留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊综合评价与灰色关联分析的河流自然性评价

燕琳 马岚 潘成忠 张栋 孙占薇 张金阁 刘京晶 黎俊佑

谢立红, 曹宏杰, 黄庆阳, 等. 五大连池火山森林群落多样性与稳定性[J]. 浙江农林大学学报, 2021, 38(2): 235-245. DOI: 10.11833/j.issn.2095-0756.20200255
引用本文: 燕琳, 马岚, 潘成忠, 等. 基于模糊综合评价与灰色关联分析的河流自然性评价[J]. 浙江农林大学学报, 2020, 37(3): 480-488. DOI: 10.11833/j.issn.2095-0756.2020.20190485
XIE Lihong, CAO Hongjie, HUANG Qingyang, et al. On the diversity and stability of forest communities in Wudalianchi Volcanoes[J]. Journal of Zhejiang A&F University, 2021, 38(2): 235-245. DOI: 10.11833/j.issn.2095-0756.20200255
Citation: YAN Lin, MA Lan, PAN Chengzhong, et al. Naturalness evaluation of rivers based on the fuzzy comprehensive evaluation and the grey correlation analysis[J]. Journal of Zhejiang A&F University, 2020, 37(3): 480-488. DOI: 10.11833/j.issn.2095-0756.2020.20190485

基于模糊综合评价与灰色关联分析的河流自然性评价

DOI: 10.11833/j.issn.2095-0756.2020.20190485
基金项目: 国家水环境治理重大专项(2018ZX07101005-04)
详细信息
    作者简介: 燕琳,从事河流生态保护研究。E-mail: 18306890242@163.com
    通信作者: 马岚,副教授,从事水文水资源与水土保持研究。E-mail: mlpcz@sina.com
  • 中图分类号: S714.7;X522

Naturalness evaluation of rivers based on the fuzzy comprehensive evaluation and the grey correlation analysis

  • 摘要:   目的  永定河是海河水系五大河之一,其自然性状况对北京地区居民饮水安全和海河流域水环境均有重要影响,基于“近自然”理念的河流自然性评价是保护和恢复河流自然状态的基础。  方法  以永定河北京山峡段为研究对象,从河流的水文要素、断面形态、水体理化性质、河岸带状况和社会生态价值5个方面,选取了25个定性、定量指标,构建了河流自然性评价指标体系。运用层次分析法与熵权法结合的组合赋权方式计算各指标在评价体系中的权重。用模糊综合评价法和灰色关联分析法分别对河流进行自然性评价和自然等级判定。  结果  模糊综合评价法和灰色关联分析法的评价结果总体一致,划分的21个调查河段中处于自然状态、近自然状态、退化状态和人工状态的河段分别占总河长的14.29%、28.57%、46.62%和9.52%,长度分别约为7.5、15.0、25.0和5.0 km。  结论  总体上,调查河段大部分处于退化状态,但仍具有潜在的近自然修复能力。采用的模糊综合评价法与灰色关联分析法均是可行的河流自然性评价方法。表3参27
  • 植物群落的空间(地带性)特征和时间(演替动态)特征都会反映在物种多样性这一重要的群落信息上[1]。森林群落的物种组成与结构是生态系统功能和过程的基础,既能反映群落的种间关系,也可表现环境对物种的影响,同时也是衡量植物群落稳定的重要尺度和方式[2]。物种多样性是物种丰富度和分布均匀性的综合反映,体现了群落的结构类型、组织水平、发展阶段、稳定程度和生境差异[3-4],分析植物群落的结构和物种多样性,对揭示群落的更新、稳定性与演替规律具有重要的意义[5]。稳定性是群落内部各个植物种群、动物种群、微生物种群、土壤环境、气候等相互作用和生物运动的结果,是在群落演替进化过程中形成和表现的[6]。稳定性是植物群落结构与功能的综合特征,是生态系统存在的必要条件和重要功能表现[7]。物种多样性和稳定性是植物群落的2个属性,它们之间的相互关系和相互影响一直受到生态学家的关注[8]。火山喷发为研究植被演替尤其是原生演替提供了难得的条件[9]。五大连池火山处于大小兴安岭和松嫩平原的交错地带,至今历经了7次火山喷发,形成了14座火山,拥有大陆上保存完整、分布集中、形态典型、种类最齐全的新老期火山地质地貌[10]。五大连池火山区生态条件独特复杂,由熔岩裸地到演化中的不同生境内可见低等植物和高等植物(演替中的不同植被生态系列)[11]。五大连池完好的内陆单成因火山地貌,原生而完整的植被演替过程,且地处植被交错区(大小兴安岭植被交错带),是研究火山干扰和植被演替与生物多样性系统发育等的理想场所[12]。近年来,对火山森林群落的物种多样性有大量研究。如牟长城等[13]研究了长白山林区森林/沼泽交错群落的植物多样性,郝占庆等[14-17]研究了长白山北坡植物群落物种多样性,姜萍等[18]研究了长白山南坡森林群落组成-结构以及树种多样性。然而,对五大连池火山森林群落的多样性和稳定性研究尚未有报道。本研究以五大连池4座老期火山为研究对象,从森林群落多样性指数、年龄结构和优势树种的存活曲线入手,分析森林群落多样性与稳定性,为五大连池火山森林植被的演替、恢复与可持续发展提供科学依据。

    五大连池火山群(48°30′~48°50′N,126°00′~126°45′E)中心区由新期火山活动形成的巨大熔岩流——石龙、2座年轻火山和巨大的熔岩形成的石龙台地和火山堰湖群构成,四周由老期火山活动形成的玄武岩台地构成,台地上环布12座老期火山和众多熔岩流,是中国第1个以火山自然环境及生态系统为保护对象的自然保护区[19]

    本研究选取东焦得布山(48°39′13ʺN,126°16ʹ30ʺE)、小孤山(48°40′45ʺN,126°22ʹ06ʺE)、尾山(48°47′23ʺN,126°15ʹ26ʺE)和南格拉球山(48°44′13ʺN,126°00ʹ46ʺE)4座老期火山。研究区属温带大陆性季风气候,年平均气温−0.5 ℃,年平均降水量476.3 mm,年均无霜期121 d。研究区主要森林植被类型为温带落叶阔叶混交林,主要包括蒙古栎Quercus mongolica林和落叶阔叶林等。乔木优势树种南坡为蒙古栎和黑桦Betula davurica,北坡为紫椴Tilia amurensis和色木槭Acer mono等。研究区分布有暗棕壤性火山灰土和黑土性火山灰土[20]

    1.2.1   样地设置与植被调查

    于2018年7中旬至8月中旬植物生长旺盛期,采用样地调查法,在老期火山东焦得布山(高海拔525 m、中海拔475 m、低海拔425 m),小孤山(高海拔450 m、中海拔425 m、低海拔400 m),尾山(高海拔510 m、中海拔470 m、低海拔430 m)和南格拉球山(高海拔580 m、中海拔520 m、低海拔460 m)的南坡和北坡,每坡设置低、中、高3个海拔样地。乔木层共取24个样方,每个样方面积20 m×20 m,分别记录乔木种类、个体数、胸径、树高和群落的总郁闭度及所有乔木层树种的幼苗更新情况,用生长锥钻取胸径≥2.5 cm的乔木;灌木层分别设置4个2 m×2 m的小样方,共96个样方,记录灌木的密度、盖度、高度;草本层分别设置5个1 m×1 m的小样方,共120个样方,记录草本的密度、盖度、高度。

    1.2.2   样地资料处理

    将野外采取的年轮样芯,带回实验室固定在木槽内自然风干,待木芯完全风干后,用乳白胶固定在木槽上。固定后的芯样用砂粒由粗到细的砂纸打磨抛光,直到年轮清晰可见。用LINTAB年轮分析仪测年[21]

    1.2.3   多样性指数测度方法

    采用Margalef、Simpson、Shannon-Wiener和Pielou等指数比较4座火山森林群落的丰富度、多样性和均匀度,多样性指数计算参考文献[3]。采用方差分析法(ANOVA)对各植物群落物种多样性指数进行差异性检验。多样性指数值均为平均值±标准误。植物种类的重要值可体现植物在群落中的相对重要性:乔木层重要值(IV1)=(相对密度+相对优势度+相对高度)/3;灌木和草本层重要值(IV2)=(相对高度+相对盖度+相对密度)/3。

    1.2.4   稳定性研究方法

    森林群落的年龄结构是群落变化发展的内在依据,因此,通过对森林群落年龄结构分析,可以测度群落的稳定性和动态[22]。优势种或建群种的种群稳定对群落稳定有决定作用[23]。选取群落乔木层年龄结构、乔木层重要值最高种群的年龄结构判定森林群落的稳定性。本研究中龄级划分采用胸径≥2.5 cm(利用年轮样芯测定年龄)的乔木划分,龄级划分标准以20 a为1个龄级,Ⅰ龄级为0~20 a、Ⅱ龄级为20~40 a,Ⅲ龄级为40~60 a,其他龄级以此类推[24]。统计分析后绘制群落的年龄结构图和种群的年龄结构图,以此判断群落的稳定性。

    表1可见:乔木树种北坡最多的山体为10种,南坡最多的山体为6种,群落树种组成简单。研究区南北坡向上森林群落在结构数量上都有差异,北坡各山体间乔木层和草本层的物种数目相差较大,而南坡各山体间森林群落各层次在结构数量上差异不明显(东焦得布山草本层除外)。

    表 1  五大连池火山森林群落的环境特征和数量特征
    Table 1  Characteristics of the quantitative and environment of forest communities in Wudalianchi Volcanoes
    研究区喷发时间/万a海拔/m坡向乔木层灌木层草本层
    盖度/%种数盖度/%种数盖度/%种数
    东焦得布山17~19531.960±1310±150±1612±120±4 24±3
    70±13 6±115±6 6±130±3 37±2
    小孤山  28~34453.570±7 5±125±2 9±15±2 11±1
    80±2 5±110±4 5±115±5 23±1
    尾山   40~50516.675±4 8±145±12 7±125±1228±7
    80±0 4±120±6 5±020±3 17±3
    南格拉球山70~80596.965±0 10±140±12 7±120±3 14±3
    60±6 3±110±3 4±130±9 23±1
      说明:盖度和种数为群落内各样方的平均值±标准差
    下载: 导出CSV 
    | 显示表格
    2.2.1   北坡森林群落物种多样性特征

    图1可见:4座火山北坡森林群落的各层次物种多样性指数有差异。Margalef指数和Shannon-Wiener指数从大到小依次为乔木层、草本层、灌木层,乔木层最大值分别为东焦得布山和尾山,最小值都为小孤山;灌木层最大值都为东焦得布山,最小值分别为南格拉球山和尾山;草本层最大值都为尾山,最小值都为南格拉球山。Simpson指数和Pielou指数从大到小依次为乔木层、灌木层、草本层,乔木层最大值都为尾山,最小值分别为小孤山和东焦得布山;灌木层最大值都为东焦得布山,最小值都为尾山;草本层最大值分别为尾山和东焦得布山,最小值都为南格拉球山。可见,4座火山北坡森林群落物种多样性主要受乔木层的影响;乔木层尾山的多样性指数、优势度指数和均匀度指数都最高,而小孤山的丰富度指数、多样性指数和优势度指数都最低;灌木层东焦得布山4种多样性测度指标都最大,而尾山多样性指数、优势度指数和均匀度都最小;草本层尾山物种的丰富度指数、多样性指数和优势度指数都最高,而南格拉球山4种多样性测度指标都最低。方差分析表明:4座火山北坡间,Margalef在乔木层是极显著差异(P<0.01),在草本层是显著差异(P<0.05);Shannon-Wiener指数在乔木层是显著差异外(P<0.05),其余群落内各层次的各种多样性指数均无显著差异(表2)。

    图 1  五大连池火山北坡森林群落物种多样性特征
    Figure 1  Diversity index of forest communities in north slope of Wudalianchi Volcanoes
    表 2  五大连池火山森林群落多样性指数的方差分析和变异系数
    Table 2  One-way ANOVA and variation coefficient of the diversity index of forest communities in Wudalianchi Volcanoes
    多样性指数层次北坡南坡南北坡间
    平均值FP变异系数平均值FP变异系数FP变异系数
    Margalef指数乔木层1.087±0.0768.4360.007**0.2340.443±0.0800.2350.8690.18834.1350.000**0.505
    灌木层0.588±0.0390.8710.4950.1250.196±0.0580.4720.7110.45532.8850.000**0.579
    草本层0.644±0.1814.2200.046*0.8430.899±0.1173.3690.0840.3541.3470.2590.563
    Simpson指数乔木层0.688±0.0272.6390.1210.1070.212±0.0480.0970.9590.16078.8820.000**0.573
    灌木层0.432±0.0411.1550.3850.2000.160±0.0490.7010.5810.56218.4480.000**0.577
    草本层0.409±0.0703.8490.0570.5060.611±0.0382.2520.1700.1546.0200.023*0.359
    Shannon-
    Wiener指数
    乔木层1.342±0.0744.6870.036*0.1680.391±0.0770.0800.9690.12779.3210.000**0.611
    灌木层0.716±0.0731.1560.3840.2160.244±0.0730.6160.6260.52620.7420.000**0.609
    草本层0.750±0.1603.3060.0780.6051.193±0.1104.1080.0560.2645.0200.036*0.443
    Pielou指数乔木层0.834±0.0260.9870.4470.0630.353±0.0570.1160.9480.12162.4970.000**0.443
    灌木层0.728±0.0491.2040.3690.1470.306±0.0910.7460.5580.58217.3560.000**0.527
    草本层0.615±0.0873.9580.0530.4180.809±0.0260.4460.7270.0444.2340.0520.280
      说明:*表示差异显著(P<0.05);**表示差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格

    4座火山北坡间,群落内各层次的物种多样性指数呈不同变化。本研究用变异系数定量表示群落物种多样性指数空间变化程度的差异(表2)。草本层的各种多样性指数变化最大,乔木层的Simpson指数和Pielou指数变化最小。因此,乔木层在物种多样性指数的空间变化上比灌木层和草本层更稳定,草本层表现出最大的空间差异。

    对4座火山北坡森林群落内各层次物种多样性指数进行相关分析(表3)表明:乔木层与草本层的各指数均呈正相关性,而乔木层与灌木层、灌木层与草本层之间仅丰富度指数呈正相关性,其他各指数间均呈负相关。说明4座火山北坡森林群落物种多样性主要受乔木层和草本层的影响。

    表 3  五大连池火山森林群落层次间多样性指数的相关系数
    Table 3  Correlation coefficients of the diversity index between forest community layers in Wudalianchi Volcanoes
    坡向Margalef指数Simpson指数Shannon-Wiener 指数Pielou指数
    乔木层-
    灌木层
    乔木层-
    草本层
    灌木层-
    草本层
    乔木层-
    灌木层
    乔木层-
    草本层
    灌木层-
    草本层
    乔木层-
    灌木层
    乔木层-
    草本层
    灌木层-
    草本层
    乔木层-
    灌木层
    乔木层-
    草本层
    灌木层-
    草本层
    0.4930.3120.117−0.1460.462−0.342−0.1120.552−0.404−0.4100.114−0.334
    0.1620.2980.2220.049−0.2430.2750.124−0.1030.2610.128−0.2640.476
    下载: 导出CSV 
    | 显示表格
    2.2.2   南坡森林群落物种多样性特征

    图2可见:4座火山南坡森林群落中的各层次物种多样性有差异。Margalef指数、Simpson指数、Shannon-Wiener指数和Pielou指数从大到小依次为草本层、乔木层、灌木层。乔木层Margalef指数、Simpson指数和Shannon-Wiener指数最大值都是东焦得布山,最小值都是南格拉球山;乔木层Pielou指数最大值为小孤山,最小值为东焦得布山。灌木层4种多样性指数最大值都为南格拉球山,最小值都为尾山;草本层Margalef指数、Simpson指数和Shannon-Wiener指数最大值都是东焦得布山,草本层Pielou指数最大值为小孤山,草本层4种多样性指数最小值都为南格拉球山。可见,4座火山南坡森林群落物种多样性主要受草本层和乔木层的影响。乔木层东焦得布山的丰富度指数、多样性指数和优势度指数都最大,而南格拉球山4种多样性指数都最小;灌木层南格拉球4种多样性指数都最大,而尾山4种指数都最小;草本层东焦得布山的丰富度指数、多样性指数和优势度指数都最大,而南格拉球山4种多样性指数都最小。

    图 2  五大连池火山南坡森林群落物种多样性特征
    Figure 2  Diversity index of forest communities in south slope of Wudalianchi Volcanoes

    4座火山南坡间,群落内各层次的各种物种多样性指数均无显著差异(表2)。4座火山南坡间,灌木层的各种多样性指数变化最大,乔木层的Simpson指数和Shannon-Wiener指数总体上变化最小,草本层的均匀度指数变化最小。因此,乔木层和草本层在物种多样性指数的空间变化上表现出比灌木层更稳定,灌木层表现出最大的空间差异。

    对4座火山南坡森林群落内各层次物种多样性指数进行相关分析(表3)表明:乔木层与灌木层、灌木层与草本层各指数均呈正相关,而乔木层与草本层之间仅丰富度指数呈正相关,其他指数均呈负相关。说明4座火山南坡森林群落物种丰富度主要受草本层的影响。

    2.2.3   南北坡向间森林群落物种多样性特征比较

    表2可知:4种多样性指数都是乔木层和灌木层北坡高于南坡,草本层北坡低于南坡,说明北坡乔木层和灌木层的物种多样性指数高于南坡,而草本层低于南坡。同时,南北坡向间仅草本层的Margalef指数没有显著差异,其余物种多样性指数均呈极显著(P<0.01)或显著差异(P<0.05)。北坡乔木层和灌木层的Simpson指数和Pielou指数的变异系数都低于南坡,而北坡草本层物种多样性指数的变异系数均高于南坡。同时,南北坡向间物种多样性指数的变异系数都较大。

    2.3.1   北坡森林群落稳定性特征

    图3可见:4座火山北坡森林群落的年龄结构均为稳定型,群落表现稳定增长状态。小孤山Ⅱ~Ⅵ龄级(40~80 a)的乔木株数占个体总数的69.74%,且无Ⅰ龄级(0~20 a)个体,处于成熟树阶段,群落的稳定性较差,其余3座山Ⅱ~Ⅲ龄级(20~60 a)的乔木株数分别占总数的73.53%(东焦得布山)、56.56%(尾山)和75.90%(南格拉球山),处于中龄树阶段,群落的稳定性较好。

    图 3  五大连池火山北坡森林群落的年龄结构
    Figure 3  Age structure of forest communities in north slope of Wudalianchi Volcanoes
    图 4  五大连池火山北坡紫椴的年龄结构
    Figure 4  Age structure of T. amurensis in north slope of Wudalianchi Volcanoes
    图 5  五大连池火山南坡森林群落的年龄结构
    Figure 5  Age structure of forest communities in south slope of Wudalianchi Volcanoes

    表4可知:在北坡各山体的乔木层中,紫椴的重要值相对较高,其次为色木槭、山槐和黑桦,表明紫椴在北坡各山体的群落中重要性较大。为了更好地分析北坡群落的稳定情况,进一步对北坡乔木层中重要值最大的紫椴的年龄结构进行分析。

    表 4  五大连池火山森林群落乔木树种的重要值
    Table 4  Tree species with importance value of forest communities in Wudalianchi Volcanoes
    研究区坡向重要值
    山槐山杨紫椴黑桦蒙古栎色木槭白桦黄榆春榆裂叶榆黄檗
    东焦得布山1.070.190.740.150.530.030.090.020.090.06
    0.040.350.102.490.020.01
    小孤山  0.531.510.180.680.10
    0.010.110.222.650.01
    尾山   0.200.320.840.050.310.780.460.03
    0.010.011.670.31
    南格拉球山0.090.230.790.480.400.640.240.040.28
    0.152.720.13
      说明:山槐Maackia amurensis,山杨Populus davidiana,白桦Betula platyphylla,黄榆Ulmus macrocarpa,春榆Ulmus japonica,     裂叶榆Ulmus laciniata,黄檗Phellodendron amurense。–表示没有数值
    下载: 导出CSV 
    | 显示表格

    图4可知:4座火山的紫椴年龄结构均呈稳定型,Ⅱ~Ⅲ龄级个体数分别占总数的80.49%(东焦得布山)、56.76%(小孤山)、78.79%(尾山)和62.22%(南格拉球山),都处于中龄树阶段,群落的稳定性都较好,为稳定增长种群。群落的发展变化是以各个体的变化以及增减来实现的,年龄结构正是变化的依据,说明4座火山北坡森林群落处于稳定增长型状态。

    2.3.2   南坡森林群落稳定性特征

    图5可知:4座火山南坡森林群落的年龄结构均为稳定型,群落处于稳定状态。小孤山Ⅱ~Ⅵ龄级的乔木株数占总数的85.62%,处于成熟树阶段,群落的稳定性较差,其余3座山Ⅱ~Ⅲ龄级的乔木株数分别占总数的80.18%(东焦得布山)、59.16%(尾山)和80.41%(南格拉球山),都处于中龄树阶段,群落的稳定性较好。

    表4可知:在南坡各山体的乔木层中蒙古栎的重要值较高,其次为紫椴和黑桦,表明蒙古栎在南坡各山体的群落中重要性较大。为了更好地分析南坡群落的稳定情况,进一步对南坡乔木层中重要值最大的蒙古栎的年龄结构进行分析。从图6可见:4座火山蒙古栎的年龄结构均呈稳定型,Ⅲ~Ⅵ龄级个体数分别占总株数的94.44%(东焦得布山)、86.82%(小孤山)、98.52%(尾山)和58.53%(南格拉球山),均处于成熟树阶段,群落的稳定性都较好,为稳定型种群,说明4座火山南坡森林群落处于稳定状态。

    图 6  五大连池火山南坡蒙古栎的年龄结构
    Figure 6  Age structure of Q. mongolica in north slope of Wudalianchi Volcanoes
    2.3.3   南北坡向间森林群落物种稳定性特征比较

    图3~6可知:4座火山Ⅱ~Ⅲ龄级(20~60 a)的乔木株数分别占总数的比例均是北坡低于南坡,且北坡的龄级明显多于南坡。同时,北坡重要值最大的树种紫椴的Ⅱ~Ⅲ龄级个体数分别占总数的比例大,而南坡4座火山重要值最大的树种蒙古栎的Ⅲ~Ⅵ龄级个体数分别占总数的比例高达94.44%(东焦得布山)、86.82%(小孤山)、98.52%(尾山)、58.53%(南格拉球山),且蒙古栎的龄级少于紫椴。综上可知,北坡森林群落的稳定性强于南坡。

    从群落结构的角度来研究生物群落的物种多样性是很有意义的,因为森林群落结构是群落中植物与植物之间、植物与环境之间相互关系的可见标志,也是群落其他特征的基础[25-26]。本研究各山体森林群落的乔木层和灌木层物种数北坡较南坡丰富,北坡物种多样性各指数也高于南坡,同时,森林群落结构较复杂的东焦得布山整体上物种多样性指数高。在各山体间南北坡上森林群落乔、灌、草3层物种丰富度和多样性变异都有差别。乔木层的Simpson指数变化都是最小,北坡上草本层的物种多样性各指数变化在各群落间表现出最大的差异,南坡上灌木层的物种多样性指数变化在各群落间表现出最大的差异,其原因在于物种多样性指数不仅受均匀度指数的影响,还受到物种丰富度的制约。各山体北坡森林群落间乔木层和草本层的物种数相差较大,故使群落间丰富度指数在乔木层和草本层分别是极显著差异和显著差异,Shannon-Wiener指数在乔木层是显著差异,且北坡上各森林群落内乔木层与草本层的物种多样性各指数均呈正相关。可见,北坡上乔木种类数量对草本物种有影响,而灌木层的物种数相差较小,导致物种多样性各指数没有显著差异;南坡森林群落间乔木、灌木、草本层物种数目相差不大,群落间各层次的物种多样性各指数均无显著差异,且南坡上各森林群落内乔木层与灌木层、灌木层与草本层的种物种多样性指数均呈正相关。

    物种多样性和稳定性是植物群落的2个属性,它们之间的相互关系和相互影响已引起了国内外许多生态学者的关注[1, 8-9, 26]。均匀度是群落物种多样性研究中重要的概念[27]。以均匀度来考虑物种多样性与群落稳定性的关系时,群落的物种均匀度指数越高,群落的物种间相互差异越不显著,说明群落的稳定性越高,从演替动态的角度来看其稳定性就越高[1]。本研究森林群落物种多样性结果表明:乔木种群对群落具有支配作用,决定着群落的发展趋势,能够反映整个群落的物种多样性动态规律。因此,探知乔木层物种多样性与群落稳定性的问题,更有利于认知森林群落物种多样性与其稳定性之间的关系。高贤明等[1]在暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系研究发现:3个栎属Quercus林均匀度指数均较高,为0.56~0.76,是比较稳定的群落类型。本研究南北坡向各森林群落内乔木层的物种均匀度指数均较高,分别为0.31~0.41和0.77~0.89,是比较稳定的群落。森林群落的稳定程度和发展趋向,是受群落内外诸种生态学因素所决定。但是不管多方面的因素如何影响,影响的原因何等复杂,最终是以群落中各种群的变化来作为承受其结果的表达。因此,在群落的发展过程中,群落结构和相应种群结构变化可从年龄结构反映出来,相对稳定的森林群落应有相对稳定的种群结构,因而有相对稳定的年龄结构。不同稳定程度的森林群落的年龄结构图与种群的年龄结构图相近[22]。本研究南北坡森林群落的年龄结构都是稳定型,重要值高的蒙古栎和紫椴种群的年龄结构也都是稳定型,这说明南北坡各森林群落处于稳定状态。

    在局部地区较小的尺度上,物种丰富度、多样性指数和均匀度指数也受到环境因素的影响。因为物理和生物因子的异质性发生在空间的各个尺度上,即使微生境如1株树或1束灌丛就可产生资源的异质性,从而影响其他生命体的分布(包括种类和数量)[28]。坡向影响了非生物资源分配,对地表接收的太阳辐射量能够产生较大的影响,进而使不同坡向的光、热、水、土等自然因素呈现较大的差异,营造局部小气候,从而使不同坡向的群落结构和群落物种多样性等产生相应的变化。在五大连池老期火山,南坡与北坡植物群落上层的主要生态因子光照和与之相关的水分和温度等生态因子存在一定的差异,耐干旱、瘠薄、喜光惯生长于阳坡的乔木和灌木种类少,耐阴湿惯生于北坡的乔木和灌木种类多,物种多样性增加,但同时北坡灌木种类多且盖度大导致草本植物可获得生长机会减少,致使北坡草本种类少且盖度小,物种多样性较南坡低。综上表明:北坡与南坡群落上层的光照、水分与温度等生态因子的差异导致北坡的乔木层和灌木层的物种多样性各指数均大于南坡,而草本层的物种多样性低于南坡,南北坡向间物种多样性各指数差异显著且变异系数都较大。稳定性与多样性具有更为复杂的关系,植物种的多样性并不能完全代表群落的稳定性,但却是群落稳定性的必要条件[29]。闫东锋等[30]在宝天曼栎属天然林物种多样性与稳定性研究中,通过群落物种多样性与稳定性相关机制的讨论,认为在森林生态系统中,物种多样性高可以导致较强稳定性,两者具有显著的正相关关系,并且发现最稳定的群落及不稳定的群落乔木层多样性指数的最大值分别为1.99和0.46。李凤英等[31]在凉水国家级自然保护区森林群落结构及物种多样性分析研究中发现:红松Pinus koraiensis-白桦Betula platyphylla森林群落乔木层多样性指数为2.08。本研究森林群落乔木层多样性最高值在北坡,为1.49,同时,北坡森林群落的年龄结构也较稳定,重要值显著高的紫椴种群的年龄结构也较稳定。综上所述,五大连池火山北坡森林群落多样性指数较高,且森林群落稳定性更好。

    五大连池4座老期火山森林群落结构北坡较南坡丰富,北坡的乔木层和灌木层的物种多样性指数均大于南坡,而草本层的物种多样性低于南坡,南北坡向间物种多样性指数差异显著且变异系数都较大。北坡森林群落多样性指数也较南坡高,且森林群落稳定状态更好。同时,山体间森林群落结构较复杂的东焦得布山整体上物种多样性指数也较高。

  • 表  1  永定河自然性评价指标体系与指标权重

    Table  1.   Index system and index weight of naturalness evaluation of Yongding River

    目标层(A)准则层(B)指标层(C)指标获取方法
    永定河山峡段
    河流自然性评价
    B1水文要素(0.194)C1气味(0.442)考察河水是否有腥臭味,定性描述
    C2流速比(0.158)河段水体流速最大值/河段水体流速最小值
    C3浊度(0.255)2100Q便携式浊度仪
    C4底栖生物生境条件(0.146)满足底栖生物生存的河床底质占比,定性描述
    B2河流形态(0.216)C5平面形态(0.136)河流曲折蜿蜒程度,急弯及河心岛个数
    C6纵向弯曲度(0.131)河段弯曲长度与直线长度的比值
    C7岸坡坡度(0.135)坡度仪测量
    C8岸坡结构(0.128)考察岸坡材料,定性描述
    C9岸坡植被覆盖情况(0.130)岸坡植被覆盖度,定性描述
    C10水宽与河宽比(0.129)便携式测距仪测量
    C11河床动态变化(0.102)河床底质的暴露程度
    C12有遮蔽水面占水宽比(0.110)便携式测距仪测量
    B3水体理化性质(0.202)C13pH值(0.113)pHscanlOS笔式pH计测量
    C14溶解氧(0.200)Seven2Go Pro S9便携式溶氧仪测量
    C15化学需氧量(0.201)便携式水质测定仪测量
    C16氨氮(0.203)多参数水质分析仪测量
    C17磷酸盐(0.171)多参数水质分析仪测量
    C18电导率(0.113)手持式电导率测定仪测量
    B4河岸带状况(0.258)C19缓冲带植被多样性(0.251)Shannon-Wiener多样性指数计算
    C20河岸带植被宽度(0.147)便携式测距仪测量
    C21河岸带通达性(0.204)河岸带大于10 m的植被缺口个数
    C22两岸土地利用(0.133)考察距离河道最近的土地利用方式
    C23水利工程个数(0.264)对水流产生影响的人造工程措施
    B5社会生态价值(0.130)C24景观多样性指数(0.499)采用Romme的景观丰富度指数计算
    C25观赏休憩价值(0.501)采用旅行费用法计算
      说明:括号内数值表示该项指标权重
    下载: 导出CSV

    表  2  模糊综合评价法与灰色关联分析法对永定河各调查河段不同自然性等级的评价结果

    Table  2.   Evaluation of different naturalness classes for different reaches of Yongding River by fuzzy comprehensive evaluation and grey correlation analysis

    河段模糊综合评价法灰色关联分析法
    自然状态Ⅳ近自然状态Ⅲ退化状态Ⅱ人工状态Ⅰ等级自然状态Ⅳ近自然状态Ⅲ退化状态Ⅱ人工状态Ⅰ等级
    10.2000.2330.2110.2410.7380.7290.7830.789
    20.2080.2110.2280.2170.7400.7880.7930.733
    30.1780.2350.2120.2040.7690.7910.8030.716
    40.1780.1870.1860.1710.7630.7860.7690.727
    50.1380.1600.1830.1780.7460.7570.7790.754
    60.1380.1440.1330.1360.7670.7830.7640.742
    70.1550.1600.2230.1430.7430.7530.7670.750
    80.1550.1880.1620.1570.7790.7940.7890.775
    90.1880.2010.2840.1720.7520.7580.7620.722
    100.1640.1800.1680.1850.7350.7390.7460.756
    110.1650.1570.1510.1590.7580.7240.7130.749
    120.2040.1850.1700.1770.7810.7630.7750.738
    130.2530.2410.2060.2250.8000.7720.7680.716
    140.1500.1500.1610.1280.7530.7790.7900.745
    150.1600.1840.1980.1730.7610.7640.7660.755
    160.1580.1770.1890.1780.7600.7740.7830.747
    170.1620.1760.1780.1770.7500.8320.7950.743
    180.1250.1240.1840.1290.6910.7820.8100.759
    190.1930.2070.1930.1750.7640.8140.8070.727
    200.1780.1790.1770.1580.7890.7980.7750.703
    210.2280.2220.2600.2500.7630.7900.8000.728
    下载: 导出CSV

    表  3  永定河北京山峡段主要定量指标数据

    Table  3.   Data of main quantitative indexes in Beijing Gorge Section of Yongding River

    自然性
    等级
    指标
    河段
    浊度溶解氧/
    (mg·L−1)
    氨氮/
    (mg·L−1)
    化学需氧
    量/(mg·L−1)
    流速比岸坡坡
    度/°
    弯曲度水宽与
    河宽比
    河岸带
    通达性
    水利工
    程/个
    缓冲带植
    被多样性
    景观多样
    性指数
    自然状态110.9910.750.1116 6.2152.801.050.641 1 1.0974.95
    121.0410.480.0914 1.5348.501.040.820 1 1.2287.42
    131.1310.710.0813 3.1236.801.050.831 1 1.0868.78
    (1.05)(10.65)(0.09)(14) (3.62)(46.03)(1.05)0.76761 1 1.1377.05
    近自然状态 42.0311.690.1924 4.7259.001.040.961 2 1.0354.47
    61.9310.440.2133 2.6829.801.020.631 1 1.0482.26
    82.20 4.770.1410 1.7550.401.110.211 1 1.1460.26
    191.85 9.830.1022 3.4916.601.040.892 3 1.1880.18
    202.0410.030.3732 4.9513.201.100.821 2 1.2074.43
    平均值2.01 9.350.2024 3.5233.801.060.701 2 1.1270.32
    过渡带 32.3410.250.1628 4.9644.201.020.691 4 1.1677.36
    172.48 9.760.0418 3.4220.801.110.901 2 0.8981.18
    平均值2.4110.010.1023 4.1932.501.070.801 3 1.0379.27
    退化状态 23.1710.130.2525 5.7220.401.020.952 3 0.8673.67
    52.2211.260.2727 4.2443.801.000.891 2 1.1981.34
    72.4310.500.1016 6.2741.201.030.631 2 1.1580.44
    91.85 9.450.1120 9.5957.601.030.351 1 1.2276.79
    143.3510.090.2017 1.5928.401.010.851 2 0.9167.80
    153.1410.180.2411 2.5610.601.050.901 2 0.8165.88
    163.2710.310.1313 3.5025.401.060.851 2 0.5489.62
    183.10 9.630.1512 4.5022.801.130.911 3 0.9461.16
    212.5710.180.0925 1.0022.701.040.773 1 1.1681.98
    平均值2.7910.190.1718 4.3330.321.030.791 2 0.9875.41
    人工状态 13.3510.770.1239 6.6030.201.000.962 3 0.7483.26
    104.6610.620.1516 6.5231.001.010.451 5 0.6175.04
    平均值4.0110.700.1428 6.5930.601.010.712 4 0.6879.15
    总平均值2.4410.090.1620.524.2332.541.050.761.192.101.0175.00
      说明:过渡带是指用2种评价方法对同一河段评价结果不同的河段,即河段的评价结果是处于不同的自然等级。括号内数字为平均值
    下载: 导出CSV
  • [1] 朱晓博. 城市河流生态修复效果评价: 以北京永定河为例[D]. 北京: 北京林业大学, 2015.

    ZHU Xiaobo. Effect Assessment of Urban River Ecological Restoration: Take Beijing Yongding River as A Case[D]. Beijing: Beijing Forest University, 2015.
    [2] ESTEVEZ E, RODRÍGUEZ-CASTILLO T, ÁLVAREZ-CABRIA M, et al. Analysis of structural and functional indicators for assessing the health state of mountain streams [J]. Ecol Indic, 2017, 72: 553 − 564.
    [3] 刘宗平,刘进琪. 内陆河流健康评价探讨[J]. 水资源保护, 2007, 23(3): 24 − 26.

    LIU Zongping, LIU Jinqi. Assessment on inland river health [J]. Wawer Resour Prot, 2007, 23(3): 24 − 26.
    [4] 冯泽深,高甲荣. 北京郊区雁栖河自然性定量评价[J]. 中国农村水利水电, 2008(10): 14 − 17.

    FENG Zeshen, GAO Jiarong. Quantitative naturality assessment of the Yanqi River in rural areas of Beijing [J]. China Rural Water Hydropower, 2008(10): 14 − 17.
    [5] 高甲荣,王芳,朱继鹏,等. 河溪生态系统自然性评价指标体系[J]. 中国水土保持科学, 2006, 4(5): 66 − 70.

    GAO Jiarong, WANG Fang, ZHU Jipeng, et al. Assessment indexes of naturalness of stream ecosystem [J]. Sci Soil Water Conserv, 2006, 4(5): 66 − 70.
    [6] 王舒,高甲荣,马岚,等. 湟水河西宁段河流综合自然状况评价[J]. 中国农村水利水电, 2014(10): 8 − 12.

    WANG Shu, GAO Jiarong, MA Lan, et al. A comprehensive naturalness assessment of Xining section of Huangshui River [J]. China Rural Water Hydropower, 2014(10): 8 − 12.
    [7] 张栋,张洪江,马岚,等. 基于层次-灰色关联分析的河流自然性评价: 以潮河为例[J]. 中国水土保持科学, 2018, 16(3): 95 − 102.

    ZHANG Dong, ZHANG Hongjiang, MA Lan, et al. Assessment of river naturalness based on grey relational analysis and analytic hierarchy process: a case study of Chaohe River [J]. Sci Soil Water Conserv, 2018, 16(3): 95 − 102.
    [8] 王冰洁,刘朋钢,杨海龙,等. 北京山区河流自然性评价系统及其应用[J]. 中国水土保持科学, 2015, 13(4): 67 − 73.

    WANG Bingjie, LIU Penggang, YANG Hailong, et al. Naturalness evaluation system of rivers in Beijing mountainous areas and its application [J]. Sci Soil Water Conserv, 2015, 13(4): 67 − 73.
    [9] TOWNSEND C R, RILEY R H. Assessment of river health: accounting for perturbation pathways in physical and ecological space [J]. Freshwater Biol, 1999, 41(2): 393 − 405.
    [10] 邓晓军,许有鹏,翟禄新,等. 城市河流健康评价指标体系构建及其应用[J]. 生态学报, 2014, 34(4): 993 − 1001.

    DENG Xiaojun, XU Youpeng, ZHAI Luxin, et al. Establishment and application of the index system for urban river health assessment [J]. Acta Ecol Sin, 2014, 34(4): 993 − 1001.
    [11] 高宇婷,高甲荣,顾岚,等. 基于模糊矩阵法的河流健康评价体系[J]. 水土保持研究, 2012, 19(4): 196 − 199, 211.

    GAO Yuting, GAO Jiarong, GU Lan, et al. An introduction to river health assessment based on fuzzy matrix [J]. Res Soil Water Conserv, 2012, 19(4): 196 − 199, 211.
    [12] 李君. 基于模糊矩阵的河流近自然评价及治理研究: 以怀柔白河为例[D]. 北京: 北京林业大学, 2015.

    LI Jun. Near-natural Assessment and Conrtol System of Stream Ecosystems Based on the Fuzzy Matrix Assessment: Taking An Example of Bai River[D]. Beijing: Beijing Forestry University, 2015.
    [13] 汪万芬,钱东升,谭绿贵. 改进灰色关联分析法在淠河水环境质量评价中的应用[J]. 水资源与水工程学报, 2009, 20(2): 57 − 59.

    WANG Wanfen, QIAN Dongsheng, TAN Lügui. Application of improved grey correlation analysis on water environmental quality assessment of Pihe River [J]. J Water Res Water Eng, 2009, 20(2): 57 − 59.
    [14] 王佩,张定华,陈冰,等. 基于模糊综合评价与灰色关联分析法的多工艺方案评价[J]. 航空动力学报, 2012, 27(9): 2075 − 2085.

    WANG Pei, ZHANG Dinghua, CHEN Bing, et al. Evaluation of multi-process plans based on fuzzy comprehensive evaluation and grey relational analysis [J]. J Aerospace Power, 2012, 27(9): 2075 − 2085.
    [15] 高甲荣, 冯泽深, 高阳, 等. 河溪近自然评价: 方法与应用[M]. 北京: 中国水利水电出版社, 2010.
    [16] KUEMMERLEN M, REICHERT P, SIBER R, et al. Ecological assessment of river networks: from reach to catchment scale [J]. Sci Total Environ, 2019, 650: 1613 − 1627.
    [17] 顾斌杰. 永定河(北京段)生态修复及其效果评价[D]. 北京: 清华大学, 2016.

    GU Binjie. Analysis and Effect Evaluation of the Yongding River (Beijing Section) Ecosystem Restoration[D]. Beijing: Tsinghua University, 2016.
    [18] EVERALL N C, JOHNSON M F, WOOD P, et al. Comparability of macroinvertebrate biomonitoring indices of river health derived from semi-quantitative and quantitative methodologies [J]. Ecol Indic, 2017, 78: 437 − 448.
    [19] GENTILI R, ARMIRAGLIO S, ROSSI G, et al. Floristic patterns, ecological gradients and biodiversity in the composite channels (Central Alps, Italy) [J]. Flora Morph Distrib Funct Ecol Plant, 2010, 205(6): 388 − 398.
    [20] 郑志宏. 河流健康评价与生态环境需水理论及应用研究[M]. 北京: 中国水利水电出版社, 2014.
    [21] 山成菊,董增川,樊孔明,等. 组合赋权法在河流健康评价权重计算中的应用[J]. 河海大学学报(自然科学版), 2012, 40(6): 622 − 628.

    SHAN Chengju, DONG Zengchuan, FAN Kongming, et al. Application of combination weighting method to weight calculation in river health evaluation [J]. J Hohai Univ Nat Sci, 2012, 40(6): 622 − 628.
    [22] 王道平,王煦. 基于AHP/熵值法的钢铁企业绿色供应商选择指标权重研究[J]. 软科学, 2010, 24(8): 117 − 122.

    WANG Daoping, WANG Xu. Research on the green vendor selection index weight of iron and steel enterprises based on AHP and entropy method [J]. Soft Sci, 2010, 24(8): 117 − 122.
    [23] 刘莹昕,刘飒,王威尧,等. 层次分析法的权重计算及其应用[J]. 沈阳大学学报(自然科学版), 2014, 26(5): 372 − 375.

    LIU Yingxin, LIU Sa, WANG Weiyao, et al. Computation of weight in AHP and its application [J]. J Shenyang Univ Nat Sci, 2014, 26(5): 372 − 375.
    [24] 王志刚. 北京北部山区河流健康评价及其诊断研究[D]. 北京: 北京林业大学, 2016.

    WANG Zhigang. The Evaluation and Diagnosis of River Health in Beijing Northern Mountainous Region[D]. Beijing: Beijing Forestry University, 2016.
    [25] 曹泠然,李品良,李深奇,等. 模糊综合评判与灰色聚类分析在河流健康评价的应用[J]. 环境工程, 2018, 36(8): 194 − 197.

    CAO Lingran, LI Pinliang, LI Shenqi, et al. Application of fuzzy comprehensive evaluation and grey cluster analysis in river healty evaluation [J]. Environ Eng, 2018, 36(8): 194 − 197.
    [26] 白庆芹,汪妮,解建仓,等. 基于模糊综合评价法的城市河流脆弱性研究[J]. 水土保持通报, 2012, 32(1): 244 − 247.

    BAI Qingqin, WANG Ni, XIE Jiancang, et al. A study on vulnerability of urban rivers based on fuzzy comprehensive evaluation [J]. Bull Soil Water Conserv, 2012, 32(1): 244 − 247.
    [27] 于洪涛,吴泽宁. 灰色关联分析在南水北调中线澧河水质评价中的应用[J]. 节水灌溉, 2010(3): 39 − 41.

    YU Hongtao, WU Zening. Application of grey relation analysis method in water quality evaluation of Li River for south-to-north water diversion project [J]. Water Saving Irrig, 2010(3): 39 − 41.
  • [1] 周如意, 王丽, 杨正大, 金君宋, 宋艳冬, 周国模.  基于Meta整合与模糊综合评价的森林康养指标体系构建 . 浙江农林大学学报, 2023, 40(5): 921-929. doi: 10.11833/j.issn.2095-0756.20230177
    [2] 朱程昊, 王剑武, 谢秉楼, 邬枭楠, 骆义波.  森林生态系统服务功能市县联动核算与精度控制 . 浙江农林大学学报, 2022, 39(2): 430-437. doi: 10.11833/j.issn.2095-0756.20210328
    [3] 杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平.  元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征 . 浙江农林大学学报, 2020, 37(5): 849-859. doi: 10.11833/j.issn.2095-0756.20190647
    [4] 高常军, 魏龙, 贾朋, 田惠玲, 李树光.  基于去重复性分析的广东省滨海湿地生态系统服务价值估算 . 浙江农林大学学报, 2017, 34(1): 152-160. doi: 10.11833/j.issn.2095-0756.2017.01.021
    [5] 丁绍刚, 朱嫣然.  基于层次分析法与模糊综合评价法的医院户外环境综合评价体系构建 . 浙江农林大学学报, 2017, 34(6): 1104-1112. doi: 10.11833/j.issn.2095-0756.2017.06.019
    [6] 杨杰, 项婷婷, 姜培坤, 吴家森, 柯和佳.  绿竹生态系统植硅体碳积累与分布特征 . 浙江农林大学学报, 2016, 33(2): 225-231. doi: 10.11833/j.issn.2095-0756.2016.02.006
    [7] 王巧, 聂鑫, 孙德浩, 王华田, 孟先鹏, 曹桂萍, 李健, 黄昌豹.  基于AHP-模糊综合评价法的泰山油松古树树势评价 . 浙江农林大学学报, 2016, 33(1): 137-146. doi: 10.11833/j.issn.2095-0756.2016.01.019
    [8] 于波涛, 杨天琪, 李臣.  寒地城市生态园林树种组合的植物群落关联性分析 . 浙江农林大学学报, 2016, 33(2): 247-256. doi: 10.11833/j.issn.2095-0756.2016.02.009
    [9] 李蓓蕾, 宋照亮, 姜培坤, 周国模, 李自民.  毛竹林生态系统植硅体的分布及其影响因素 . 浙江农林大学学报, 2014, 31(4): 547-553. doi: 10.11833/j.issn.2095-0756.2014.04.009
    [10] 谢镇, 吾中良, 朱云峰, 王勇军.  松林生态系统调控日本松干蚧的自组织平衡特性 . 浙江农林大学学报, 2013, 30(3): 392-395. doi: 10.11833/j.issn.2095-0756.2013.03.014
    [11] 陈珊, 陈双林.  集约经营对雷竹林生态系统稳定性的影响 . 浙江农林大学学报, 2013, 30(4): 578-584. doi: 10.11833/j.issn.2095-0756.2013.04.018
    [12] 蔡霞, 王祖华, 陈丽娟.  淳安县森林生态系统服务功能空间分异区划 . 浙江农林大学学报, 2011, 28(5): 727-734. doi: 10.11833/j.issn.2095-0756.2011.05.007
    [13] 王祖华, 蔡良良, 关庆伟, 蔡霞.  淳安县森林生态系统服务价值评估 . 浙江农林大学学报, 2010, 27(5): 757-761. doi: 10.11833/j.issn.2095-0756.2010.05.019
    [14] 徐华潮, 骆有庆.  松材线虫入侵对森林生态系统的影响 . 浙江农林大学学报, 2010, 27(3): 445-450. doi: 10.11833/j.issn.2095-0756.2010.03.020
    [15] 森林生态系统空心树研究进展 . 浙江农林大学学报, 2010, 27(6): 928-934. doi: 10.11833/j.issn.2095-0756.2010.06.021
    [16] 范繁荣.  闽楠群落种间关联性的灰色系统理论分析 . 浙江农林大学学报, 2008, 25(1): 33-36.
    [17] 方统中, 杜耘, 蔡述明, 陈斌, 江炎生.  模糊数学在洪湖富营养化评价中的应用 . 浙江农林大学学报, 2008, 25(4): 517-521.
    [18] 王前华, 余树全, 周国模.  红壤丘陵区不同类型生态系统的小气候效应 . 浙江农林大学学报, 2005, 22(3): 255-258.
    [19] 白降丽, 彭道黎, 庾晓红.  退化生态系统恢复与重建的研究进展 . 浙江农林大学学报, 2005, 22(4): 458-463.
    [20] 陈金林, 吴春林, 姜志林, 许新建.  栎林生态系统凋落物分解及磷素释放规律 . 浙江农林大学学报, 2002, 19(4): 367-371.
  • 期刊类型引用(15)

    1. 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,杨立宾. 五大连池火山黑桦叶性状对生境因子的响应. 中南林业科技大学学报. 2024(05): 112-124 . 百度学术
    2. 谢立红,黄庆阳,曹宏杰,王继丰,王建波,倪红伟. 五大连池火山蒙古栎种群空间分布格局. 生态与农村环境学报. 2023(07): 896-906 . 百度学术
    3. 孔斌,贺淑霞. 京西九龙山林下植被物种多样性及其空间分异研究. 环境生态学. 2023(07): 87-92 . 百度学术
    4. 孙玉真,王志泰,包玉,刘淑萍. 城市遗存山体植物群落结构与稳定性对人为干扰的响应. 生态学杂志. 2023(08): 1829-1840 . 百度学术
    5. 周甜,杜君,刘永志,江云兵,杨立宾. 落叶松林建群种差异对土壤真菌多样性的影响. 中南林业科技大学学报. 2023(12): 153-164 . 百度学术
    6. 刘鲁光,陈曦,朱兆棋,刘守江. 汶川震后谢家店滑坡体不同次生林林下草本群落特征. 林业科技通讯. 2022(03): 18-23 . 百度学术
    7. 窦沛彤,贺思腾,高成杰,李昆,刘方炎. 干热河谷不同恢复群落对林下物种多样性和土壤理化性质的影响. 浙江农林大学学报. 2022(03): 616-624 . 本站查看
    8. 宋文璐,张华,伏捷,张俊,杜维新,苑知言,赵海涵. 辽宁仙人洞国家级自然保护区森林群落稳定性评价. 浙江农林大学学报. 2022(03): 505-515 . 本站查看
    9. 杨晓宇,王震明,郑宇,李领寰,唐娟娟,许益燃. 公益林乔木层群落结构变化特征研究——以浦江公益林为例. 自然保护地. 2022(01): 119-128 . 百度学术
    10. 王继丰,黄庆阳,谢立红,曹宏杰,王建波,董海鹏,曾昭文,倪红伟. 黑龙江松嫩草地植物群落物种多样性与植物碳储量的关系. 中国草地学报. 2022(07): 33-42 . 百度学术
    11. 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,王建波,倪红伟. 五大连池火山蒙古栎种群结构及动态特征. 浙江农林大学学报. 2022(05): 960-970 . 本站查看
    12. 曹娓,郭佳月,武小栖,肖玉哲,朱牛牛,郭璟,马杰,宋利利. 京港澳高速公路郑新段边坡植物群落稳定性. 草业科学. 2022(10): 2074-2082 . 百度学术
    13. 田莹,卢杰. 植物种群结构、数量动态与物种多样性的关系. 广西农学报. 2022(04): 78-83 . 百度学术
    14. 谢立红,黄庆阳,曹宏杰,王继丰. 五大连池火山天然次生林蒙古栎树龄与胸径的关系. 黑龙江科学. 2022(24): 9-12 . 百度学术
    15. 朱兆棋,刘鲁光,陈曦,胡翠华. 银厂沟谢家店滑坡体植被物种多样性和群落稳定性研究. 西华师范大学学报(自然科学版). 2021(04): 348-354 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2020.20190485

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/3/480

表(3)
计量
  • 文章访问数:  3539
  • HTML全文浏览量:  895
  • PDF下载量:  58
  • 被引次数: 17
出版历程
  • 收稿日期:  2019-08-21
  • 修回日期:  2019-11-27
  • 网络出版日期:  2020-05-21
  • 刊出日期:  2020-06-01

基于模糊综合评价与灰色关联分析的河流自然性评价

doi: 10.11833/j.issn.2095-0756.2020.20190485
    基金项目:  国家水环境治理重大专项(2018ZX07101005-04)
    作者简介:

    燕琳,从事河流生态保护研究。E-mail: 18306890242@163.com

    通信作者: 马岚,副教授,从事水文水资源与水土保持研究。E-mail: mlpcz@sina.com
  • 中图分类号: S714.7;X522

摘要:   目的  永定河是海河水系五大河之一,其自然性状况对北京地区居民饮水安全和海河流域水环境均有重要影响,基于“近自然”理念的河流自然性评价是保护和恢复河流自然状态的基础。  方法  以永定河北京山峡段为研究对象,从河流的水文要素、断面形态、水体理化性质、河岸带状况和社会生态价值5个方面,选取了25个定性、定量指标,构建了河流自然性评价指标体系。运用层次分析法与熵权法结合的组合赋权方式计算各指标在评价体系中的权重。用模糊综合评价法和灰色关联分析法分别对河流进行自然性评价和自然等级判定。  结果  模糊综合评价法和灰色关联分析法的评价结果总体一致,划分的21个调查河段中处于自然状态、近自然状态、退化状态和人工状态的河段分别占总河长的14.29%、28.57%、46.62%和9.52%,长度分别约为7.5、15.0、25.0和5.0 km。  结论  总体上,调查河段大部分处于退化状态,但仍具有潜在的近自然修复能力。采用的模糊综合评价法与灰色关联分析法均是可行的河流自然性评价方法。表3参27

English Abstract

谢立红, 曹宏杰, 黄庆阳, 等. 五大连池火山森林群落多样性与稳定性[J]. 浙江农林大学学报, 2021, 38(2): 235-245. DOI: 10.11833/j.issn.2095-0756.20200255
引用本文: 燕琳, 马岚, 潘成忠, 等. 基于模糊综合评价与灰色关联分析的河流自然性评价[J]. 浙江农林大学学报, 2020, 37(3): 480-488. DOI: 10.11833/j.issn.2095-0756.2020.20190485
XIE Lihong, CAO Hongjie, HUANG Qingyang, et al. On the diversity and stability of forest communities in Wudalianchi Volcanoes[J]. Journal of Zhejiang A&F University, 2021, 38(2): 235-245. DOI: 10.11833/j.issn.2095-0756.20200255
Citation: YAN Lin, MA Lan, PAN Chengzhong, et al. Naturalness evaluation of rivers based on the fuzzy comprehensive evaluation and the grey correlation analysis[J]. Journal of Zhejiang A&F University, 2020, 37(3): 480-488. DOI: 10.11833/j.issn.2095-0756.2020.20190485
  • 河流在水循环、能量循环、物质交换、气候调控和生态发展等方面都发挥着极其重要的作用[1-2]。河流的自然性是指与相同类型的未受干扰的河流的相似程度[3],尤其是结构稳定性和生态功能等;即整个河流生态系统是完整的、稳定的、可持续的,对外界不利因素具有抵抗力[4]。河流的自然性评价,就是对由自然因素和人为活动引起的河溪生态系统的破坏和退化程度进行诊断[5],对河流现状进行评价,为管理者、决策者提供目标依据,使之更好地利用和管理河流[6],且对于河流生态系统的自然恢复和保护有着重要的指导作用[7]。目前,国内外的河流的自然性评价方法主要有生物监测法和综合指标评价法2种[8]。前者由于指标单一、缺乏系统性,得出的评价结果科学性较差[9];后者评价指标综合,具有较好的解释性和说明性,使得评价结果更科学[10]。 模糊综合评价法和灰色关联分析法都属于综合指标评价法。其中,模糊综合评价法以其模型简单,适用性强,对复杂问题的评价效果好等优点得到广泛的应用,但模糊综合评价在计算过程中存在一定的经验性、模糊性和不确定性,导致评价结果与客观实际产生偏差[6];灰色关联分析法是一种定量化比较分析的方法,根据数列的可比性和相似性,分析系统内部因素间的相关程度[7],计算思路明晰,对数据要求较低且工作量较少,但需要对各项指标最优值进行现行确认,主观性强,同时部分指标最优值难以确认。本研究以永定河北京山峡段为研究对象,从生态、地貌和水文3方面入手,定性定量分析了河流的结构与功能,构建河流自然性评价指标体系,利用层次分析法与熵权法对评价指标进行主客观组合赋权计算权重,再对各样本分别进行模糊综合评价与灰色关联分析,利用模糊综合评价法可以得出不同河段不同地貌、生态、水文类别之间的关系信息[11-12],利用运用基于点到区间距离的灰色关联分析[13-14],提高评价结果的客观性,二者结合,相互验证,对永定河作更全面、合理的评价。最终,评价结果一方面可反映永定河水生态水环境状况;另一方面为其他河流的自然性评价方法选择,提供科学合理的参考。

    • 永定河起源于山西省宁武县管涔山,自官厅水库下游流入北京市境内,流经门头沟、石景山、丰台、房山和大兴共5个区,市境内主河道长约189 km,流域面积约3 200 km2。该流域属于暖温带大陆性季风气候,春季干旱多风,夏季炎热多雨,秋季凉爽湿润,冬季寒冷干燥,且地势西北高东南低,降水量整体呈现东南向西北递减分布趋势,降水多集中在6−8月,多年平均降水量590 mm。调查河段为北京山峡段中的门头沟青白口村至三家店水库河段,全长约53 km。

    • 在2018年7月进行野外调查,按照“每500 m布设1个调查点,如遇到生态条件突变地区,则加测1点”的原则[12],从上游至下游共布设调查点105个。采用分河段评价的方法,以每5个点为基准并结合特殊情况,将河流的地貌、生态、水文特征,将相邻、特征相似的调查点组成1个调查河段,研究区划分成21个河段,使得评价结果更加精准。具体评价标准参考文献[15]。

      河流生态系统是一个多方位、多层次、多功能的自然生态经济系统[16-17],河流自然性评价系统要求每项指标都能从不同的方面反映河流生态系统的自然性程度。在科学性、目标性、系统性、独立性、操作性等指标选取原则的基础上[15, 18-19],从水文要素、河流形态、水体理化性质、河岸带特征和社会生态价值方面筛选25个定性、定量指标,构建3个层次结构的综合评价指标体系(表1)。

      表 1  永定河自然性评价指标体系与指标权重

      Table 1.  Index system and index weight of naturalness evaluation of Yongding River

      目标层(A)准则层(B)指标层(C)指标获取方法
      永定河山峡段
      河流自然性评价
      B1水文要素(0.194)C1气味(0.442)考察河水是否有腥臭味,定性描述
      C2流速比(0.158)河段水体流速最大值/河段水体流速最小值
      C3浊度(0.255)2100Q便携式浊度仪
      C4底栖生物生境条件(0.146)满足底栖生物生存的河床底质占比,定性描述
      B2河流形态(0.216)C5平面形态(0.136)河流曲折蜿蜒程度,急弯及河心岛个数
      C6纵向弯曲度(0.131)河段弯曲长度与直线长度的比值
      C7岸坡坡度(0.135)坡度仪测量
      C8岸坡结构(0.128)考察岸坡材料,定性描述
      C9岸坡植被覆盖情况(0.130)岸坡植被覆盖度,定性描述
      C10水宽与河宽比(0.129)便携式测距仪测量
      C11河床动态变化(0.102)河床底质的暴露程度
      C12有遮蔽水面占水宽比(0.110)便携式测距仪测量
      B3水体理化性质(0.202)C13pH值(0.113)pHscanlOS笔式pH计测量
      C14溶解氧(0.200)Seven2Go Pro S9便携式溶氧仪测量
      C15化学需氧量(0.201)便携式水质测定仪测量
      C16氨氮(0.203)多参数水质分析仪测量
      C17磷酸盐(0.171)多参数水质分析仪测量
      C18电导率(0.113)手持式电导率测定仪测量
      B4河岸带状况(0.258)C19缓冲带植被多样性(0.251)Shannon-Wiener多样性指数计算
      C20河岸带植被宽度(0.147)便携式测距仪测量
      C21河岸带通达性(0.204)河岸带大于10 m的植被缺口个数
      C22两岸土地利用(0.133)考察距离河道最近的土地利用方式
      C23水利工程个数(0.264)对水流产生影响的人造工程措施
      B5社会生态价值(0.130)C24景观多样性指数(0.499)采用Romme的景观丰富度指数计算
      C25观赏休憩价值(0.501)采用旅行费用法计算
        说明:括号内数值表示该项指标权重
    • 指标权重的确定关系到评价结果的客观性和准确性。层次分析法(AHP)主要考虑专家的意见,具有一定的主观随意性。熵权法从客观数据出发,不考虑指标本身的差异,可能导致得到的权重不符合实际指标的重要程度[20]。AHP与熵权法相结合得到的组合赋权法不仅能够根据专家的知识和经验对评价指标打分,又能够充分挖掘原始数据本身蕴含的信息,具有较高的合理性[21-22]

    • 本研究采用统一的河流自然性评价各级指标对比打分表[15],邀请从事河流生态保护研究、流域水沙过程研究等相关工作8 a以上的资深专家对河流自然性评价指标的相对重要程度进行对比打分。共发出打分表10份,收回8份;回收的有效反馈信息采用德尔菲法进行有效权衡[23],给出判断数值,构造河流自然性评价体系各层的判断矩阵。① 确定判断矩阵。设因素i与因素j进行比较判断,则因素i与因素j的重要性之比为aij,建立各准则下的判断矩阵A=(aij)max(i=1,2,3, $\cdots $nj=1,2, 3, $\cdots $n);其中aij的限制条件:aij>0,aij=1/ajiaii=1;重要程度标度值及含义参照文献[7]。② 权重计算:Ag=λmaxg。其中:Ag为权重;g为主重向量;λmax为最大特征值。③ 一致性检验:IC=(λmaxn)/(n−1)。其中:n为判断矩阵的阶数;IC为一致性指标。为了严格定义一致性的评判标准,引入一致性比率RC与平均随机一致性指标IRIR的赋值参照文献[16]。当RCIC/IR<0.1时,认为构造的判断矩阵具有满意的一致性[24],否则认为排序结果不合理,需要对aij重新调整。

    • 设有m个调查点,n项指标,构成原始数据矩阵X=(xij)m×n。① 对xij归一化处理后计算第j项指标的熵值:$ {e_j} = - \mathop \sum \limits_{i=1}^m {P_{ij}}{\rm{ln}}{P_{ij}} $,其中:i=1,2, $\cdots $m;j=1, 2, $\cdots $n。② 计算第j项指标的权重:Uj=1/ej,其中:j=1,2,3, $\cdots $n。对Uj进行归一化处理,得到第j项指标的权重:${W_j}=\dfrac{{{U_j}}}{{\mathop \sum \limits_{j=1}^n {U_j}}}$

    • 应用AHP法确定指标主观权重向量α=(α1α2$\cdots $αn),并做一致性检验。应用熵权法确定指标的客观权重向量β=(β1β2$\cdots $βn)。对主、客观赋权法确定的权重系数进行几何平均,最后归一化处理求得组合权重(表1)。组合赋权公式[21]为:${W_j} = \dfrac{{\sqrt {{\alpha _j}{\beta _j}} }}{{\mathop \sum \limits_{j = 1}^n \sqrt {{\alpha _j}{\beta _j}} }}$,其中:j=1, 2, $\cdots $n

    • 模糊综合评价是以模糊数学为基础,对受多种因素制约的不确定性问题进行定量化描述的一种方法,用不同的隶属函数值使模糊评判因子明晰化,不同质的数据归一化[25],从而把定性与定量分析相结合。利用该方法进行河流自然性评价,关键在于建立准确的隶属函数,从而计算评价指标对各评价等级的隶属度。① 建立评价因子集UU={u1u2$\cdots $um},其中:ui(i=1,2, $\cdots $n)为评价因素,n表示同一层次上单因素个数。② 建立权重集ww={w1w2$\cdots $wn},其中:ci(i=1,2, $\cdots $n)为评价因素ui在评价因子集U的权重,$\mathop \sum \limits_{i = 1}^n {c_i} = 1$。③ 建立评价集VV={v1v2$\cdots $vm},其中:vj(j=1, 2, $\cdots $q)为评价的等级,q表示评价等级数。④ 建立模糊关系矩阵在UV之间进行单因素评价,建立模糊关系矩阵,逐个对评价因子ui进行归一化处理,进而得到模糊关系矩阵R[26]

      $$ {{R}} = {\left( {{r_{ij}}} \right)_{mn}} = \left[ {\begin{array}{*{20}{c}} {{r_{11}}}& \cdots &{{r_{14}}}\\ \vdots & \cdots & \vdots \\ {{r_{n1}}}& \cdots &{{r_{n4}}} \end{array}} \right]\text{。} $$

      其中:rij是评价因子集U中的第i个因素ui对应的评价集V中第j个等级vj的隶属度,0≤rij≤1。隶属度rij的表达公式如下。

      $$ \begin{array}{l} {\text{越大越优型:}}\;\;\;\;{r_{ik}} = ({X_{ik}} - {X_{{\rm{min}}}})/({X_{{\rm{max}}}} - {X_{{\rm{min}}}})\text{;}\\ {\text{越小越优型:}}\;\;\;\;{r_{ik}} = ({X_{{\rm{max}}}} - {X_{ik}})/({X_{{\rm{max}}}} - {X_{{\rm{min}}}})\text{。} \end{array} $$

      其中:Xmin是第i个指标的最小值;Xmax是第i个指标的最大值。⑤ 计算模糊评价结果将权向量c与模糊关系矩阵R合成运算得到模糊评价结果B[23],即:BwR

    • 灰色关联分析法通过计算评价因子的实测值与各级评价指标标准的关联度来确定河段近自然等级[27]。该方法应用点到区间距离法计算关联系数,避免了传统的点到点计算方法的不足[13],同时又能反映处于不同等级的河段间的评价指标的显著差异和同一等级的河段内的评价指标的优劣,评价结果较为直观、合理和可行。计算步骤如下:① 确定比较数列和参考数列。设以评价指标的实测值为参考数列$\left\{ {{{X'}_i}\left( k \right){\text{,}}\left( {i = 1{\text{,}}2{\text{,}}3{\text{,}} \cdots{\text{,}}m{\text{;}}k = 1{\text{,}}2{\text{,}}3{\text{,}} \cdots {\text{,}}n} \right)} \right\}$,其中i为调查点编号,k为评价指标。设以河流自然性评价标准为比较数列。

      $$ \left\{ {{{\underline X }_{oh}}\left( k \right){\text{,}}{{\overline X}_{oh}}\left( k \right)\left( {h = 1{\text{,}}2{\text{,}}3{\text{,}} \cdots {\text{,}}m{\text{;}}k = 1{\text{,}}2{\text{,}}3{\text{,}} \cdots {\text{,}}n} \right)} \right\}\text{。} $$

      其中:h为某一评价标准的编号,${{\underline X }_{oh}}\left( k \right)$${\overline X_{oh}}\left( k \right)$则分别表示评价标准的上下限。② 计算关联系数[7]

      $$ {D_{i,oh}} = \frac{{\sqrt 2 }}{2}\sqrt {{{\left[ {{{X'}_i}\left( k \right) - {{\underline X }_{oh}}\left( k \right)} \right]}^2} + {{\left[ {{{X'}_i}\left( k \right) - {{\overline X}_{oh}}\left( k \right)} \right]}^2}}\text{。} $$

      其中:${D_{i,oh}}$为点到区间的距离。

      $$ {\rm{\varepsilon }}\left\{ {{{X'}_i}\left( k \right),\left[ {{{\underline X }_{oh}}\left( k \right),{{\overline X}_{oh}}\left( k \right)} \right]} \right\}=\frac{{{D_{{\rm{min}}}} + \rho {D_{{\rm{max}}}}}}{{{D_{i,oh}} + \rho {D_{{\rm{max}}}}}}\text{。} $$

      其中:ε为关联系数;Dmin为点到区间距离的最小值,Dmax为点到区间距离的最大值,ρ为分辨系数,介于0与1之间,一般取0.5。③ 计算灰色关联度:采用加权处理,即

      $$ {r_i} = \mathop \sum \limits_{i = 1}^n {w_k}\varepsilon \left\{ {{{X'}_i}\left( k \right),\left[ {{{\underline X }_{oh}}\left( k \right),{{\overline X}_{oh}}\left( k \right)} \right]} \right\}\text{。} $$

      其中:k=1, 2, 3, $\cdots $nri为灰色关联度,wk为第k项评价指标的权重。

    • 根据模糊综合评价和灰色关联分析,各河段不同自然性等级的模糊评价结果最大值对应的级别与关联度最大值对应的级别即为该河段所处的自然性等级状态。由表2可知:永定河北京山峡段总体上处于“退化状态”,但各个河段的自然性状况却不尽相同。模糊综合评价法中,第11、12、13河段为“自然状态”,第3、4、6、8、19、20河段为“近自然状态”,第2、5、7、9、14、15、16、17、18、21河段为“退化状态”,第1、10河段为“人工状态”;灰色关联分析法中,第11、12、13河段为 “自然状态”,第4、6、8、17、19、20河段为“近自然状态”,第2、3、5、7、9、14、15、16、18、21河段为“退化状态”,第1、10河段为“人工状态”。

      表 2  模糊综合评价法与灰色关联分析法对永定河各调查河段不同自然性等级的评价结果

      Table 2.  Evaluation of different naturalness classes for different reaches of Yongding River by fuzzy comprehensive evaluation and grey correlation analysis

      河段模糊综合评价法灰色关联分析法
      自然状态Ⅳ近自然状态Ⅲ退化状态Ⅱ人工状态Ⅰ等级自然状态Ⅳ近自然状态Ⅲ退化状态Ⅱ人工状态Ⅰ等级
      10.2000.2330.2110.2410.7380.7290.7830.789
      20.2080.2110.2280.2170.7400.7880.7930.733
      30.1780.2350.2120.2040.7690.7910.8030.716
      40.1780.1870.1860.1710.7630.7860.7690.727
      50.1380.1600.1830.1780.7460.7570.7790.754
      60.1380.1440.1330.1360.7670.7830.7640.742
      70.1550.1600.2230.1430.7430.7530.7670.750
      80.1550.1880.1620.1570.7790.7940.7890.775
      90.1880.2010.2840.1720.7520.7580.7620.722
      100.1640.1800.1680.1850.7350.7390.7460.756
      110.1650.1570.1510.1590.7580.7240.7130.749
      120.2040.1850.1700.1770.7810.7630.7750.738
      130.2530.2410.2060.2250.8000.7720.7680.716
      140.1500.1500.1610.1280.7530.7790.7900.745
      150.1600.1840.1980.1730.7610.7640.7660.755
      160.1580.1770.1890.1780.7600.7740.7830.747
      170.1620.1760.1780.1770.7500.8320.7950.743
      180.1250.1240.1840.1290.6910.7820.8100.759
      190.1930.2070.1930.1750.7640.8140.8070.727
      200.1780.1790.1770.1580.7890.7980.7750.703
      210.2280.2220.2600.2500.7630.7900.8000.728

      评价结果显示:研究河段处于自然状态的河段长7.5 km,约占全长的14.29%;处于近自然状态的河段长15.0 km,约占全长的28.57%;处于退化状态的河段长25.0 km,约占全长的47.62%;处于人工状态的河段长5.0 km,约占全长的9.52%。

    • 结合河流实地调查来看,第11、12、13河段处于自然状态,第4、6、8、19、20河段为近自然状态。处于自然与近自然状态的调查河段远离村庄,人为干扰少,靠近山体水环境良好,河流水体清澈且浊度为0.99~2.20,缓冲带植被多样性大于1.00,高于平均值(表3)。河道基本维持自然形态且具有充足的水量,水生物种生长状况较好,两岸乔灌草植被层次结构分明,植被覆盖度较高。针对自然状态与近自然状态的河段,应加大河流的管理力度,维护河流现状,防止河流自然性退化。

      表 3  永定河北京山峡段主要定量指标数据

      Table 3.  Data of main quantitative indexes in Beijing Gorge Section of Yongding River

      自然性
      等级
      指标
      河段
      浊度溶解氧/
      (mg·L−1)
      氨氮/
      (mg·L−1)
      化学需氧
      量/(mg·L−1)
      流速比岸坡坡
      度/°
      弯曲度水宽与
      河宽比
      河岸带
      通达性
      水利工
      程/个
      缓冲带植
      被多样性
      景观多样
      性指数
      自然状态110.9910.750.1116 6.2152.801.050.641 1 1.0974.95
      121.0410.480.0914 1.5348.501.040.820 1 1.2287.42
      131.1310.710.0813 3.1236.801.050.831 1 1.0868.78
      (1.05)(10.65)(0.09)(14) (3.62)(46.03)(1.05)0.76761 1 1.1377.05
      近自然状态 42.0311.690.1924 4.7259.001.040.961 2 1.0354.47
      61.9310.440.2133 2.6829.801.020.631 1 1.0482.26
      82.20 4.770.1410 1.7550.401.110.211 1 1.1460.26
      191.85 9.830.1022 3.4916.601.040.892 3 1.1880.18
      202.0410.030.3732 4.9513.201.100.821 2 1.2074.43
      平均值2.01 9.350.2024 3.5233.801.060.701 2 1.1270.32
      过渡带 32.3410.250.1628 4.9644.201.020.691 4 1.1677.36
      172.48 9.760.0418 3.4220.801.110.901 2 0.8981.18
      平均值2.4110.010.1023 4.1932.501.070.801 3 1.0379.27
      退化状态 23.1710.130.2525 5.7220.401.020.952 3 0.8673.67
      52.2211.260.2727 4.2443.801.000.891 2 1.1981.34
      72.4310.500.1016 6.2741.201.030.631 2 1.1580.44
      91.85 9.450.1120 9.5957.601.030.351 1 1.2276.79
      143.3510.090.2017 1.5928.401.010.851 2 0.9167.80
      153.1410.180.2411 2.5610.601.050.901 2 0.8165.88
      163.2710.310.1313 3.5025.401.060.851 2 0.5489.62
      183.10 9.630.1512 4.5022.801.130.911 3 0.9461.16
      212.5710.180.0925 1.0022.701.040.773 1 1.1681.98
      平均值2.7910.190.1718 4.3330.321.030.791 2 0.9875.41
      人工状态 13.3510.770.1239 6.6030.201.000.962 3 0.7483.26
      104.6610.620.1516 6.5231.001.010.451 5 0.6175.04
      平均值4.0110.700.1428 6.5930.601.010.712 4 0.6879.15
      总平均值2.4410.090.1620.524.2332.541.050.761.192.101.0175.00
        说明:过渡带是指用2种评价方法对同一河段评价结果不同的河段,即河段的评价结果是处于不同的自然等级。括号内数字为平均值

      第3河段与第17河段处于近自然状态与退化状态的过渡带。第3河段受灌溉引水、雍水坝、发电厂、拦水坝等工程的干扰较大,河流渠道化工程使得河流平面形态为直线,断面形态为梯形,岸坡坡度44.20°,两岸土地多被道路和建筑利用;水域生态系统的结构和功能受到影响,河流两岸生物的多样性降低,鱼类、底栖类生物的生存环境受到威胁。根据河溪近自然评价标准,本河段定量评价指标中41.67%处于近自然状态,58.33%处于退化状态。第17河段靠近村庄,受当地农家乐旅游发展影响,沿河景观较多,景观多样性指数81.18%,水的浊度为2.48,大于平均值。该河段定量评价指标中66.67%处于近自然状态,33.33%处于退化状态。根据评价结果,结合实地调查情况与河流自然性评价标准,最终确定第3河段与第17河段处于退化状态。应尽量改雍水坝和拦水坝为生态措施,增加鱼类回游产卵通道,保护水生动物多样性和改善底栖生物生境条件,加强对农家乐旅游的政府监管,加大绿色可持续发展理念的宣传。

      第2、5、7、9、14、15、16、18、21河段为退化状态。调查发现:这些河段建有大量度假村和农家乐,景观多样性指数和观赏游憩价值较高,但对生态系统干扰较大,负面影响较大。如第5河段的妙峰山旅游景区、第16河段的京西十八潭景区和第21河段的青白口旅游度假村,景观多样性指数分别为81.34%、89.62%和81.98%;因鱼塘、烧烤店和农家乐等产生的生活垃圾乱堆乱放现象严重,环境污染较大,河流水质恶化,河流底栖生物生境遭到破坏。第2河段沿途农家乐餐厅、便利店、渔具店等产生的大量生活垃圾,使得河流两岸缓冲带植被多样性指数(0.86)低于调查河段的平均值,河水浊度与氨氮质量浓度较大。针对具有景观功能的河段对河流造成的破坏,应加强垃圾处理,规范民俗旅游管理,督促经营过程中产生的污染物达标排放;重点监管河流周边化肥使用量,以减少水体污染。

      第1、10河段处于人工状态。灰色关联分析结果发现:第1河段关联度是0.789,大于其他3个状态,相关程度最密切。该河段紧邻三家店水库,防洪功能突出但生态功能弱化;河道两岸均为浆砌石护岸,河滨湿地和缓冲带消失,河流两岸的植被遭到大量破坏。第10河段自然性等级最大值为0.759,属于人工状态。该河段周围村庄众多,土地利用类型多为居住和建设用地;河流岸坡结构多为干砌石结构,弯曲度接近于1;水利工程较多,河岸缓冲带受到挤占几乎消失,多用于农业生产,不利于行洪。针对防洪功能的浆砌石干砌石河岸,改善河段的自然性等级难度较大;应在该处河段上、下游做好防洪安全,保护河堤, 并且在有条件的河岸创造多样化生境,以提高生物多样性。

    • 河流自然性评价系统是一个典型的、具有模糊性的灰色系统。模糊综合评价和灰色关联分析法的结果基本相同,且与河流的实际情况相符合,因此利用这2种方法对永定河北京山峡段河流自然性评价是可行的。2种方法对第3与第17河段评价结果不同,主要原因是模糊综合评价中隶属度矩阵是主观赋值,一定条件下会引起同样的指标体系由于主观意志的不同造成权重不同,最终影响评价结果。在今后的研究中,应根据河流的实际情况和评价目的慎重确定。

      本研究较全面地考虑了调查河段的特性,建立了自然性评价指标体系,在评价其自然性的基础上,调查了永定河北京山峡段河流的河床动态变化、岸坡结构、缓冲带植被多样性等25个指标,并确定了其权重系数,这样能科学、合理地控制评价方向,反映出不同河道的保护利用方式下河流自然性受到的影响,达到调查河段的评价状态能尽量客观地反映实际河流状况,但各个河段评价结果与人为对各项指标赋予不同权重或其他因素(气候、土壤等)有关,可能引起结果略有偏差,还有待进一步深入研究。

      本研究运用的评价体系是以永定河北京山峡段为背景,在一定程度上扩宽了河流自然性评价研究的思路和方法,但仍有不足。如没有考虑河流评价指标受时间动态的影响;评价指标选取主观性太强,受条件和资料的限制未考虑浮游动植物等。因此,对于不同空间尺度和地域差异的河流来说,河流自然性评价指标、体系构建应根据河流的实际情况进一步筛选、判断。

参考文献 (27)

目录

/

返回文章
返回