-
藜麦 Chenopodium quinoa,又称南美藜、藜谷、奎奴亚藜等,是一种1年生的藜科Chenopodiaceae草本作物,原产于南美洲安第斯山脉,海拔2 800~4 200 m,纬度12°N~39°S 。印第安人认为藜麦是谷物之母,栽植藜麦已有5 000多年的历史。藜麦的商业化栽植始于秘鲁、玻利维亚、厄瓜多尔等国家,1980年美国植物学家将藜麦从南美引入科罗拉多州,2000年后藜麦开始被营养学家们认可并推荐,并于20世纪90年代以后作为候选的特色农作物,被美国、加拿大和欧洲等引进和栽植。中国于1987年由西藏农牧学院和西藏农科院开始引种试验研究,并于1992年和1993年在西藏境内大范围小面积试种均获成功[1]。目前,在陕西、山西、青海、四川、浙江等地均已有小规模适应性种植。藜麦的生长习性和开发利用方式与禾本科的青稞Hordeum vulgare var. nudum有一定的相似之处。青稞是青藏高原1年1熟的标志性作物,可生于海拔4 500 m以上的局部高海拔高寒地带,具有高蛋白、高纤维、高维生素和低脂肪、低糖的特性,但和藜麦相比,其营养价值不全面,且消化系统不好和孕妇等人群宜少食。藜麦则没有这些禁忌,其营养价值极高,营养全面,且具有多种开发利用价值,值得大力度大范围推广。近年来藜麦已经引起各类研究者、生产者及普通消费者广泛的关注,但藜麦作为有待普及和推广的新兴作物,对藜麦的理论研究和开发利用尚有待深入。2013年对藜麦来说更是意义非凡的一年,联合国大会将2013年定为“国际藜麦年”,旨在让世界关注藜麦的生物多样性和营养价值在提供粮食和营养安全、消除贫困以及在支持实现千年发展目标等方面所能发挥的作用。著者在总结前人研究成果的基础上,结合最新研究动态,对藜麦的生物学特性、资源培育、生理学特性、化学成分和开发利用等方面的研究进行了综述,以期为藜麦新品种选育、产品开发利用等提供科学依据。
A review of characteristics and utilization of Chenopodium quinoa
-
摘要: 藜麦Chenopodium quinoa为藜科Chenopodiaceae藜属Chenopodium的1年生草本植物, 原产于南美洲的安第斯山脉, 已有5 000多年的栽植历史。藜麦品种多样, 资源丰富, 以其极高的营养价值和多种开发利用价值近年来引起人们的普遍关注。根据国内外相关研究, 概述了藜麦喜湿热强光、稍耐冻、短日照, 穗状花序、自花授粉、种子繁殖及生长期等生物学特性, 耐盐碱、干旱、霜冻、病虫害等生理学特性和总多酚、皂甙、黄酮类、多糖、蛋白质与氨基酸、矿质营养素及其他化学成分等方面的研究进展, 并阐述了藜麦在食用、工业、农用、药用、观赏价值等的开发利用现状及其存在的问题。建议加强藜麦品种资源、抗逆性、化学成分等方面的研究, 发掘藜麦潜在的利用价值。Abstract: Chenopodium quinoa (quinoa), an annual herb of multiple species belonging to the genus Chenopodium, is native to the Andes in South America, where it has been planted for more than 5 000 years. Because of quinoa's high nutrient value and many uses, it has attracted extensive research. This paper reviewed research results from China and abroad concerning biological characteristics of quinoa such as heat, humidity, bright sunlight, cold resistance, short-days, spikes, self-pollination, seed reproduction, and growth period; physiological properties such as salinity, drought, frost, plant disease, and insect pest resistance; and chemical composition such as total polyphenols, saponins, flavonoids, polysaccharides, proteins, amino acids, mineral nutrients, and other chemical compositions. Then, its present exploitation and problems were elaborated. Overall, research to strengthen species resources, resistance, and chemical components, as well as to explore quinoa's potential utilization value should be undertaken.
-
[1] 张崇玺, 贡布扎西, 旺姆. 南美黎(quinoa)苗期低温冻害试验研究[J]. 西藏农业科技, 1994, 16(4):49-54. ZHANG Chongxi, GONGBU Trashi, WANG Mu. Low temperature damage research on quinoa at seeding stage[J]. Tibet J Agric Sci, 1994, 16(4):49-54. [2] GEERTS S, RAES D, GARCIA M, et al. Agro-climatic suitability mapping for crop production in the Bolivian Altiplano:a case study for quinoa[J]. Agric For Meteorol, 2006, 139:399-412. [3] 贡布扎西, 旺姆. 南美藜生物学特性及栽培技术[J]. 西藏科技, 1995, 70(4):19-22. GONGBU Trashi, WANG Mu. Biological characteristics and culture technology on quinoa[J]. Tibet Sci Technol, 1995, 70(4):19-22. [4] JACOBSEN S E, MUJICA A, JENSEN C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors[J]. Food Rev Int, 2003, 19(1/2):99-109. [5] CANAHUA M A. Observaciones del comportamiento de la quinua a la sequia[C]//Proc. Ⅰ Congreso Internacional de Cultivos Andinos. Ayacucho:Universidad Nacional San Cristobal de Huamanga, Instituto Interamericano de Ciencias Agricolas, 1977:390-392. [6] VACHER J J. Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd.) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano:significance of local adaptation[J]. Agric Ecosyst & Environ, 1998, 68(1/2):99-108. [7] JACOBSEN S-E, LIU Fulai, JENSEN C R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.)[J]. Sci Hortic, 2009, 122(2):281-287. [8] MULICA A. Andean grains and legumes[G]//BERMUJO, J E H, LEON J. Neglected Crops:1492 from a Different Perspective. Rome:FAO, 1994:131-148. [9] CHRISTIANSEN J L, RUIZ-TAPIA E N, JØRNSGÅRD B, et al. Fast seed germination of quinoa (Chenopodium quinoa) at low temperature[C]//MELA T, TOPI-HULMI M, PITHAN K. Alternative Crops for Sustainable Agriculture in COST 814-Workshop. Turku:[s. n.], 1999:220-225. [10] ADOLF V I, JACOBSEN S-E, SHABALA S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)[J]. Environ Exper Bot, 2012, 92:43-54. [11] GARCIA M, RAES D, JACOBSEN S-E. Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands[J]. Agric Water Manage, 2003, 60(2):119-134. [12] JACOBSEN S E, MONTEROS C, CHRISTIANSENJ L, et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages[J]. Eur J Agric, 2005, 22(2):131-139. [13] GEERTS S, RAES D, GARCIA M, et al. Crop water use indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress[J]. Field Crops Res, 2008, 108(2):150-156. [14] PASKO P, BARTON H, ZAGRODZKI P, et al. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth[J]. Food Chem, 2009, 115(3):994-998. [15] ALVAREZ-JUBETE L, WIJNGAARD H, ARENDT E K, et al. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and backing[J]. Food Chem, 2010, 119(2):770-778. [16] HIROSE Y, FUJITA T, ISHILL T, et al. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan[J]. Food Chem, 2010, 119(4):1300-1306. [17] ESTRADA A, LI Bing, LAARVELD B. Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice[J]. Comp Immunol Microbiol Infect Dis, 1998, 21(3):225-236. [18] WOLDEMICHAEL G M, WINK M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa[J]. J Agric Food Chem, 2001, 49(5):2327-2332. [19] BRADY K, HO C T, ROSEN R T, et al. Effects of processing on the nutraceutical profile of quinoa[J]. Food Chem, 2007, 100(3):1209-1216. [20] STUARDO M, MARTIN R S. Antifungal properties of quinoa (Chenopodium quinoa Willd.) alkali treated saponins against Botrytis cinerea[J]. Ind Crops Prod, 2008, 27(3):296-302. [21] MARTIN R S, NDJOKO K, HOSTETTTMANN K. Novel molluscicide against Pomacea canaliculata based on quinoa (Chenopodium quinoa) saponins[J]. Crop Prot, 2008, 27(3/5):310-319. [22] WOLDEMICHAEL G. M, WINK M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa[J]. Agric Food Chem, 2001, 49(5):2327-2332. [23] ZHU Nanqun, SHENG Shuqun, LI Dajie, et al. Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd.)[J]. J Food Lipids, 2001, 8(1):37-44. [24] CORDEIRO L M C, de FáTIMA REINHARDT V, BAGGIO C H, et al. Arabinan and arabinan-rich pectic polysaccharides from quinoa (Chenopodium quinoa) seeds:structure and gastroprotective activity[J]. Food Chem, 2012, 130(4):937-944. [25] LAMACCHIA C, CHILLO S, LAMPARELLI S, et al. Amaranth, quinoa and oat doughs:mechanical and rheological behaviour, polymeric protein size distribution and extractability[J]. J Food Eng, 2010, 96(1):97-106. [26] 陈毓荃, 高爱丽, 贡布扎西. 南美藜种子蛋白质研究[J]. 西北农业学报, 1996, 5(3):43-48. CHEN Yuquan, GAO Aili, GONGBU Trashi. Studies on quinoa seed proteins[J]. Acta Agric Boreal-Occident Sin, 1996, 5(3):43-48. [27] BHARGAVA A, SHUKLA S, OHRI D. Genetic variability and heritability of selected traits during different cuttings of vegetable Chenopodium[J]. Ind J Genet Plant Breed, 2003, 63(4):359-360. [28] NG S C, ANDERSON A, COKER J, et al. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa)[J]. Food Chem, 2007, 101(1):185-192. [29] OSHODI AA, OGUNGBENLE H N, OLADIMEJI M O. Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamun radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours[J]. Int JFood Sci Nutr, 1999, 50(5):325-331. [30] COMAI S, BERTAZZO A, BAILONI L, et al. The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours[J]. Food Chem, 2007, 100(4):1350-1355. [31] JANCUROVÁM, MINAROVI cOVÁL, DANDÁR A. Quinoa:a review[J]. Czech J Food Sci, 2009, 27(2):71-79. [32] ALVEREZ-JUBETE L, AERNDT E K., GALLAGHER E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients[J]. Trends Food Sci & Technol, 2010, 21:106-113. [33] 刘美正, 郭忠武, 惠永正. 皂甙研究新进展[J]. 天然产物研究与开发, 1997, 9(2):81-85. LIU Meizheng, GUO Zhongwu, HUI Yongzheng. Recent Progress of saponins research[J]. Nat Prot Res Dev, 1997, 9(2):81-85. [34] 胡伟莲, 陈雪君, 段智勇, 等. 皂甙对畜禽的营养作用[J]. 中国畜牧杂志, 2005, 41(3):35-36. HU Weilian, CHEN Xuejun, DUAN Zhiyong, et al. The function of saponins in animal nutrition[J]. Chin J Anim Sci, 2005, 41(3):35-36. [35] FORMICA J V, REGELSON W. Review of the biology of quercetin and related bioflavonoids[J]. Food Chem Toxicol, 1995, 33(12):1061-1080. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.02.020
计量
- 文章访问数: 6199
- HTML全文浏览量: 1119
- PDF下载量: 1360
- 被引次数: 0