-
骨骼肌组织的发生和发育是肉品质形成的重要因素。肌肉生成是一个复杂的程序,包括肌肉先祖细胞的增殖和迁移(或卫星细胞的激活),成肌细胞的生成、增殖和分化,成肌细胞的融合以及多核肌纤维的形成等过程。骨骼肌的先祖细胞在基因调控下迁移入肢芽间充质,分裂形成肌肉的始祖细胞库,在基因调控下形成成肌细胞进入分化。成肌细胞在基因的调控下分泌特异因子,导致成肌细胞发生融合形成多核肌管。肌小管是初级肌肉纤维的前体细胞,随后形成肌纤维,最后构成复杂的骨骼肌[1-2]。在胚胎发育后期阶段,肌肉进入后期增长,主要包括肌纤维长度的增加和直径的增大[3]。肌肉重生和自我更新来源于骨骼肌中的正常沉默的卫星细胞[4]。在这些过程中,多个调控因子进行双向调节。目前,已确定与肌纤维生长发育相关的基因有MRFs(myogenic regulatory factors)基因家族、PAX(paired box)基因家族和肌肉生成抑制因子基因(Myostatin,MSTN)[5]等,MRFs家族包括肌分化因子MyoD,肌细胞生成素MyoG(Myogenin),生肌决定因子Myf6和Myf5[6]。它们调控前体肌细胞定型、细胞增殖和肌纤维的形成以及机体出生以后肌肉成熟和功能完备等肌肉发生和发育的各个环节[7-9],对肌细胞的增殖和分化、肌纤维的数量和大小起着关键的调控作用,若该基因家族表达沉默则会导致生肌节形成的失败,最终无法形成肌肉[10]。而PAX家族蛋白为一类重要的转录调控因子,在胚胎发育过程中对组织和器官的分化起重要的调控作用。其中,Pax3和Pax7等2个转录因子通过调控MRFs基因家族和其他相关基因,被认为在肌纤维的生长发育过程中,指导众多过程的形成[11]。鹅Anser cygnoides是鸟纲雁形目Anseriformes鸭科Anatidae的一种动物。鹅肉是理想的高蛋白、低脂肪、低胆固醇的营养健康食品。因此,目前对鹅肉的需求量也日趋上涨,鹅肌肉生长和肉质形成的研究受到一定的关注。如前所述,MRFs基因家族和PAX基因家族参与肌肉的发育过程,与肌纤维的数量和大小有着密切关系。但鹅该基因家族在胚胎期肌肉发育过程中的表达规律及在肌肉发育过程中的调控作用未见报道。中国鹅品种资源非常丰富,记载于《中国禽类遗传资源》上的地方品种共36个,培育鹅种5个。本研究以浙东白鹅Anser cygnoides domestica ‘Zhedong’为材料,该品种分布于浙江东部地区,为中等体型白色鹅种,其身躯有2种,分别是长方形和长尖形,全身羽毛白色,额部有肉瘤,颈部细长腿部粗壮,是中国肉鹅的著名地方品种,可作为研究肌肉生长发育的理想动物模型。采用实时荧光定量聚合酶链式反应(qRT-PCR)分析技术,研究物种胚胎期和胚胎后早期胸肌(breast muscle, BM),腿肌(leg muscle, LM)中MRFs家族以及Pax3和Pax7的表达规律,以探索这些基因在肌肉发育过程中的作用。
-
试验所用鹅个体由浙江天鸿鹅业提供(浙江绍兴),选取相同批次且孵化条件相同的胚龄分别为7,11,15,19,23,27 d的鹅胚各3枚(分别以E7,E11,E15,E19,E23,E27表示);同时选取同一批次出壳,并在相同饲养管理条件下饲养的7日龄鹅3只(以P7表示)。迅速分离出鹅胚以及出生后小鹅的胸肌和腿肌组织,置于液氮速冻,然后转入-80 ℃冰箱保存。
-
肌肉总RNA采用RNAiso plus(TaKaRa,大连)提取,RNA样品经质量分数为1%的琼脂糖凝胶电泳检测质量,紫外分光光度计检测计算浓度。采用PrimeScriptTMreagent Kit(TaKaRa,大连)合成cDNA。
-
根据已发表的鸭Anas platyrhynchos和鹅MRFs家族、Pax3和Pax7序列分别设计qRT-PCR引物(表 1),GAPDH作为内参基因。引物由上海英骏生物工程有限公司合成。qRT-PCR采用SYB®PrimeScrip®RT-PCR Kit(TaKaRa,大连),反应体系和反应条件按试剂盒说明进行,设置技术平行的3个·样品-1。采用CT值(循环数)比较法计算表达量,采用SASS分析表达差异是否显著。
表 1 研究采用的qRT-PCR引物
Table 1. Primers used for qRT-PCR
基因 参考序列 序列(5′→3′) MyoD chicken:NM_204214; F(上游):TGCCGTCGGAGCAGTTGGAG duck:JN408699, JN408700 R(下游):DCAACGCCATCCGCTACATCG MyoG chicken:NM204184, XM_005013713; F:CGCCTGAAGAAGGTGAACGAAGC duck:NM_001310376 R:GTCCCTCTGCTCCCGCTCCTG Myf5 chicken: NM_001030363; F:TGAGGAACGCCATCAGATACATCG R:AGCTGGAGGTGGGGCTGGTC Myf6 duck:NM_001310793 F:AGCAGGCAAATGGCTCGGACTTC R:GCTTGGGCTCGTCGGAGGAAAT Pax3 chicken:AB080581; F:AGCCATCCTACCAGCCCACCTC duck:JQ070187 R:CGAAGGGAGGCTGCTTTGGTGT Pax7 chicken:NM_205065, DQ471304; F:GCTCAGCGGTGAAAGTGGTTCG duck:JQ070188; R:CGGCATCCTGGGCGACAAAG GAPDH 参考文献[12] F:GCCAAAAGGGTCATCATCTC R:GTAGAG GCAGGGATGATGTTC
Expression patterns of MRFs, Pax3, and Pax7 during skeletal muscle development in Zhedong white geese
-
摘要: 生肌调节因子家族(myogenic regulatory factors,MRFs)在胚胎期和出壳早期的骨骼肌分化过程中发挥重要作用;PAX家族中的2个转录因子Pax3和Pax7,被认为在肌纤维的生长发育过程中,指导众多过程的形成。在鹅胚胎发育过程中这些基因的表达变化规律及在肌肉发育过程中的表达变化规律研究甚少。以浙东白鹅Anser cygnoides domestica‘Zhedong’为研究对象,提取RNA合成cDNA并采用实时荧光定量聚合酶链式反应(qRT-PCR)研究MRFs,Pax3和Pax7在鹅胚胎期(7,11,15,19,23,27 d胚龄)及出生早期(出雏后7日龄)的表达规律,并分析其表达与胸、腿肌发育的相关性。结果显示:MRFs,Pax3和Pax7基因均和鹅骨骼肌的发育相关,并且存在不同的表达规律。MRFs和Pax7基因在11~15 d胚龄期间出现表达高峰期,而Pax3基因在7 d胚龄即出现高表达,随后表达下降。通过分析表明:这些基因的表达规律均和它们在肌肉发育过程中的作用密切吻合。Abstract: The family of myogenic regulatory factors (MRFs) played an important role in the process of skeletal muscle differentiation during the embryonic stage and the early stage of hatching with Pax3 and Pax7, two transcription factors of the PAX family, guiding the formation of various processes during the growth and development of muscle fiber. To determine the expression profiles of these genes during the embryonic and muscle development stages in geese, the expression pattern of MRFs, Pax3, and Pax7 during the embryonic period (7th, 11th, 15th, 19th, 23th, 27th day in embryonic (E) age) and early birth (7-day-age) in Zhedong White Geese was studied. Analysis included extracting RNA and synthetic DNA along with real-time PCR followed by further analysis on their relationship with the development of breast and leg muscles. We took three samples for tissue of each period, and the significance of expression was analyzed with SASS. Results revealed that MRFs, Pax3, and Pax7, were all related to the development of skeletal muscles in geese with different expression patterns. MRFs and Pax7 showed peak expression during the period from E11 to E15, and the highest expression of Pax3 with a declining expression appeared at E7. Findings suggested that the expression patterns of these genes were highly matched with their function during muscle development and provided a theoretical basis for further investigation of the regulatory mechanism of MRFs, Pax3, and Pax7 during skeletal muscle development in geese.
-
Key words:
- zoology /
- goose /
- skeletal muscle development /
- myogenic regulatory factors (MRFs) /
- Pax3 /
- Pax7
-
表 1 研究采用的qRT-PCR引物
Table 1. Primers used for qRT-PCR
基因 参考序列 序列(5′→3′) MyoD chicken:NM_204214; F(上游):TGCCGTCGGAGCAGTTGGAG duck:JN408699, JN408700 R(下游):DCAACGCCATCCGCTACATCG MyoG chicken:NM204184, XM_005013713; F:CGCCTGAAGAAGGTGAACGAAGC duck:NM_001310376 R:GTCCCTCTGCTCCCGCTCCTG Myf5 chicken: NM_001030363; F:TGAGGAACGCCATCAGATACATCG R:AGCTGGAGGTGGGGCTGGTC Myf6 duck:NM_001310793 F:AGCAGGCAAATGGCTCGGACTTC R:GCTTGGGCTCGTCGGAGGAAAT Pax3 chicken:AB080581; F:AGCCATCCTACCAGCCCACCTC duck:JQ070187 R:CGAAGGGAGGCTGCTTTGGTGT Pax7 chicken:NM_205065, DQ471304; F:GCTCAGCGGTGAAAGTGGTTCG duck:JQ070188; R:CGGCATCCTGGGCGACAAAG GAPDH 参考文献[12] F:GCCAAAAGGGTCATCATCTC R:GTAGAG GCAGGGATGATGTTC -
[1] ROMERO N B, MEZMEZIAN M, FIDZIASKA A. Main steps of skeletal muscle development in the human:morphological analysis and ultrastructural characteristics of developing human muscle[J]. Handb Clin Neurol, 2013, 113(2):1299-1310. [2] PICARD B, LEFAUCHEUR L, BERRI C, et al. Muscle fibre ontogenesis in farm animal species[J]. Reprod Nutr Develop, 2002, 42(5):415-431. [3] SCHIAFFINO S, DYAR K A, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy[J]. FEBS J, 2013, 280(17):4294-4314. [4] CRIST C G, MONTARRAS D, BUCKINGHAM M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules[J]. Cell Stem Cell, 2012, 11(1):118-126. [5] CAMPOREZ J-P G, PETERSEN M C, ABUDUKADIER A, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice[J]. Proc Natl Acad Sci USA, 2016, 113(8):2212-2217. [6] MONCAUT N, RIGBY P W J, CARVAJAL J J. Dial M (RF) for myogenesis[J]. FEBS J, 2013, 280(17):3980-3990. [7] BUCKINGHAM M, RIGBY P W J. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Dev Cell, 2014, 28(3):225-238. [8] CAO Yi, YAO Zizhen, SARKAR D, et al. Genome-wide MyoD binding in skeletal muscle cells:a potential for broad cellular reprogramming[J]. Dev Cell, 2010, 18(4):662-674. [9] RELAIX F, DEMIGNON J, LACLEF C, et al. Six homeoproteins directly activate MyoD expression in the gene regulatory networks that control early myogenesis[J]. PLoS Genet, 2013, 9(4):e1003425. doi:10. 1371/journal. pgrn. 1003425. [10] FONG A P, TAPSCOTT S J. Skeletal muscle programming and re-programming[J]. Curr Opin Genet Dev, 2013, 23(5):568-573. [11] BUCKINGHAM M, RELAIX F. PAX3 and PAX7 as upstream regulators of myogenesis[J]. Semin Cell Dev Biol, 2015, 44(9):115-125. [12] 陈禧. 鸭Pax3/7 cDNA序列克隆及表达特性研究[D]. 雅安: 四川农业大学, 2012. CHEN Xi. Characterization of Duck Pax3/7 and Its Expression Patterns[D]. Ya'an:Sichuan Agricultrual University, 2012. [13] GRUBIŠIĆ V, GOTTIPATI M K, STOUT R Jr, et al. Heterogeneity of myotubes generated by the MyoD and E12 basic helix-loop-helix transcription factors in otherwise non-differentiation growth conditions[J]. Biomaterials, 2014, 35(7):2188-2198. [14] MACQUARRIE K L, YAO Zizhen, FONG A P, et al. Genome-wide binding of the basic helix-loop-helix myogenic inhibitor musculin has substantial overlap with MyoD:implications for buffering activity[J]. Skeletal Muscle, 2013, 3(1):26. doi:10.1186/2044-5040-3-26. [15] SIMIONESCU-BANKSTON A, PICHAVANT C, CANNER J P, et al. Creatine kinase B is necessary to limit myoblast fusion during myogenesis[J]. Am J Physiol Cell Physiol, 2015, 308(11):C919-C931. [16] AVEROUS J, GABILLARD J C, SEILIEZ I, et al. Leucine limitation regulates myf5 and MyoD expression and inhibits myoblast differentiation[J]. Exper Cell Res, 2012, 318(3):217-227. [17] DEMMERLE J, KOCH A J, HOLASKA J M. Emerin and histone deacetylase 3(HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis[J]. Chrom Res, 2013, 21(8):765-779. [18] ZHANG Zhentao, XU Feng, ZHANG Yani, et al. Cloning and expression of MyoG gene from Hu sheep and identification of its myogenic specificity[J]. Mol Biol Rep, 2014, 41(2):1003-1013. [19] CONERLY M L, YAO Ziahen, ZHONG Junwen, et al. Distinct activities of Myf5 and MyoD indicate separate roles in skeletal muscle lineage specification and differentiation[J]. Dev Cell, 2016, 36(4):375-385. [20] CALHABEU F, HAYASHI S, MORGAN J, et al. Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells[J]. Oncogene, 2013, 32(5):651-62. [21] 陶志云, 邹剑敏, 宋迟, 等.鸭胚骨骼肌生肌调节因子MyoD1和Myf5发育性变化研究[J].中国家禽, 2012, 34(17):16-19. TAO Zhiyun, ZOU Jianmin, SONG Chi, et al. Developmental changes of myogenic regulatory factors MyoD1 and Myf5 in skeletal muscle of duck embryo[J]. China Poult, 34(17):16-19. [22] 朱文奇. 高邮鸭、金定鸭胚胎期骨骼肌生长发育的研究[D]. 扬州: 扬州大学, 2014. ZHU Wenqi. The Research on Growth and Development of Embryonic Skeletal Muscle in Two Duck Breeds of Gaoyou and Jinding[D]. Yangzhou:Yangzhou University, 2014. [23] DAUBAS P, BUCKINGHAM M E. Direct molecular regulation of the myogenic determination gene Myf5 by Pax3, with modulation by Six1/4 factors, is exemplified by the-111kb-Myf5 enhancer[J]. Dev Biol, 2013, 376(2):236-244. [24] PASUT A, RUDNICKI M A. The long, the short, and the micro:a PolyA tale of Pax3 in satellite cells[J]. Cell Stem Cell, 2012, 10(3):237-238. [25] HIRAI H, VERMA M, WATANABE S, et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3[J]. J Cell Biol, 2010, 191(2):347-365. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.06.014