ⅰ) Photosynthetic characteristics and chloroplast ultrastructure[J]. Plant Physiol Biochem, 2012, 55:93-102. [20] COLEY P D. Herbivory and defensive characteristics of tree species in a low land tropical forest[J]. Ecol Monogr, 1983, 53(2):209-233. [21] 伍维模,李志军,罗青红,等. 土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J]. 林业科学,2007,43(5):30-35. WU Weimo, LI Zhijun, LUO Qinghong, et al. Effects of soil water stress on light response curves of photosynthesis of Populus euphratica and Populus pruinosa[J]. Sci Silv Sin, 2007, 43(5):30-35. [22] LEE D W, BONE R A, TARSIS S L, et al. Correlates of leaf optical properties in tropical forest sun and extreme-shade plants[J]. Am J Bot, 1990, 77(3):370-380. [23] RICHARDSON A D, BERLYN G P. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. Am J Bot, 2002, 89(1):88-94. [24] 方江保,殷秀敏,余树全,等. 光照强度对苦槠幼苗生长与光合作用的影响[J]. 浙江林学院学报,2010,27(4):538-544. FANG Jiangbao, YIN Xiumin, YU Shuquan, et al. Growth and photosynthesis of Castanopsis sclerophylla seedlings with three light intensity treatments[J]. J Zhejiang For Coll, 2010, 27(4):538-544. [25] 徐飞,郭卫华,徐伟红,等. 不同光环境对麻栎和刺槐幼苗生长和光合特征的影响[J]. 生态学报,2010,30(12):3098-3107. XU Fei, GUO Weihua, XU Weihong, et al. Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia[J]. Acta Ecol Sin, 2010, 30(12):3098-3107. [26] BLACK K, DAVIS P, McGRATH J, et al. Interactive effects of irradiance and water availability on the photosynthetic performance of Picea sitchensis seedlings:implications for seeding establishment under different management practices[J]. Ann For Sci, 2005, 62(5):413-422. [27] 温达志,叶万辉,林植芳,等. 全光和遮阴下2种亚热带木本植物的光合作用对光的响应[J]. 热带亚热带植物学报,2001,9(3):248-255. WEN Dazhi, YE Wanhui, LIN Zhifang, et al. Photosynthetic responses of two subtropical woody plants growing under sun and shade environments[J]. J Trop Subtrop Bot, 2001, 9(3):248-255. [28] 李利,潘响亮,李宏. 模拟干旱和盐分胁迫对沙枣幼苗PSⅡ活力的影响[J]. 西北植物学报,2001,31(4):768-775. LI Li, PAN Xiangliang, LI Hong. Comparative effects of NaCl and polyethylene glycol on PSⅡ activity of Elaeagnus angustifolia[J]. Acta Bot Boreal-Occident Sin, 2011, 31(4):768-775. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.04.013