留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络在红木树种识别中的应用

黄鹏桂 赵璠 李晓平 吴章康 汤正捷 张严风

黄鹏桂, 赵璠, 李晓平, 吴章康, 汤正捷, 张严风. 卷积神经网络在红木树种识别中的应用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190672
引用本文: 黄鹏桂, 赵璠, 李晓平, 吴章康, 汤正捷, 张严风. 卷积神经网络在红木树种识别中的应用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190672
HUANG Penggui, ZHAO Fan, LI Xiaoping, WU Zhangkang, TANG Zhengjie, ZHANG Yanfeng. Application of convolutional neural network in rosewood species identification[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190672
Citation: HUANG Penggui, ZHAO Fan, LI Xiaoping, WU Zhangkang, TANG Zhengjie, ZHANG Yanfeng. Application of convolutional neural network in rosewood species identification[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190672

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

卷积神经网络在红木树种识别中的应用

doi: 10.11833/j.issn.2095-0756.20190672
基金项目: 国家自然科学基金资助项目(31870551);西南林业大学科研启动基金(111807)
详细信息
    作者简介: 黄鹏桂,从事深度学习、模式识别等研究。E-mail: xlhpg365@gmail.com
    通信作者: 赵璠,副教授,博士,从事林业信息工程研究。E-mail: fzhao@swfu.edu.cn
  • 中图分类号: S781.1

Application of convolutional neural network in rosewood species identification

  • 摘要:   目的  不同类型的红木由于生长周期和木材特性的不同,导致商业价格差异悬殊,其中还包含有国家保护木种。本研究旨在找到能准确地识别红木种类的方法,以防止交易中的欺诈行为和保护树种。  方法  以国家林业和草原局木材与木竹制品质量检验检测中心(昆明)实际检测中累积的黄檀属Dalbergia和紫檀属Pterocarpus中的交趾黄檀D. cochinchinensis、刀状黑黄檀D. cultrata、卢氏黑黄檀D. louvelii、巴里黄檀D. bariensis、奥氏黄檀D. oliveri、大果紫檀P. macrocarpus、檀香紫檀P. santalinus等7种红木的376个样本作为基本数据,使用计算机算法扩展样本数量,提出自动化识别红木的卷积神经网络模型。  结果  该方法能够自动提取适合模型分类识别的特征,使用更为便捷,相比其他传统方法识别效果更准确的,结果证明平均识别精度达99.4%。  结论  自建的卷积神经网络可以有效识别红木树种,虽然在调参优化与训练时间大于VGG16等迁移学习方法,但泛化能力更强,证明了自建模型在红木识别应用上优于迁移学习模型。图7表4参23
  • 图  1  识别精度对比图

    Figure  1  Comparison of recognition accuracy

    图  2  空白裁剪前后的檀香紫檀横切面图

    Figure  2  Comparison of P. santalinus cross section before and after blank cutting

    图  3  直方图均衡化前后的奥氏黄檀

    Figure  3  Comparison of D. oliveri cross sections before and after histogram equalization

    图  4  扩充后的巴里黄檀横切面图

    Figure  4  Expanded D. bariensis cross section pictures

    图  5  模型结构图

    Figure  5  Model structure

    图  6  2种优化器的损失对比

    Figure  6  Comparison of loss between two optimizers

    图  7  训练时精度变化

    Figure  7  Accuracy changes during training

    表  1  样本数量表

    Table  1.   Number of samples

    红木种类原始数据数量/个扩充后数量/个
    交趾黄檀 56 2 673
    刀状黑黄檀 53 2 535
    卢氏黑黄檀 49 3 102
    大果紫檀 51 4 259
    奥氏黄檀 52 2 857
    巴里黄檀 57 3 216
    檀香紫檀 58 2 853
    下载: 导出CSV

    表  2  模型的各层参数

    Table  2.   Layer parameters of the model

    类型核数量尺寸/步长输入输出类型核数量尺寸/步长输入输出
    卷积层 16 3×3/1 150×150×3 150×150×16 池化层 2×2/2 37×37×64 18×18×64
    卷积层 卷积层 128 3×3/1 18×18×64 18×18×128
    池化层 2×2/2 150×150×16 75×75×16 全局平均池化层 18×18×128 128
    卷积层 32 3×3/1 75×75×16 75×75×32 全连接 128 158
    卷积层 全连接 158 58
    池化层 2×2/2 75×75×32 37×37×32 全连接 (输出) 58 7
    卷积层 64 3×3/1 37×37×32 37×37×64
    卷积层
    下载: 导出CSV

    表  3  各类别的识别准确率

    Table  3.   The recognition accuracy of each category

    红木类别样本数量/个准确率/%
    交趾黄檀 53599.5
    刀状黑黄檀50798.7
    卢氏黑黄檀62099.3
    大果紫檀 85299.6
    奥氏黄檀 57199.9
    巴里黄檀 643100
    檀香紫檀 57198.9
    平均值  99.4
    下载: 导出CSV

    表  4  模型参数对比

    Table  4.   Comparison of model parameters

    网络名称输入尺寸卷积核个数卷积参数全连接参数总共参数验证精度/%
    AlexNet 227, 227 1 152 2 469 696 7 454 508 9 924 204 92.4
    VGG16 150, 150 4 224 14 714 688 6 635 308 21 349 996 93.5
    本模型(CNN) 150, 150 352 146 206‬ 29 747 175 953 99.4
    下载: 导出CSV
  • [1] 杨燕, 吕建雄, 邱坚, 等. 4种易与红木混淆木材的构造分析[J]. 木材工业, 2014, 28(5): 51 − 54. doi:  10.3969/j.issn.1001-8654.2014.05.013

    YANG Yan, LÜ Jianxiong, QIU Jian, et al. Anatomic structure of four wood species similar with Dalbergia cochinchinensis and Pterocarpus macarocarpus [J]. China Wood Ind, 2014, 28(5): 51 − 54. doi:  10.3969/j.issn.1001-8654.2014.05.013
    [2] 汪杭军, 张广群, 祁亨年, 等. 木材识别方法研究综述[J]. 浙江农林大学学报, 2009, 26(6): 896 − 902. doi:  10.3969/j.issn.2095-0756.2009.06.022

    WANG Hangjun, ZHANG Guangqun, QI Hengnian, et al. A review of research on wood recognition technology [J]. J Zhejiang A&F Univ, 2009, 26(6): 896 − 902. doi:  10.3969/j.issn.2095-0756.2009.06.022
    [3] MOHAN S, VENKATACHALAPATHY K, RAI A K. Wood species classification and identification system [J]. Int J Eng Sci Res Technol, 2014, 3(6): 847 − 853.
    [4] 张蓉, 徐魁梧, 张丽沙, 等. 基于红外光谱的5种红木树种识别探讨[J]. 林业工程学报, 2014, 28(2): 95 − 99.

    ZHANG Rong, XU Kuiwu, ZHANG Lisha, et al. Identification of five rosewood species by infrared spectrum characteristics [J]. J For Eng, 2014, 28(2): 95 − 99.
    [5] 程士超, 李丹, 张求慧, 等. 5种花梨木的红外光谱比较分析[J]. 北京林业大学学报, 2016, 38(1): 118 − 124.

    CHENG Shichao, LI Dan, ZHANG Qiuhui, et al. Comparative analysis of five kinds of rosewood by infrared spectra [J]. J Beijing For Univ, 2016, 38(1): 118 − 124.
    [6] 李艳艳, 孙多永, 朱仲良, 等. 基于气相色谱—主成分分析的红木分类识别方法研究[J]. 计算机与应用化学, 2010, 27(2): 237 − 240. doi:  10.3969/j.issn.1001-4160.2010.02.023

    LI Yanyan, SUN Duoyong, ZHU Zhongliang, et al. Study on the classification and recognition of mahogany based on gas chromato-graph-principle component analysis [J]. Comput Appl Chem, 2010, 27(2): 237 − 240. doi:  10.3969/j.issn.1001-4160.2010.02.023
    [7] 张洁, 夏兆鹏, 袁鹏飞, 等. 大果紫檀和奥氏黄檀乙醇低毒微损鉴别[J]. 西南林业大学学报, 2015, 35(4): 75 − 80.

    ZHANG Jie, XIA Zhaopeng, YUAN Pengfei, et al. Low toxicity and micro damage identification of Pterocarpus macarocarous and Dalbergia oliveri by ethanol solvent [J]. J Southwest For Univ, 2015, 35(4): 75 − 80.
    [8] 王学顺, 孙一丹, 黄敏高, 等. 基于BP神经网络的木材近红外光谱树种识别[J]. 东北林业大学学报, 2015, 43(12): 82 − 85. doi:  10.3969/j.issn.1000-5382.2015.12.018

    WANG Xueshun, SUN Yidan, HUANG Mingao, et al. Back propagation artificial neural network combined with near infrared spectroscopy for timber recognition [J]. J Northeast For Univ, 2015, 43(12): 82 − 85. doi:  10.3969/j.issn.1000-5382.2015.12.018
    [9] ESTEBAN L G, FERNÁNDEZ F G, DE PALACIOS P P, et al. Artificial neural networks in wood identification: the case of two Juniperus species from the Canary Islands [J]. IAWA J, 2009, 30(1): 87 − 94. doi:  10.1163/22941932-90000206
    [10] LAZARESCU C, HART F, PIROUZ Z, et al. Wood species identification by near-infrared spectroscopy [J]. Int Wood Prod J, 2017, 8(1): 32 − 35. doi:  10.1080/20426445.2016.1242270
    [11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. (2014-09-04)[2019-04-07]. https://arxiv.org/abs/1409.1556.
    [12] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 2014, 1(4): 541 − 551.
    [13] 黄鹏桂, 赵璠, 李晓平, 等. 基于计算机的木材特征提取和分类识别技术研究综述[J]. 世界林业研究, 2020, 33(1): 44 − 48.

    HUANG Penggui, ZHAO Pan, LI Xiaoping, et al. Review of wood feature extraction and classification based on computer [J]. World For Res, 2020, 33(1): 44 − 48.
    [14] 郑泽宇, 冯海林, 杜晓晨, 等. 木材径切面内部缺陷的应力波成像算法[J]. 浙江农林大学学报, 2019, 36(2): 211 − 218. doi:  10.11833/j.issn.2095-0756.2019.02.001

    ZHENG Zeyu, FENG Hailin, DU Xiaochen, et al. A stress wave tomography algorithm for internal defects in radial and longitudinal (RL) planes of wood [J]. J Zhejiang A&F Univ, 2019, 36(2): 211 − 218. doi:  10.11833/j.issn.2095-0756.2019.02.001
    [15] ROJAS J, ALPUENTE J, POSTIGO D, et al. Wood species identification using stress-wave analysis in the audible range [J]. Appl Acoust, 2011, 72(12): 934 − 942. doi:  10.1016/j.apacoust.2011.05.016
    [16] MARIO F F, JAVIER T S, ABHIRUP M, et al. A comprehensive classification of wood from thermogravimetric curves [J]. Chemometrics Intell Lab Syst, 2012, 118(1): 159 − 172.
    [17] 倪茜茜, 祁亨年, 周竹, 等. 基于高光谱成像技术的红酸枝木材种类识别[J]. 浙江农林大学学报, 2016, 33(3): 489 − 494. doi:  10.11833/j.issn.2095-0756.2016.03.017

    NI Qianqian, QI Hengnian, ZHOU Zhu, et al. Identifying Dalbergia spp. wood with hyperspectral imaging technology [J]. J Zhejiang A&F Univ, 2016, 33(3): 489 − 494. doi:  10.11833/j.issn.2095-0756.2016.03.017
    [18] 汪紫阳, 尹世逵, 李颖, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019, 36(1): 162 − 169. doi:  10.11833/j.issn.2095-0756.2019.01.020

    WANG Ziyang, YIN Shikui, LI Ying, et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy [J]. J Zhejiang A&F Univ, 2019, 36(1): 162 − 169. doi:  10.11833/j.issn.2095-0756.2019.01.020
    [19] 周竹, 方益明, 尹建新, 等. 高光谱成像技术及其在木材无损检测中的研究进展[J]. 浙江农林大学学报, 2015, 32(3): 458 − 466. doi:  10.11833/j.issn.2095-0756.2015.03.020

    ZHOU Zhu, FANG Yiming, YIN Jianxin, et al. Review of nondestructive detection of wood and wood products based on hyperspectral imaging technology [J]. J Zhejiang A&F Univ, 2015, 32(3): 458 − 466. doi:  10.11833/j.issn.2095-0756.2015.03.020
    [20] LEI Tao, WANG Yi, FAN Yangyu, et al. Vector morphological operators in HSV color space [J]. Sci China Inf Sci, 2013, 56(1): 1 − 12.
    [21] JAIN A K, MAO J, MOHIUDDIN K. Artificial neural networks: A tutorial [J]. Computer, 1996(3): 31 − 44.
    [22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks[C]. California: Advances in neural information processing systems, 2012.
    [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. (2014-09-04)[2019-04-07]. https://arxiv.org/abs/1409.1556.
  • [1] 卯光宪, 谭伟, 柴宗政, 赵杨, 杨深钧.  基于BP神经网络的马尾松人工林胸径-树高模型预测 . 浙江农林大学学报, 2020, 37(4): 752-760. doi: 10.11833/j.issn.2095-0756.20190486
    [2] 刘光武, 陈晨, 王柯力.  基于神经网络的马尾松人工林密度指数模型 . 浙江农林大学学报, 2020, 37(1): 100-104. doi: 10.11833/j.issn.2095-0756.2020.01.013
    [3] 明浩, 苏喜友.  利用特征分割和病斑增强的杨树叶部病害识别 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20190752
    [4] 俞芹, 王倩颖, 王宁杭, 王型力, 范李节, 张明如, 申亚梅.  4种木兰属植物花粉萌发特性 . 浙江农林大学学报, 2018, 35(3): 505-510. doi: 10.11833/j.issn.2095-0756.2018.03.015
    [5] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [6] 陈金星, 岳德鹏, 冯仲科, 丁家巍, 姚炳全, 叶添雄.  手持式树径自动识别测树仪的研制与应用 . 浙江农林大学学报, 2016, 33(4): 589-598. doi: 10.11833/j.issn.2095-0756.2016.04.006
    [7] 洪欣, 李中林, 周守标.  华东地区景天属一新记录 . 浙江农林大学学报, 2013, 30(5): 797-798. doi: 10.11833/j.issn.2095-0756.2013.05.025
    [8] 余乐, 吕建雄, 李贤军, 徐康, 吴义强, 蒋佳荔.  X射线扫描法和切片法测量干燥过程中杉木含水率分布的比较研究 . 浙江农林大学学报, 2013, 30(4): 543-547. doi: 10.11833/j.issn.2095-0756.2013.04.013
    [9] 陈芳, 张广群, 崔坤鹏, 汪杭军.  嵌入式植物自动识别系统的设计与实现 . 浙江农林大学学报, 2013, 30(3): 379-384. doi: 10.11833/j.issn.2095-0756.2013.03.012
    [10] 伏建国, 刘金良, 杨晓军, 安榆林, 骆嘉言.  进口黄檀属木材DNA提取与分子鉴定方法初步研究 . 浙江农林大学学报, 2013, 30(4): 627-632. doi: 10.11833/j.issn.2095-0756.2013.04.025
    [11] 赖广辉.  安徽竹亚科苦竹属植物的分类修订 . 浙江农林大学学报, 2012, 29(6): 851-858. doi: 10.11833/j.issn.2095-0756.2012.06.008
    [12] 程莹, 李根有, 夏国华, 黄晌决, 黄宇锋.  楤木属植物组织培养研究综述 . 浙江农林大学学报, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [13] 高浩杰, 陈征海.  裸冠菊属:华东地区一新归化属 . 浙江农林大学学报, 2011, 28(6): 992-994. doi: 10.11833/j.issn.2095-0756.2011.06.026
    [14] 孙骏威, 李素芳, 金松恒.  5种悬钩子属植物的光合荧光特性 . 浙江农林大学学报, 2010, 27(6): 950-955. doi: 10.11833/j.issn.2095-0756.2010.06.025
    [15] 施拥军, 徐小军, 杜华强, 周国模, 金伟, 周宇峰.  基于BP神经网络的竹林遥感监测研究 . 浙江农林大学学报, 2008, 25(4): 417-421.
    [16] 李根有, 陈征海, 裘宝林.  浙江柿属一新种 . 浙江农林大学学报, 2006, 23(4): 378-381.
    [17] 傅秋华, 陆媛媛, 范一卿, 郑楼福, 谢芳, 李大标, 董云富, 郑英茂.  台湾杉属树种引种效果探讨 . 浙江农林大学学报, 1999, 16(4): 439-442.
    [18] 吴鸿.  浙江龙王山真菌蚊属3新种 . 浙江农林大学学报, 1998, 15(2): 170-175.
    [19] 柳新红, 胡绍庆, 周关清, 汤兆成, 林日传.  浙江兰属植物新记录 . 浙江农林大学学报, 1998, 15(3): 267-268.
    [20] 何东进, 洪伟, 吴承祯.  人工神经网络用于杉木壮苗定向培育规律的研究 . 浙江农林大学学报, 1997, 14(4): 339-343.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190672

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/5/1

计量
  • 文章访问数:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-05-18

卷积神经网络在红木树种识别中的应用

doi: 10.11833/j.issn.2095-0756.20190672
    基金项目:  国家自然科学基金资助项目(31870551);西南林业大学科研启动基金(111807)
    作者简介:

    黄鹏桂,从事深度学习、模式识别等研究。E-mail: xlhpg365@gmail.com

    通信作者: 赵璠,副教授,博士,从事林业信息工程研究。E-mail: fzhao@swfu.edu.cn
  • 中图分类号: S781.1

摘要:   目的  不同类型的红木由于生长周期和木材特性的不同,导致商业价格差异悬殊,其中还包含有国家保护木种。本研究旨在找到能准确地识别红木种类的方法,以防止交易中的欺诈行为和保护树种。  方法  以国家林业和草原局木材与木竹制品质量检验检测中心(昆明)实际检测中累积的黄檀属Dalbergia和紫檀属Pterocarpus中的交趾黄檀D. cochinchinensis、刀状黑黄檀D. cultrata、卢氏黑黄檀D. louvelii、巴里黄檀D. bariensis、奥氏黄檀D. oliveri、大果紫檀P. macrocarpus、檀香紫檀P. santalinus等7种红木的376个样本作为基本数据,使用计算机算法扩展样本数量,提出自动化识别红木的卷积神经网络模型。  结果  该方法能够自动提取适合模型分类识别的特征,使用更为便捷,相比其他传统方法识别效果更准确的,结果证明平均识别精度达99.4%。  结论  自建的卷积神经网络可以有效识别红木树种,虽然在调参优化与训练时间大于VGG16等迁移学习方法,但泛化能力更强,证明了自建模型在红木识别应用上优于迁移学习模型。图7表4参23

English Abstract

黄鹏桂, 赵璠, 李晓平, 吴章康, 汤正捷, 张严风. 卷积神经网络在红木树种识别中的应用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190672
引用本文: 黄鹏桂, 赵璠, 李晓平, 吴章康, 汤正捷, 张严风. 卷积神经网络在红木树种识别中的应用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190672
HUANG Penggui, ZHAO Fan, LI Xiaoping, WU Zhangkang, TANG Zhengjie, ZHANG Yanfeng. Application of convolutional neural network in rosewood species identification[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190672
Citation: HUANG Penggui, ZHAO Fan, LI Xiaoping, WU Zhangkang, TANG Zhengjie, ZHANG Yanfeng. Application of convolutional neural network in rosewood species identification[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190672

返回顶部

目录

    /

    返回文章
    返回