留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果

陈爽 王良恺 文涛 毛欣宇 许明 邵孝侯

陈爽, 王良恺, 文涛, 毛欣宇, 许明, 邵孝侯. 新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190443
引用本文: 陈爽, 王良恺, 文涛, 毛欣宇, 许明, 邵孝侯. 新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190443
CHEN Shuang, WANG Liangkai, WEN Tao, MAO Xinyu, XU Ming, SHAO Xiaohou. Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190443
Citation: CHEN Shuang, WANG Liangkai, WEN Tao, MAO Xinyu, XU Ming, SHAO Xiaohou. Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190443

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果

doi: 10.11833/j.issn.2095-0756.20190443
基金项目: 江苏省科技计划项目(BE2015705,BE2017765);中央高校基本科研业务费项目(2017B692X14,2019B45214);江苏省研究生科研与实践创新计划项目(KYCCX17-0441);江苏省南京市科技计划项目(201716004);江苏省南京市水务局水利科技项目(20130317-1);江苏省南通市科技项目(MSI2017019-7)
详细信息
    作者简介: 陈爽,从事农业水土资源保护研究。E-mail:605601766@qq.com
    通信作者: 邵孝侯,教授,博士,从事水土环境保护研究。E-mail:shaoxiaohou@163.com
  • 中图分类号: X712

Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater

  • 摘要:   目的  以粉煤灰与池塘底泥为主要原材料,通过固定化有效微生物群落(effective microorganisms,EM)的方式制备具有高效去氮除磷的生物陶粒,用于处理污染的养殖水体。  方法  利用等温吸附试验确定最佳粉煤灰陶粒的配比,将粉煤灰陶粒与EM固定,在氨氮、总氮、总磷质量浓度分别为50、55、20 mg·L−1的模拟水产养殖废水中处理6 d。  结果  在预热温度300 ℃,烧制温度1 100 ℃条件下,当粉煤灰陶粒中质量比为m(粉煤灰)∶m(活性底泥)∶m(石灰石粉末)∶m(铁粉)=50∶40∶5∶5时,改性粉煤灰陶粒固定化EM对模拟水产养殖污水中氮磷的净化效果最好。6 d后,氨氮、总氮和总磷的最大去除率分别为99.14%、92.18%和44.35%。  结论  粉煤灰陶粒本身具有一定氮磷吸附净化能力,EM固定化陶粒可强化净水效果。图5表4参24
  • 图  1  不同配比粉煤灰陶粒扫描电子显微镜照片(15 000倍)

    Figure  1.  SEM photo of fly ash ceramsite with different proportions (×15 000)

    图  2  投加5 g不同配比粉煤灰陶粒吸附氮磷随时间变化曲线

    Figure  2.  Curve of nitrogen and phosphorus adsorbed by fly ash ceramsite on 5 g with different proportions under untreated conditions

    图  3  各梯度不同配比粉煤灰陶粒吸附氮磷的Langmuir和Freundlich拟合曲线

    Figure  3.  Langmuir and Freundlich fitting curves for adsorption of nitrogen and phosphorus by fly ash ceramsite with different proportions under untreated conditions

    图  4  不同配比的5 g粉煤灰陶粒固定化EM菌处理下氨氮及总氮质量浓度随时间变化曲线

    Figure  4.  Curves of NH4+ and TN Concentrations with time under immobilization of EM bacteria on 5 g fly ash ceramsite with different proportions

    图  5  不同配比的5 g粉煤灰陶粒固定化EM菌处理下总磷质量浓度随时间变化曲线

    Figure  5.  Curves of TP concentrations with time under immobilization of EM bacteria on 5 g fly ash ceramsite with different proportions

    表  1  粉煤灰陶粒各成分质量百分比

    Table  1.   Percentage of each component of the fly ash ceramsite

    处理粉煤灰/%铁粉/%碳酸钙粉末/%活性底泥/%
    T1405550
    T2505540
    T3550540
    下载: 导出CSV

    表  2  不同配比的粉煤灰陶粒性能

    Table  2.   Properties of fly ash ceramsite with different proportions

    处理孔隙率/
    %
    磨损率/
    %
    比表面积/
    (m2·g−1)
    堆积密度/
    (g·cm−3)
    体积密度/
    (g·cm−3)
    T154.321.482.210.661.38
    T256.861.432.830.741.42
    T352.261.781.420.681.33
    下载: 导出CSV

    表  3  各组粉煤灰陶粒元素组成质量分数

    Table  3.   Percentage of element composition of fly ash ceramsite in different groups

    处理元素组成/%
    T18.8645.790.920.5332.370.56 6.751.754.72
    T27.0443.071.190.8929.480.9310.772.586.69
    T37.3547.330.960.5830.590.62 7.351.283.01
    下载: 导出CSV

    表  4  不同配比粉煤灰陶粒吸附氮磷的Langmuir和Freundlich数

    Table  4.   Langmuir and Freundlich constants for adsorption of nitrogen and phosphorus by fly ash ceramsite with different proportions

    处理Langmuir
    总氮磷酸盐
    Qm/(mg·kg−1)kL/(L·mg−1)R2Qm/(mg·kg−1)kL/(L·mg−1)R2
    T11 510.60.1390.9901 055.20.2050.982
    T21 652.00.1760.9951 113.70.2300.991
    T31 535.20.1610.992 888.50.2640.989
    处理Freundlich
    总氮磷酸盐
    KF/[(mg·kg−1)·(mg·L−1) −1/n]nR2KF/[(mg·kg−1)·(mg·L−1) −1/n]nR2
    T1177.51.2750.979169.61.2780.971
    T2227.81.4160.974181.51.3530.984
    T3206.21.3420.976177.61.3610.974
    下载: 导出CSV
  • [1] 刘国锋,徐跑,吴霆,等. 中国水产养殖环境氮磷污染现状及未来发展思路[J]. 江苏农业学报,2018,34(1):225 − 233. doi:  10.3969/j.issn.1000-4440.2018.01.033

    LIU Guofeng, XU Pao, WU Ting, et al. Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy [J]. Jiangsu J Agric Sci, 2018, 34(1): 225 − 233. doi:  10.3969/j.issn.1000-4440.2018.01.033
    [2] 王军霞,李莉娜,陈敏敏,等. 中国重点污染源总磷、总氮排放状况研究[J]. 环境污染与防治,2015,37(10):98 − 103.

    WANG Junxia, LI Lina, CHEN Minmin, et al. Research on total phosphorus and total nitrogen emission status of main pollution sources in China [J]. Environ Poll Control, 2015, 37(10): 98 − 103.
    [3] 白瑞,胡阳,雷振宇,等. 复合微生物制剂在环保领域中的应用[J]. 应用化工,2017,46(5):1002 − 1006. doi:  10.3969/j.issn.1671-3206.2017.05.046

    BAI Rui, HU Yang, LEI Zhenyu, et al. Application of compound microbial preparation in environmental protection [J]. Appl Chem Ind, 2017, 46(5): 1002 − 1006. doi:  10.3969/j.issn.1671-3206.2017.05.046
    [4] PAN Dawei, SHAN Mingjun, WANG Yanqiu, et al. Study on purification of eutrophic lake using biological agents [J]. Mech Eng Mater Sci, 2012, 108: 269 − 273.
    [5] DENG Bin, FU Luoqin, ZHANG Xiaoping, et al. The denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture[J]. PloS One, 2014, 9(12): e114886. doi: 10. 1371/journal.pone. 0114886.
    [6] 杜聪,冯胜,张毅敏,等. 微生物菌剂对黑臭水体水质改善及生物多样性修复效果研究[J]. 环境工程,2018,36(8):1 − 7.

    DU Cong, FENG Sheng, ZHANG Yimin, et al. Study on the impovement of water quality and biological diversity of black and odorous water by microbial inoculants [J]. Environ Eng, 2018, 36(8): 1 − 7.
    [7] LIU Junzhuo, WU Yonghong, WU Chenxi, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review [J]. Bioresour Technol, 2017, 241: 1127 − 1137. doi:  10.1016/j.biortech.2017.06.054
    [8] 秦胜东,郭嘉昒,刘玉存,等. 固定化微生物技术研究进展及其在水处理中的应用[J]. 水处理技术,2014,40(10):6 − 11.

    QIN Shengdong, GUO Jiahu, LIU Yucun, et al. Research progress in immobilized microorganism technology and its application in water treatment [J]. Technol Water Treat, 2014, 40(10): 6 − 11.
    [9] 黄真真,陈桂秋,曾光明,等. 固定化微生物技术及其处理废水机制的研究进展[J]. 环境污染与防治,2015,37(10):77 − 85.

    HUANG Zhenzhen, CHEN Guiqiu, ZENG Guangming, et al. Research progress of immobilized microorganism technology and its mechanisms in wastewater treatment [J]. Environ Poll Control, 2015, 37(10): 77 − 85.
    [10] 安永真,王春华,苗朋,等. 炭纤维作为EM生物膜载体优化除污效果的应用研究[J]. 新型炭材料,2018,33(2):188 − 192.

    AN Yongzhen, WANG Chunhua, MIAO Peng, et al. Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms [J]. New Carbon Mater, 2018, 33(2): 188 − 192.
    [11] 杨威,王里奥,陈大勇,等. EM生物膜强化处理垃圾渗滤液[J]. 环境工程学报,2013,7(1):149 − 153.

    YANG Wei, WANG Li’ao, CHEN Dayong, et al. Enhanced treatment of landfill leachate by EM biofilm [J]. Chin J Environ Eng, 2013, 7(1): 149 − 153.
    [12] YAO Zhitong, JI Xiaosheng, SARKER P K, et al. A comprehensive review on the applications of coal fly ash [J]. Earth-Sci Rev, 2015, 141: 105 − 121. doi:  10.1016/j.earscirev.2014.11.016
    [13] OJUMU T V, du PLESSIS P W, PETRIK L F. Synthesis of zeolite A from coal fly ash using ultrasonic treatment-A replacement for fusion step [J]. Ultrason Sonochem, 2016, 31: 342 − 349. doi:  10.1016/j.ultsonch.2016.01.016
    [14] 邵青,周靖淳,王俊陆,等. 粉煤灰与污泥制备陶粒工艺研究[J]. 中国农村水利水电,2015(4):138 − 141. doi:  10.3969/j.issn.1007-2284.2015.04.036

    SHAO Qing, ZHOU Jingchun, WANG Junlu, et al. Research on preparation technology of ceramsite with fly ash and sewage sludge [J]. China Rural Water Hydropower, 2015(4): 138 − 141. doi:  10.3969/j.issn.1007-2284.2015.04.036
    [15] 胡京, 董琦, 张春岩, 等. 2种EM菌剂对养殖水体水质及幼刺参生长性能的影响[J]. 大连工业大学学报,2016,35(2):79 − 83.

    HU Jing, DONG Qi, ZHANG Chunyan, et al. Effects of two EM probiotics on cultural water quality and growth performance of sea cucumber Apostichopus japonicus [J]. J Dalian Polytech Univ, 2016, 35(2): 79 − 83.
    [16] 梅立永,李彬辉,骆灵喜,等. EM菌剂对河道污水的去除效果研究[J]. 工业用水与废水,2017,48(3):40 − 42. doi:  10.3969/j.issn.1009-2455.2017.03.009

    MEI Liyong, LI Binhui, LUO Lingxi, et al. Treatment of river sewage by EM bacteria agent [J]. Ind Water Wastewater, 2017, 48(3): 40 − 42. doi:  10.3969/j.issn.1009-2455.2017.03.009
    [17] 李亮. 粉煤灰陶粒制备试验研究[J]. 硅酸盐通报,2017,36(5):1577 − 1581.

    LI Liang. Experimental study on preparation of fly ash ceramsite [J]. Bull Chin Ceram Soci, 2017, 36(5): 1577 − 1581.
    [18] 成雪君,王学江,王浩,等. 载镁天然沸石复合材料对污水中氮磷的同步回收[J]. 环境科学,2017,38(12):5139 − 5145.

    CHENG Xuejun, WANG Xuejiang, WANG Hao, et al. Simultaneous recovery of nutrients from wastewater by mesoporous MgO-loaded natural zeolital [J]. Environ Sci, 2017, 38(12): 5139 − 5145.
    [19] 鲍腾,陈冬,陈天虎,等. 铁氧化物生物多孔陶粒的制备工艺及性能[J]. 复合材料学报,2014,31(2):408 − 415.

    BAO Teng, CHEN Dong, CHEN Tianhu, et al. Preparation and characterization of iron oxide-based porous ceramsite [J]. Acta Mater Compos Sin, 2014, 31(2): 408 − 415.
    [20] 茹菁宇,尹雯,王家强. 改性陶粒处理含磷废水研究[J]. 环境科学导刊,2013,32(6):66 − 69. doi:  10.3969/j.issn.1673-9655.2013.06.018

    RU Jingyu, YIN Wen, WANG Jiaqiang. Removal of phosphorus in wastewater by modified ceramisite [J]. Environ Sci Survey, 2013, 32(6): 66 − 69. doi:  10.3969/j.issn.1673-9655.2013.06.018
    [21] JIANG Cheng, JIA Liyue, ZHANG Bo, et al. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution [J]. J Environ Sci, 2014, 26(2): 466 − 477. doi:  10.1016/S1001-0742(13)60410-6
    [22] WAHAB MOHAMED, JELLALI SALAH, JEDIDI NACEUR. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling [J]. Bioresour Technol, 2010, 101(14): 5070 − 5075. doi:  10.1016/j.biortech.2010.01.121
    [23] 唐海芳. 湖塘底泥污染影响及固定化微生物技术原位修复的应用研究[D]. 南宁: 广西大学, 2017.

    TANG Haifang. Effects of Sediment Pollution and Applied Study on the In-situ Remediation of Sediment by Immobilized Microbe Technology[D]. Naning: Guangxi University, 2017.
    [24] 余鸿婷,李敏. 反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用[J]. 微生物学报,2015,55(3):264 − 272.

    YU Hongting, LI Min. Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment: a review [J]. Acta Microbiol Sin, 2015, 55(3): 264 − 272.
  • [1] 彭鑫怡, 李永春, 王秀玲, 李永夫, 陈志豪, 徐秋芳.  植物入侵对土壤微生物的影响 . 浙江农林大学学报, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
    [2] 程丽芬, 张欣.  5种水生植物对煤矿废水的适应性及净化效果 . 浙江农林大学学报, 2019, 36(4): 801-809. doi: 10.11833/j.issn.2095-0756.2019.04.021
    [3] 肖继波, 黄志达, 陈玉莹, 瞿倩, 褚淑祎.  高效除磷型底泥陶粒的制备及性能分析 . 浙江农林大学学报, 2019, 36(2): 415-421. doi: 10.11833/j.issn.2095-0756.2019.02.024
    [4] 武新梅, 周素茵, 徐爱俊.  生态治理模式下生猪养殖业污水智慧监管 . 浙江农林大学学报, 2018, 35(3): 543-551. doi: 10.11833/j.issn.2095-0756.2018.03.021
    [5] 王丹, 马元丹, 郭慧媛, 高岩, 张汝民, 侯平.  模拟酸雨胁迫与柳杉凋落物对土壤养分及微生物的影响 . 浙江农林大学学报, 2015, 32(2): 195-203. doi: 10.11833/j.issn.2095-0756.2015.02.005
    [6] 肖继波, 赵委托, 褚淑祎, 陆国权.  薯类淀粉废水处理技术及资源化利用研究进展 . 浙江农林大学学报, 2013, 30(2): 292-298. doi: 10.11833/j.issn.2095-0756.2013.02.022
    [7] 刘占孟, 唐朝春, 李静, 鲍东杰.  活性炭催化臭氧化降解亚甲基蓝实验 . 浙江农林大学学报, 2009, 26(3): 406-410.
    [8] 陈蓉, 单胜道, 吴亚琪.  浙江省农村生活垃圾区域特征及循环利用对策 . 浙江农林大学学报, 2008, 25(5): 644-649.
    [9] 陶树兴, 房薇.  8 种肥料微生物对化肥和农药的敏感性 . 浙江农林大学学报, 2006, 23(1): 80-84.
    [10] 杨芳, 吴家森, 钱新标, 吴丽君.  不同施肥雷竹林土壤微生物量碳的动态变化 . 浙江农林大学学报, 2006, 23(1): 70-74.
    [11] 王锐萍, 刘强, 彭少麟, 林开豪, 文艳, 薛宁.  尖峰岭不同树种枯落物分解过程中微生物动态 . 浙江农林大学学报, 2006, 23(3): 255-258.
    [12] 夏少敏, 张云杰, 赵赤.  《环境保护法》的目的及修改意见 . 浙江农林大学学报, 2005, 22(5): 577-581.
    [13] 周伯煌, 陈永富, 张文龙, 唐志.  浙江省小城镇发展进程中环境保护问题探讨 . 浙江农林大学学报, 2003, 20(1): 75-79.
    [14] 朱丽云, 孙培龙, 张立钦.  微生物农药微胶囊技术及其应用前景 . 浙江农林大学学报, 2002, 19(1): 109-112.
    [15] 姜培坤, 徐秋芳, 俞益武.  土壤微生物量碳作为林地土壤肥力指标 . 浙江农林大学学报, 2002, 19(1): 17-19.
    [16] 陈立琴, 张敏生, 胡云江.  论公众参与环境保护制度的建设与完善 . 浙江农林大学学报, 2002, 19(2): 173-177.
    [17] 胡云江.  论环境伦理对资源环境保护的支撑 . 浙江农林大学学报, 2002, 19(1): 72-75.
    [18] 胡云江.  论浙江山区乡镇的资源环境保护 . 浙江农林大学学报, 2001, 18(2): 180-183.
    [19] 胡云江, 张敏生.  环境保护的伦理思考 . 浙江农林大学学报, 2000, 17(1): 71-74.
    [20] 董林根, 姜小娟, 方茂盛.  雷竹覆盖栽培林地土壤微生物的初步研究 . 浙江农林大学学报, 1998, 15(3): 236-239.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190443

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020//1

计量
  • 文章访问数:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-21
  • 修回日期:  2019-12-01
  • 网络出版日期:  2019-12-17

新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果

doi: 10.11833/j.issn.2095-0756.20190443
    基金项目:  江苏省科技计划项目(BE2015705,BE2017765);中央高校基本科研业务费项目(2017B692X14,2019B45214);江苏省研究生科研与实践创新计划项目(KYCCX17-0441);江苏省南京市科技计划项目(201716004);江苏省南京市水务局水利科技项目(20130317-1);江苏省南通市科技项目(MSI2017019-7)
    作者简介:

    陈爽,从事农业水土资源保护研究。E-mail:605601766@qq.com

    通信作者: 邵孝侯,教授,博士,从事水土环境保护研究。E-mail:shaoxiaohou@163.com
  • 中图分类号: X712

摘要:   目的  以粉煤灰与池塘底泥为主要原材料,通过固定化有效微生物群落(effective microorganisms,EM)的方式制备具有高效去氮除磷的生物陶粒,用于处理污染的养殖水体。  方法  利用等温吸附试验确定最佳粉煤灰陶粒的配比,将粉煤灰陶粒与EM固定,在氨氮、总氮、总磷质量浓度分别为50、55、20 mg·L−1的模拟水产养殖废水中处理6 d。  结果  在预热温度300 ℃,烧制温度1 100 ℃条件下,当粉煤灰陶粒中质量比为m(粉煤灰)∶m(活性底泥)∶m(石灰石粉末)∶m(铁粉)=50∶40∶5∶5时,改性粉煤灰陶粒固定化EM对模拟水产养殖污水中氮磷的净化效果最好。6 d后,氨氮、总氮和总磷的最大去除率分别为99.14%、92.18%和44.35%。  结论  粉煤灰陶粒本身具有一定氮磷吸附净化能力,EM固定化陶粒可强化净水效果。图5表4参24

English Abstract

陈爽, 王良恺, 文涛, 毛欣宇, 许明, 邵孝侯. 新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190443
引用本文: 陈爽, 王良恺, 文涛, 毛欣宇, 许明, 邵孝侯. 新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190443
CHEN Shuang, WANG Liangkai, WEN Tao, MAO Xinyu, XU Ming, SHAO Xiaohou. Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190443
Citation: CHEN Shuang, WANG Liangkai, WEN Tao, MAO Xinyu, XU Ming, SHAO Xiaohou. Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190443

返回顶部

目录

    /

    返回文章
    返回