-
夏蜡梅Sinocalycanthus chinensis是1963年发表的新种[1],1964年又被提升为新属[2]。该种是中国特有的第三纪古老孑遗植物,目前仅在浙江、安徽两省有少量分布,数量稀少,在分子上有保守的叶绿体基因组,在分类地位上与美国蜡梅属Calycanthus又有着很深的渊源,对阐明东亚—北美植物区系历史的发展和联系很有意义[3]。近年来,大量研究人员对它的种群分布、生理生化以及园林、药用价值等方面作了深入研究[4-9],但对种群结构和群落种间联结的研究未见报道。天台县境内的夏蜡梅则是1959年阙良寿在大雷山首次发现(阙良寿28677,浙江省自然博物院植物标本馆)。天台大雷山是夏蜡梅的第四纪冰期的避难所之一(另一个是临安大明山),与临安不共享一个单倍型(h3),且多样性较低,表明天台县夏蜡梅的种群是比较孤立的,是一个重要的种群分化中心[3]。本研究尝试通过调查天台县大雷山的夏蜡梅种群结构和群落学特征,研究群落组成树种之间的相关性,反映该种群数量动态,揭示群落的结构和功能,评价该种群与生境间的适合度,并预测群落的发展动态,为境内夏蜡梅种群的保护和发展提供科学依据[10-12]。
-
在天台县夏蜡梅分布区域内,选取有代表性的区域进行样地调查。样地面积为20 m×20 m,均匀分成16个5 m×5 m的样方调查乔木层,后在每个样方的右下角划出2 m×2 m的小样方调查灌木层和草本层。乔木层(胸径≥1 cm)进行每木调查,记录种名、高度、胸径、冠幅等;灌木层和草本层记录种名、高度、株数及盖度,并调查样地内的所有层间植物,同时记录样地环境资料(表1)。测量样地内全部夏蜡梅的树高、胸径、冠幅、年龄、分枝数。
表 1 大雷山夏蜡梅群落样地调查特征
Table 1. Survey characteristics of S. chinensis community plot in Dalei Mountain
样地编号 植被类型 地理坐标 海拔/m 坡向 坡度/(°) 坡位 群落郁闭度 人为干扰 Q1 化香树林 28°59′05.24″N,120°49′12.37″E 808 西坡 17 上坡 0.7 间接 Q2 山胡椒林 28°59′02.56″N,120°49′10.87″E 814 西北坡 28 上坡 0.6 间接 Q3 灯台树林 28°58′53.17″N,120°49′01.14″E 824 东坡 30 下坡 0.6 小 Q4 杉木林 28°58′55.71″N,120°49′01.34″E 827 西南坡 5 谷底 0.5 直接 Q5 毛竹林 28°59′18.20″N,120°48′43.84″E 736 西北 22 下坡 0.8 直接 说明:化香树Platycarya strobilacea,山胡椒Lindera glauca,灯台树Bothrocaryum controversum,杉木Cunninghamia lanceolata,毛竹 Phyllostachys edulis -
乔木层重要值(VI)=(相对密度+相对显著度+相对频度)/3×100%。灌木层、草本层种的重要值(VI)=(相对密度+相对盖度+相对频度)/3×100%。
-
Shannon-Wiener指数:H′=
$ -\sum\limits_{i=1}^{S}{p}_{i}\mathrm{l}\mathrm{n}{p}_{i} $ ;Pielou指数(均匀度指数):E=H′/lnS;Simpson指数(多样性指数):P=1−$ \sum\limits_{i=1}^{S}{{p}_{i}}^{2} $ ;Gleason指数(物种丰富度指数):D′=n/lnA。其中:S为种i所在样地的物种总数目,pi为种i的重要值(VI),n为群落中的总物种数,A为样地面积。 -
根据夏蜡梅1个生长季内只形成1次生长高峰,且9月中旬之后就不再生长的特性[18],本研究采用数节法计算夏蜡梅的种群结构。
-
总体关系检验RV=ST2/δT2=(1/N)
$\sum\limits_{j=1}^N(T_j-1)^2 /\sum\limits_{i=1}^{S}{{{P}_{i}(1-P}_{i})}^{} $ ,t=(T1+T2+$\cdots $ +TN)/N,Pi=ni/N。则:W=RVN。其中:N为总样方数,S为物种总数;Tj为样方j内出现的物种数,ni为种i出现的样方数;ST2为总数方差,δT2为总体样本方差。基于物种在样地中出现与不出现数据的方差比率来检验多物种间的总体关联性。如果RV=1,即种间无关联;RV>1,则种间为净的正关联; RV<1,种间为净的负关联。采用统计量W来检验RV偏离1的显著程度。若种间无关联,则W落入χ2分布界限内的概率为90%,χ20.92, N<W<χ20.05, N,否则种间总体相关。共同出现百分率:PC=a/(a+b+c)。PC的值域为[0,1],PC越接近于1,表明2个物种间正联结越紧密;若PC为0,表明该种对间无关联。联结系数:CA=2(ad−bc)/[(a+b)(b+d)+(a+c)(c+d)]。CA用来说明种间联结程度,其值域为[−1,1]。CA为0,说明2个物种间完全独立;CA越接近于1,说明2个物种间正联结越强;CA越接近于−1,说明2个物种间负连接越强。PC和CA计算公式中:a为种A和种B同时出现的样方数,b为只有种A出现的样方数,c为只有种B出现的样方数,d为种A和种B都不出现的样方数。
Pearson积矩相关系数和Spearman相关系数是反映2个物种种间协变线性关系的重要指标,可用来定量分析2个物种间的线性关系,其计算参照文献[21]。
-
根据重要值计算结果,参照《中国植被》的群落命名原则[23],夏蜡梅分布区的植被类型有落叶阔叶林(Q1化香树林、Q2山胡椒林、Q3灯台树林),针叶林(Q4杉木林),竹林(Q5毛竹林)3个类型。乔木层优势种是化香树、山胡椒、灯台树、杉木、毛竹;灌木层优势种是中国绣球Hydrangea chinensis、夏蜡梅、悬铃木叶苎麻 Boehmeria tricuspis;草本层优势种是金星蕨Parathelypteris glanduligera、辽宁堇菜Viola rossii、透茎冷水花Pilea pumila、虎杖Reynoutria japonica(相关重要值详见表2)。这与金则新等[9]调查时认为夏蜡梅主要分布在针阔混交林的结论略有不同,可能是夏蜡梅适应性广,适宜生境中植被类型多样导致。
表 2 大雷山夏蜡梅群落各层重要值前5的物种及重要值一览表
Table 2. List of species and importance values of the top 5 important values of each layer of S. chinensis community in Dalei Mountain
植物 层次 重要值/% Q1 Q2 Q3 Q4 Q5 灯台树Bothrocaryum controversum 乔木层 10.71 11.16 短柄枹Quercus serrata var. brevipetiolata 乔木层 9.62 化香树Platycarya strobilacea 乔木层 12.86 7.99 黄山松Pinus taiwanensis 乔木层 2.28 黄檀Dalbergia hupeana 乔木层 9.28 柳杉Cryptomeria japonica var. sinensis 乔木层 29.11 毛竹Phyllostachys edulis 乔木层 67.08 榕叶冬青Ilex ficoidea 乔木层 1.47 山胡椒Lindera glauca 乔木层 5.98 13.95 山樱花Cerasus serrulata 乔木层 7.41 杉木Cunninghamia lanceolata 乔木层 32.23 1.39 水马桑Weigela japonica var. sinica 乔木层 9.12 微毛柃Eurya hebeclados 乔木层 5.52 细枝柃Eurya loquaiana 乔木层 6.40 夏蜡梅Sinocalycanthus chinensis 乔木层 6.07 10.07 6.48 16.06 小叶白辛树Pterostyrax corymbosus 乔木层 10.58 窄基红褐柃Eurya rubiginosa var. attenuata 乔木层 2.32 浙闽樱桃Cerasus schneideriana 乔木层 7.94 臭辣树Evodia fargesii 灌木层 12.60 红果山胡椒Lindera erythrocarpa 灌木层 5.77 红脉钓樟Lindera rubronervia 灌木层 3.28 黄檀Dalbergia hupeana 灌木层 9.08 木荷Schima superba 灌木层 11.57 蓬蘽Rubus hirsutus 灌木层 14.81 山胡椒Lindera glauca 灌木层 7.47 4.00 山橿Lindera reflexa 灌木层 10.10 6.82 8.49 6.34 7.80 山莓Rubus corchorifolius 灌木层 7.67 太平莓Rubus pacificus 灌木层 5.84 细枝柃Eurya loquaiana 灌木层 4.97 夏蜡梅Sinocalycanthus chinensis 灌木层 13.42 22.21 30.79 50.65 悬铃木叶苎麻 Boehmeria tricuspis 灌木层 27.91 宜昌荚蒾Viburnum erosum 灌木层 3.65 中国绣球Hydrangea chinensis 灌木层 25.76 4.07 3.31 巴东过路黄Lysimachia patungensis 草本层 5.06 穿孔薹草Carex foraminata 草本层 8.11 丛枝蓼Polygonum posumbu 草本层 9.76 褐果薹草Carex brunnea 草本层 6.26 10.40 4.23 虎杖Reynoutria japonica 草本层 29.18 金星蕨Parathelypteris glanduligera 草本层 39.33 6.18 京鹤鳞毛蕨Dryopteris kinkiensis 草本层 5.91 犁头草Viola japonica 草本层 7.13 辽宁堇菜Viola rossii 草本层 30.43 13.94 芒尖薹草Carex doniana 草本层 5.33 南山堇菜Viola chaerophylloides 草本层 9.53 求米草Oplismenus undulatifolius 草本层 10.35 8.22 柔枝莠竹Microstegium vimineum 草本层 13.92 三脉紫菀Aster ageratoides 草本层 6.10 透茎冷水花Pilea pumila 草本层 18.34 长梗黄精Polygonatum filipes 草本层 8.87 长江蹄盖蕨Athyrium iseanum 草本层 9.76 长柱头薹草Carex teinogyna 草本层 9.60 紫花堇菜Viola grypoceras 草本层 6.47 7.94 从重要值看,在乔木层,夏蜡梅处在伴生种位置,而在灌木层夏蜡梅常处在优势种或常见种位置,尤其是在毛竹林下,夏蜡梅重要值为50.65%,达到最高。
-
通过上述3个多样性指数来分析样地物种多样性。计算(表3~5)表明:乔木层物种多样性指数从大到小依次为阔叶林、针叶林、毛竹林,除均匀度指数外,其余指数阔叶林约是毛竹林的2倍,差异明显,说明阔叶林物种丰富、多样性明显、均匀度高。灌木层物种丰富度指数从大到小依次为阔叶林、毛竹林、针叶林,物种多样性和均匀度指数为阔叶林≈针叶林>毛竹林,说明灌木层阔叶林物种多样性指数最高,毛竹林物种丰富度较高,但均匀度低。草本层物种多样性指数除均匀度指数外,均为针叶林>阔叶林≈毛竹林,说明针叶林物种丰富度高,但均匀度低。
表 3 夏蜡梅群落5个样地乔木层物种多样性指数
Table 3. Species diversity index of trees in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 化香树 12.86 39 0.94 1.36 0.37 6.51 Q2 山胡椒 13.95 36 0.94 1.35 0.38 6.01 Q3 灯台树 11.16 43 0.94 1.39 0.37 7.18 Q4 杉木 32.23 25 0.80 0.93 0.29 4.17 Q5 毛竹 67.08 19 0.52 0.58 0.20 3.17 平均值 27.45 32 0.83 1.12 0.32 5.41 表 4 夏蜡梅群落5个样地灌木层物种多样性指数
Table 4. Species diversity index of shrubs in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 中国绣球 25.76 34 0.89 1.22 0.34 8.18 Q2 夏蜡梅 22.21 40 0.91 1.27 0.34 9.62 Q3 夏蜡梅 30.79 36 0.87 1.18 0.33 8.66 Q4 悬铃木叶苎麻 27.91 24 0.88 1.12 0.35 5.77 Q5 夏蜡梅 50.65 33 0.73 0.98 0.28 7.93 平均值 31.46 33 0.86 1.15 0.33 8.03 表 5 夏蜡梅群落5个样地草本层物种多样性指数
Table 5. Species diversity index of herbs in 5 plots of S. schinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 金星蕨 39.33 26 0.82 1.04 0.32 6.25 Q2 辽宁堇菜 30.43 22 0.88 1.14 0.37 5.29 Q3 辽宁堇菜 13.94 25 0.92 1.21 0.38 6.01 Q4 透茎冷水花 18.34 45 0.92 1.29 0.34 10.82 Q5 虎杖 29.18 25 0.88 1.16 0.36 6.01 平均值 26.24 29 0.88 1.17 0.35 6.88 夏蜡梅在群落内的优势度与均匀度指数呈负相关,表明夏蜡梅的种间竞争较弱,是一种集群分布的物种。
-
图1显示:5个样地中共有夏蜡梅453株,个体中节数最少的为1节,最多的为46节,平均16节,株数最多为1节,共177株,占39.07%。按10节为1级,共分5个级别,编制种群结构图,可见第Ⅰ级(1~10节)的个体比率最高,占56.51%,整体呈增长型中的“金字塔”型,Ⅰ级个体比较丰富,这与金则新等[9]的结论一致。说明天台大雷山的生境适宜夏蜡梅种群的生长与更新,同时也说明数节法在分析夏蜡梅的种群内部结构是可行的。
由图2显示:不同的样地中,Q1、Q2、Q3都是Ⅰ级个体较多,种群结构呈“金字塔”型,属增长型;在Q4中,Ⅰ级个体极少,种群结构呈“壶”型,属衰退型;Q5中,种群结构呈“钟”型,属稳定型。
-
根据夏蜡梅群落中乔木层和灌木层重要值大于5%的物种分别在5个样地中出现(1)和不出现(0)矩阵,计算出方差比率RV和统计量W。
乔木层中共选取了18个物种,RV=1.634>1,表明种间呈净的正关联;灌木层中共选取了12个物种,RV=1.250>1,表明种间呈净的正关联。由于N=5,乔木层和灌木层的统计量W分别为8.171和6.250。查表得:χ20.50,5=4.351,χ20.10,5=9.236,乔木层和灌木层的W值均落入χ20.50,5和χ20.10,5之间,即RV偏离1不显著。因此,乔木层18个物种和灌木层12个物种均在整体上表现出不显著的净的正关联。
通过共同出现百分率检测、Pearson相关系数检验、Spearman秩相关系数检验等方法分析种间联结和种间相关性,结果(图3~10)显示:乔木层和灌木层中夏蜡梅与大部分物种间均无关联,仅在乔木层中,夏蜡梅与红果山胡椒呈极显著负相关,与化香树和浙闽樱桃呈显著负相关;在灌木层中夏蜡梅与山莓呈显著负相关,与山橿间的联结性较强。
-
本研究表明:夏蜡梅所处的群落类型多样,有落叶阔叶林、针叶林、毛竹林,乔木层优势种有化香树、山胡椒、灯台树、杉木、毛竹;灌木层优势种有中国绣球、夏蜡梅、悬铃木叶苎麻;草本层优势种有金星蕨、辽宁堇菜、透茎冷水花等。夏蜡梅种群主要集中分布在落叶阔叶林和毛竹林中。生物多样性指数最高的是灯台树林,最低的是毛竹林;均匀度指数最高的是杉木林,最低的是毛竹林。
-
夏蜡梅的种群结构是增长型中的“金字塔”型,幼林个体丰富,与早期“天台县夏蜡梅产地由于植被破坏严重,夏蜡梅都呈散生状”的描述相比[6],种群得到了很好的保护。
除柳杉疏林外,落叶林、毛竹林下的夏蜡梅种群数量都比较多,特别是毛竹林下种群数量达到最高。这可能是夏蜡梅是喜荫植物,午间强光、高温会导致其叶肉细胞活性降低,进而引起光合能力的下降,直至幼苗、幼树死亡[24]。落叶林、毛竹林的林冠能为其遮光,减弱强烈的光照,降低土壤表明温度,减少土壤水分蒸发,从而促进幼苗的萌发和存活。这也为今后野外保护、繁育夏蜡梅提供了很好的指示。
-
3种检验结果表现出一致性,正负关联比均大于1,说明各树种联系紧密,群落的结构和功能趋于完善。夏蜡梅与大部分树种无相关关系,说明夏蜡梅在群落中可能处于一个相对独立的地位。群落中与夏蜡梅呈负相关关系的主要是红果山胡椒、山莓、浙闽樱桃、化香树等树种,说明这些种与夏蜡梅有竞争关系。建议在后期夏蜡梅野外保育过程中,对与夏蜡梅有竞争关系的物种,采取适当人为择伐、抚育,营造良好的生长环境。
-
人为干扰对夏蜡梅种群的影响不尽相同。在柳杉林等人工经营林,由于砍伐强度大,露出大量林窗,生境遭到破坏,夏蜡梅种群结构趋于衰退;在毛竹林中,虽然人工干预强烈,但对夏蜡梅的生境破坏不强,使得种群结构趋于稳定;在化香树林、山胡椒林等落叶阔叶林中,是先有人为干扰,后干扰逐渐减弱,群落进入自然演替,夏蜡梅种群则开始恢复,表现出种群增长的模型。
-
浙江农林大学赵宏波审阅全文并提出修改意见;浙江省森林资源监测中心钟建平,浙江中医药大学林王敏、董荧荧、金晓青、王志栋等参加野外调查;杭州师范大学陈伟杰帮助内业计算。在此一并致谢!
Community characteristics of Sinocalycanthus chinensis in Dalei Mountains of Tiantai County
-
摘要:
目的 探索浙江省天台县大雷山野生夏蜡梅Sinocalycanthus chinensis群落的物种组成、种群结构和种间联结,补充大雷山野生夏蜡梅资源分布情况。 方法 在实地踏查的基础上,结合以往研究资料,选取天台县大雷山夏蜡梅的典型群落,建立5个20 m×20 m样地,进行群落学调查。 结果 ①夏蜡梅所处的群落类型多样,主要有落叶阔叶林、针叶林和竹林,分层明显,乔木层优势种有化香树Platycarya strobilacea、山胡椒Lindera glauca、灯台树Bothrocaryum controversum、杉木Cunninghamia lanceolata、毛竹Phyllostachys edulis;灌木层优势种有中国绣球Hydrangea chinensis、夏蜡梅、悬铃木叶苎麻 Boehmeria tricuspis;草本层优势种有金星蕨Parathelypteris glanduligera、辽宁堇菜Viola rossii、透茎冷水花Pilea pumila。②夏蜡梅的种群结构为“金字塔”型,第Ⅰ级个体比率最高,占56.51%,说明种群正处在增长阶段。③对夏蜡梅群落内的乔木层和灌木层物种对进行种间关联与相关性分析显示,正负关联比均大于1,说明夏蜡梅与大部分树种无相关关系。 结论 大雷山野生夏蜡梅群落中各树种联系紧密,群落的结构和功能趋于完善,但夏蜡梅在群落中可能处于相对独立的地位。鉴于夏蜡梅与红果山胡椒Lindera erythrocarpa、山莓Rubus corchorifolius、浙闽樱桃Cerasus schneideriana、化香树等树种呈负相关关系,具有竞争关系,建议在后期夏蜡梅野外保育过程中,采取适当人为择伐和抚育措施,营造良好的生长环境。图10表5参24 Abstract:Objective This study aims to explore the species composition, population structure and interspecific association of wild Sinocalycanthus chinensis community, and to supplement the distribution of wild S. chinensis resources in Tiantai County, Zhejiang Province. Method On the basis of field survey and previous research data, five 20 m × 20 m sample plots of S. chinensis were established for community investigation. Result (1) The community types of S. chinensis were diverse, mainly including deciduous broad-leaved forest, coniferous forest and bamboo forest, with obvious stratification. The dominant species of tree layer were Platycarya strobilacea, Lindera glauca, Botrocarpyum contoversum, Cunninghamia lanceolata, and Phyllostachys edulis. The dominant species of shrub layer were Hydrangea chinensis, S. chinensis, and Boehmeria tricuspis. The dominant species of herb layer were Parathylyperis glandulgera, Viola rossii, and Pilea pumila. (2)The population structure of S. chinensis was “Pyramid” type, with the highest proportion of individuals in gradeⅠ, accounting for 56.51%, indicating that the population was in the growth stage. (3) The analysis of interspecific association and correlation of species pairs in tree layer and shrub layer showed that the positive and negative correlation ratios were both greater than 1, and there was no correlation between S. chinensis and most tree species. Conclusion The species of S. chinensis community are closely related, and the structure and function of the community tend to be perfect, but S. chinensis may be relatively independent in the community. In view of its negative correlation and competitive relationship with Lindera erythrocarpa, Rubus corchorifolius, Cerasus schneideriana, Platycarya strobilacea and other tree species, it is suggested that in the later stage of S. chinensis field conservation, appropriate artificial selective cutting and tending measures should be taken to create a good growth environment. [Ch, 10 fig. 5 tab. 24 ref.] -
蚂蚁作为膜翅目Hymenoptera蚁科Formicidae昆虫,在自然界中具有不可忽视的作用,具备改良土壤、分解有机质、促进土壤碳氮循环、维持微生态平衡等重要作用[1−2],常被用作各类环境生物多样性的指示物种[3−4]。全世界已记载的蚂蚁共有16亚科342属14 187种[5],蚂蚁是地球上分布最广、种类及数量最多的社会性昆虫[6]。
当前,中国的蚂蚁群落研究集中在西南地区[7−9],而对西北地区蚂蚁群落研究报道较少。在新疆地区蚂蚁研究方面,吴坚等[10]记录了新疆地区2亚科、5属、14种;夏永娟等[11−12]记录了新疆地区3亚科、16属、43种,其中1新种;COLLINGWOOD等[13]报道准葛尔盆地及其邻近山区的蚂蚁46种,其中27种为中国新纪录种;黄人鑫等[14]报道了新疆蚂蚁42种新记录种。通过上述研究共记载了新疆蚂蚁3亚科20属118种,其中分布于天山的种类仅46种。可见,对新疆蚂蚁的研究,尤其是天山地区的研究还十分有限,且仅限于区系和分类,缺乏蚂蚁物种多样性的研究。近期,翟奖等[15]研究了新疆天山东部与邻近地区蚂蚁分布规律,共报道2亚科、14属、29种,发现蚂蚁物种主要集中在土壤温润、树木高大的人工林内;杨林等[16]对新疆天山中部的蚂蚁物种多样性进行了分析,共报道蚂蚁2亚科27种,北坡的蚂蚁物种多样性显著高于南坡,且中海拔区域的物种多样性最高。这些研究丰富了天山地区蚂蚁分布和物种多样性的研究,也使分布于天山的物种增加至50种。
天山中-西段主要位于克拉玛依的奎屯至阿克苏地区的库车一线区域,由北坡、山间谷地和南坡组成,于2022年7—8月对新疆天山中-西段的蚂蚁多样性进行调查,探讨蚂蚁群落结构、物种多样性与海拔和植被的关系等问题,并与天山中部的蚂蚁多样性进行比较,以全面揭示干旱区蚂蚁物种多样性随着海拔和植被的变化如何变化,以期为该地区的生物多样性保护提供基础资料。
1. 材料与方法
1.1 样地设置
新疆天山中-西段海拔为781~3 235 m,依地形划分为北坡独山子垂直带、山间起伏盆地的乌拉斯台和那拉提2个垂直带及南坡的库车垂直带,共4个垂直带。海拔每上升250 m,选取植被典型的1块50 m×50 m样地进行调查,共设置33块样地,其中垂直带中海拔最低的1块样地位于奎屯市独山子区天景颐园,海拔为781 m。各垂直带调查样地的位置及自然概况见表1。受野外自然条件限制,选定样地的海拔会有一定误差,控制在±50 m内。
表 1 新疆天山中-西段蚂蚁群落调查样地概况Table 1 Survey sites of ant communities in the middle-western section of Tianshan Mountains in Xinjiang垂直带 样地
编号海拔/m 纬度(N) 经度(E) 土壤类型 土壤湿度 植被类型 乔木郁闭度 盖度/% 地被物厚度/cm 灌木 草本 地被物 独山子 1 781 44°19′01.12″ 84°52′42.12″ 黄壤 潮湿 落叶阔叶林 0.5 0 70 70 1.0~2.0 2 1 050 44°12′39.95″ 84°50′46.69″ 黄壤 干燥 落叶阔叶林 0.3 5 75 75 0.5~1.0 3 1 278 44°09′56.52″ 84°49′39.46″ 黄沙土 干燥 灌丛 0 30 80 80 0.5~1.0 4 1 540 44°07′11.10″ 84°49′31.52″ 黄沙土 干燥 灌丛 0 30 70 70 0.5~1.0 5 1 726 44°06′08.44″ 84°48′15.93″ 黄沙土 潮湿 灌丛 0 40 60 60 1.0~2.0 6 2 029 43°53′15.47″ 84°29′59.35″ 黄壤 湿润 草丛 0 0 95 95 0.5~1.0 7 2 285 43°50′12.22″ 84°28′14.13″ 棕黄壤 湿润 灌丛 0 30 80 80 2.0~3.0 8 2 549 43°47′27.07″ 84°27′51.96″ 棕壤 湿润 草丛 0 0 95 95 1.0~2.0 9 2 773 43°46′43.76″ 84°27′21.36″ 灰黄壤 湿润 锦鸡儿灌丛 0 30 95 95 1.0~2.0 10 3 023 43°45′14.16″ 84°26′13.54″ 黄沙土 湿 草甸 0 0 95 95 1.0~2.0 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0 乌拉斯台 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0 12 3 024 43°42′27.20″ 84°26′51.60″ 棕壤 湿 草丛 0 0 80 80 1.0~2.0 13 2 760 43°41′15.80″ 84°23′57.55″ 棕壤 湿 柏木灌丛 0 50 90 90 1.0~2.0 14 2 533 43°40′02.69″ 84°24′24.03″ 棕壤 湿润 灌丛 0 30 90 95 0.5~1.0 15 2 295 43°37′57.52″ 84°18′48.52″ 棕壤 湿润 云杉林 0.6 20 70 100 2.0~3.0 16 2 000 43°21′36.52″ 84°22′00.32″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0 17 1 798 43°20′12.98″ 84°21′30.23″ 棕壤 湿润 针阔混交林 0.4 0 95 95 1.0~2.0 那拉提 18 1 802 43°13′43.85″ 84°19′15.64″ 棕壤 湿润 针阔混交林 0.5 30 95 95 2.0~3.0 19 2 020 43°13′31.38″ 84°19′24.66″ 棕壤 湿润 针阔混交林 0.5 70 50 100 1.0~2.0 20 2 288 43°11′26.28″ 84°19′42.82″ 棕壤 湿润 草丛 0 0 100 100 1.0~2.0 21 2 548 43°10′06.98″ 84°21′04.21″ 棕壤 湿润 高山柳灌丛 0 90 100 100 2.0~3.0 22 2 547 42°41′24.77″ 83°41′18.64″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0 23 2 785 42°34′51.52″ 83°36′53.84″ 棕壤 湿润 草丛 0 10 95 95 1.0~2.0 24 3 055 42°30′50.27″ 83°28′54.46″ 棕壤 湿 草丛 0 0 70 70 1.0~2.0 库车 25 3 058 42°28′36.91″ 83°26′04.32″ 棕壤 湿 草丛 0 0 95 95 1.0~2.0 26 2 759 42°27′50.54″ 83°24′29.82″ 黄壤 湿润 灌丛 0 50 95 95 1.0~2.0 27 2 508 42°27′38.24″ 83°23′21.49″ 暗棕壤 湿润 云杉林 0.5 20 95 100 2.0~3.0 28 2 233 42°26′31.70″ 83°15′21.55″ 黄壤 湿润 草丛 0 0 90 90 1.0~2.0 29 2 052 42°25′05.20″ 83°16′01.70″ 黄壤 湿润 草丛 0 10 98 98 1.0~2.0 30 1 773 42°13′34.37″ 83°13′57.53″ 黄沙土 湿润 灌丛 0 40 50 50 0.5~1.0 31 1 539 42°07′16.52″ 83°09′02.09″ 红壤 干燥 灌丛 0 30 10 30 0.5 32 1 269 41°51′24.16″ 82°49′08.19″ 黄沙土 干燥 疏灌丛 0 10 10 10 0.5 33 1 009 41°44′01.62″ 82°55′43.37″ 黄沙土 干燥 落叶阔叶林 0.2 30 30 30 0.5 说明:乌拉斯台垂直带在该海拔梯度内可选择的典型植被类型样地较少,为更直观地揭示蚂蚁物种数量变化,选择独山子垂直带海拔为3 235 m的样地(编号11)为乌拉斯台垂直带起始点。灌丛指多种灌木组成的灌丛,高于1.0 m,区别于单树种灌丛;疏灌丛指盖度小于10%的灌丛。锦鸡儿Caragana sinica;柏木Cupressus funebris;云杉Picea asperata;高山柳Salix cupularis。土壤湿度以含水量<12%为干燥,12%~15%为湿润,15%~20%为潮湿,>20%为湿。 1.2 调查及标本制作方法
参考文献[1],在新疆天山中-西段不同海拔采用样地调查法和搜索法进行蚂蚁群落调查,在选定样地内沿对角线选取5个1 m×1 m的样方,每个样方间隔10 m,在采集地表蚂蚁前,先测量每个样方内地被物的厚度。分别采集样地地表样、土壤样和树冠样的蚂蚁,并将蚂蚁保存至装有无水乙醇的离心管,贴上标签。样方调查结束后,5人同时对样地内样方外周围地表、石下、树冠和朽木等微生境进行搜索调查,时间为1 h。将采集到的蚂蚁装入离心管并作标签和记录。依据同种同巢、同种形态相同原则对采集的标本进行归类、编号、登记,将每号标本制作成不超过9头的三角纸干制标本,多余的个体用无水乙醇浸渍保存,依据相关分类学文献[1, 10]鉴定蚂蚁标本,尽可能鉴定到种。
1.3 群落结构分析方法
按照黄钊等[8]的方法,以各类蚂蚁物种个体数占群落物种总数的比例(β)来揭示群落结构特征,采用常规划分标准分为5个类型,即类型 A 为 β≥10.0% ,优势种;类型B为 5.0%≤β<10.0% ,常见种;类型C为 1.0%≤β<5.0% ,较常见种;类型D为 0.1%≤β<1.0% ,较稀有种;类型E为 β<0.1%,稀有种。
1.4 多样性指标测定方法
利用Estimate S 9.1.0 对数据进行处理[17−18],采用5项主要指标测定物种多样性:物种数目、Shannon-Wiener 多样性指数、Pielou 均匀度指数、Simpson 优势度指数、Jaccard 相似性系数[1, 19],利用SPSS软件中的one-way ANOVA对各垂直带蚂蚁多样性的各个指数进行方差分析并进行多重比较;采用Pearson相关分析方法[20]分析蚂蚁群落多样性各个指数与海拔的相关性,若存在显著相关性,则使用线性和二项式模型进行拟合,基于拟合系数(R2)评价拟合度,并进行显著性t检验,同时分析蚂蚁群落多样性指标与植被特征的相关性。
2. 结果与分析
2.1 蚂蚁群落的结构分析
在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,经鉴定共29种,隶属于2亚科12属。其中优势种3种,分别为草地铺道蚁Tetramorium caespitum、黑毛蚁Lasius niger和丝光蚁Formica fusca;常见种3种,分别是黄毛蚁L. flavus、光亮黑蚁F. candida和工匠收获蚁 Messor structor;角结红蚁 Myrmica angulinodis、红林蚁F. sinae等10种为较常见种;凹唇蚁F. sanguinea、喜马毛蚁L. himalayanus 和纹头原蚁Proformica striaticeps 3种为较稀有种;诺斯铺道蚁T. nursei、堆土细胸蚁Leptothorax acervorum等10种为稀有种(表2),较常见种和稀有种种类较多。
表 2 新疆天山中-西段蚂蚁群落结构Table 2 Ant community structure of the middle-western section of Tianshan Mountains in Xinjiang编号 物种名称 N/头 β/% 物种类型 编号 物种名称 N/头 β/% 物种类型 1 草地铺道蚁Tetramorium caespitum 31 856 23.38 优势种 16 弯角红蚁Myrmica lobicornis 1 411 1.04 较常见种 2 黑毛蚁Lasius niger 22 629 16.61 优势种 17 凹唇蚁Formica sanguinea 1 002 0.74 较稀有种 3 丝光蚁Formica fusca 17 991 13.20 优势种 18 喜马毛蚁Lasius himalayanus 736 0.54 较稀有种 4 黄毛蚁Lasius flavus 12 247 8.99 常见种 19 纹头原蚁Proformica striaticeps 139 0.10 较稀有种 5 光亮黑蚁Formica candida 10 500 7.71 常见种 20 诺斯铺道蚁Tetramorium nursei 129 0.09 稀有种 6 工匠收获蚁Messor structor 9 688 7.11 常见种 21 堆土细胸蚁Leptothorax acervorum 128 0.09 稀有种 7 角结红蚁Myrmica angulinodis 4 406 3.23 较常见种 22 蒙古原蚁Proformica mongolica 116 0.08 稀有种 8 红林蚁Formica sinae 4 023 2.95 较常见种 23 长柄心结蚁Cardiocondyla elegans 12 0.01 稀有种 9 阿富汗红蚁Myrmica afghanica 3 903 2.86 较常见种 24 广布弓背蚁Camponotus herculeanus 5 0 稀有种 10 艾箭蚁Cataglyphis aenescens 3 695 2.71 较常见种 25 吉市红蚁Myrmica jessensis 4 0 稀有种 11 满斜结蚁Plagiolepis manczshurica 3 030 2.22 较常见种 26 婀娜收获蚁Messor aralocaspius 3 0 稀有种 12 草地蚁Formica pratensis 3 009 2.21 较常见种 27 蒙古切胸蚁Temnothorax mongolicus 3 0 稀有种 13 类干蚁Formica approximans 2 043 1.50 较常见种 28 针毛收获蚁Messor aciculatus 1 0 稀有种 14 掘穴蚁Formica cunicularia 1 933 1.42 较常见种 29 条纹切胸蚁Temnothorax striatus 1 0 稀有种 15 中亚凹头蚁Formica mesasiatica 1 604 1.18 较常见种 合计 136 247 100 说明:N为个体数,β为各类蚂蚁物种个体数占群落物种总数的比例。 2.2 蚂蚁群落的多样性指标分析
2.2.1 物种累积曲线分析
随着调查样地的增加,实际观察物种数(S)、基于多度(个体数量)的预测值(ACE)、Chao 1和Chao 2值均先急剧上升,后缓慢上升,最后趋于稳定(图1)。蚂蚁物种S为29,与丰富度估计值(ACE值为30.03,Chao1值为30,Chao 2值为29.97)相接近,实际采集到的物种数约为预测值的96.57%~96.76%,可见抽样充分。
2.2.2 物种数
从物种的实测值来看,新疆天山中-西段4个垂直带的蚂蚁物种数都接近或等于ACE估计值(表3),其中独山子垂直带海拔2 773 m锦鸡儿灌丛、3 023 m草甸、3 235 m草甸,乌拉斯台垂直带海拔3 024 m草丛,那拉提垂直带海拔2 548 m高山柳灌丛、
3055 m草丛及库车垂直带3 058 m草丛样地均未发现蚂蚁。4个垂直带蚂蚁物种数顺序为:独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种)。如图2所示:各垂直带的蚂蚁物种数与海拔存在显著(P<0.05)相关性。总体来看,各垂直带的蚂蚁物种数随海拔升高基本呈下降趋势。独山子、乌拉斯台和那拉提垂直带蚂蚁物种数与海拔的二项式变化趋势与线性变化趋势基本一致,线性模型显示乌拉斯台和那拉提垂直带的蚂蚁物种数与海拔分别呈显著(R2=0.770,P=0.022)和极显著(R2=0.739,P=0.013)负相关关系,二项式变化同线性分析趋势一致,但无显著相关性(P>0.05);而库车垂直带物种数与海拔的二项式模型呈现随海拔升高先升高后下降的单峰曲线。表 3 各垂直带蚂蚁群落多样性指标Table 3 Diversity indexes of ant communities in different vertical zones垂直带 物种数/种 ACE估计值 Shannon-Wiener多样性指数 Pielou均匀度指数 Simpson优势度指数 独山子 18 20.10±0.00 0.515 2±0.153 9 a 0.313 8±0.095 8 a 0.446 3±0.107 8 a 乌拉斯台 10 10.00±0.00 0.539 9±0.221 6 a 0.348 9±0.121 5 a 0.403 7±0.135 8 a 那拉提 14 16.54±1.49 0.596 7±0.265 9 a 0.329 9±0.139 0 a 0.316 8±0.132 5 a 库车 13 13.60±0.00 0.505 8±0.119 1 a 0.408 6±0.103 2 a 0.611 0±0.096 0 a 说明:同列相同字母表示差异不显著(P>0.05)。数值为平均值±标准误。 2.2.3 多样性指数
新疆天山中-西段4个垂直带蚂蚁群落多样性指数变化顺序为:那拉提垂直带(0.596 7)>乌拉斯台垂直带(0.539 9)>独山子垂直带(0.515 2)>库车垂直带(0.505 8),但4个垂直带的蚂蚁多样性指数差异不显著(表3)。如图3所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁多样性指数与海拔存在显著(P<0.05)或极显著(P<0.01)相关性,而那拉提和库车垂直带的蚂蚁多样性指数与海拔的相关性不显著(P>0.05)。总体来看,各垂直带的蚂蚁多样性指数随海拔升高而呈现降低的趋势,二项式变化趋势与线性变化趋势基本一致。其中线性模型显示乌拉斯台垂直带蚂蚁多样性指数与海拔呈显著负相关(P<0.05),二项式变化趋势与线性分析一致,但无相关性。
2.2.4 均匀度指数
新疆天山中-西段4个垂直带蚂蚁群落均匀度指数变化顺序为:库车垂直带(0.408 6)>乌拉斯台垂直带(0.348 9)>那拉提垂直带(0.329 9)>独山子垂直带(0.313 8),但4个垂直带的蚂蚁均匀度指数差异不显著(表3)。如图4所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁均匀度指数与海拔存在显著相关性(P<0.05),而那拉提和库车垂直带的蚂蚁均匀度指数与海拔关系不显著(P>0.05)。其中在独山子垂直带,均匀度指数与海拔的线性模型显著负相关(P<0.05),二项式模型呈现极显著负相关(P<0.01),二项式和线性模型变化趋势不一致;线性模型显示乌拉斯台垂直带蚂蚁群落均匀度指数与海拔化显著负相关(R2=0.697,P<0.05),二项式和线性模型变化趋势不一致,且相关性不显著(P>0.05);线性和二项式模型显示,那拉提和库车垂直带的蚂蚁群落均匀度指数与海拔变化相关性均不显著(P>0.05),但二项式和线性模型变化趋势基本一致。
2.2.5 优势度指数
新疆天山中-西段4个垂直带蚂蚁群落优势度指数变化顺序为:库车垂直带(0.611 0)>独山子垂直带(0.446 3)>乌拉斯台垂直带(0.403 7)>那拉提垂直带(0.316 8),与多样性指数的变化趋势正相反,但4个垂直带的蚂蚁群落优势度指数差异不显著(表3)。相关分析发现:各垂直带的蚂蚁群落优势度指数与海拔的相关性不显著(P>0.05);4个垂直带的线性模型和二项式模型的变化趋势不一致,二项式模型分析均呈先升高后降低的变化趋势(图5),仅独山子垂直带的二项式模型呈显著性(R2=0.846,P<0.01)。
2.3 蚂蚁群落相似性分析
新疆天山中-西段各垂直带蚂蚁群落间相似性系数为0.166 7~0.600 0(表4),处于极不相似至中等相似水平;平均值0.289 0,显示中等不相似水平。其中同处于山间盆地的那拉提与乌拉斯台垂直带的蚂蚁群落间相似性最大(0.600 0),乌拉斯台与独山子垂直带的蚂蚁群落间相似性最小(0.166 7),库车与那拉提垂直带之间相似性较低,处于中等不相似水平,其余垂直带间相似性低,处于极不相似水平。总体来说,新疆天山中-西段蚂蚁群落之间相似性较低,群落结构差异较大。
表 4 新疆天山中-西段各垂直带蚂蚁群落间相似性系数Table 4 Similarity coefficients of ant communities in the middle-western section of Tianshan Mountains in Xinjiang垂直带 垂直带q 乌拉斯台 那拉提 库车 独山子 0.166 7 0.230 8 0.240 0 乌拉斯台 0.600 0 0.210 5 那拉提 0.285 7 平均值 0.289 0 说明:q为相似性系数, 1≥q≥0.75,极相似;0.75 >q≥0.50,中等相似;0.50 >q≥0.25,中等不相似;0.25>q≥0,极不相似。 2.4 蚂蚁群落多样性指标与植被特征相关分析
如表5所示:新疆天山中-西段蚂蚁物种数与乔木郁闭度显著正相关(P<0.05),但与灌木盖度、草木盖度、地被物盖度和地被物厚度相关性不显著;多样性指数、均匀度指数和优势度指数与植被特征的相关性均不显著。
表 5 蚂蚁多样性与植被特征相关分析Table 5 Correlation analysis between ant diversity and vegetation feature植被特征 物种数 多样性
指数均匀度
指数优势度
指数乔木郁闭度 0.424* 0.296 0.285 0.095 灌木盖度 0.049 0.099 0.114 −0.015 草本盖度 −0.226 −0.234 −0.234 −0.072 地被物盖度 −0.161 −0.143 −0.137 −0.075 地被物厚度 −0.148 −0.240 −0.256 −0.071 说明:数值为Pearson相关系数,*表示在0.05水平上显著相关。 3. 讨论
在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,隶属于2亚科12属29种,物种数略高于新疆天山中段[16](2亚科15属27种),与天山东段[15](2亚科14属29种)相等,但明显高于临近的祁连山国家公园青海片区[21](2亚科6属13种),可能是因为天山中部和祁连山国家公园海拔较高,海拔落差较大,其物种丰富度较低,而新疆天山中-西段和东段由于平均海拔较低,蚂蚁物种丰富度较高,相对海拔高度对蚂蚁物种丰富度也有着重要影响。与同为干旱区的伊朗中部相比,新疆天山中-西段的蚂蚁物种数明显低于伊朗中部[22](8亚科12属34种),可能是伊朗中部纬度和海拔均低于新疆天山,表明耐热性较低的物种更喜欢聚集在中部高海波区域[22],而伊朗中部因适合蚂蚁生存的海拔跨度较大造成物种多样性较高,新疆天山中-西段由于低海拔炎热干燥,高海拔温度过低,适合蚂蚁生存的海拔跨度较小而使多样性较低。
目前,全球蚂蚁物种多样性沿海拔梯度变化主要呈现5种模式[23]:①随海拔升高蚂蚁多样性呈递减的趋势(物种多样性最高出现在低海拔区域)[24];②低高原模式(300 m以下最低海拔的高多样性);③单峰模式,即在中海拔区域物种多样性最高,可用“中域效应”来解释(海拔高于300 m)[25];④随海拔升高蚂蚁多样性呈现多个峰值,可用“多域效应”来解释[26];⑤无规律模式。研究表明:在沿海拔梯度的5种模式中,最常见的是单峰模式和递减模式[27−29]。中海拔地区的物种丰富度较高是由于高海拔或低海拔地区的气候严酷和高海拔地区资源的可利用性有限[30−31];物种丰富度随海拔升高而下降,原因是海拔升高,温度和生产力下降[32]。通过对新疆天山中-西段4个垂直带的物种数和多样性指数分析发现:蚂蚁物种多样性沿海拔梯度变化总体呈现随海拔升高而降低的趋势,主要原因是随着海拔的升高气温会逐渐降低而影响蚂蚁的生存;4个垂直带的物种数和多样性指数与海拔变化显著相关,均匀度指数和优势度指数与海拔的相关显著性不尽相同,这与天山中部南北坡的蚂蚁多样性变化规律一致[16]。除了气温以外,还可能受到湿度的制约。与藏东南、四川西部大凉山和云南地区自然保护区不同,新疆天山位居中国内陆,印度洋季风因受到喜马拉雅山脉的阻挡而无法到达,太平洋季风虽可以到达,但距离较远,因此新疆天山常年较干旱,雨水较少,湿度较低,植被类型多以草地及灌木为主,蚂蚁物种丰富度也较低;从4个垂直带来看,蚂蚁物种数独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种),独山子垂直带位于天山北坡,库车垂直带位于天山南坡,可见天山的北坡蚂蚁物种数比南坡要多,可能是因为新疆天山位于北半球,南坡为阳坡,北坡为阴坡,南坡日照时间长,水分蒸发量大,土壤湿度低,蚂蚁物种较少,这与天山中部南北坡的蚂蚁物种分布一致[16]。因此湿度也成为制约蚂蚁物种多样性的因素之一。同时温度和湿度也影响着植被类型、土壤结构和微生境等,故蚂蚁物种多样性受到多种因素的影响。
从群落相似性来看,那拉提与乌拉斯台垂直带的蚂蚁群落间相似性较高,其原因可能是这2个垂直带地理位置相邻,海拔高度和植被类型相似,相同的生境提供了相同的栖息场所和食物资源,从而孕育了较多相同的蚂蚁种类;而其余各垂直带间的群落相似性较低,处于极不相似至中等不相似水平,蚂蚁群落组成差异明显。相关性分析表明:天山中-西段蚂蚁群落的物种数与多样性指数与海拔变化呈显著负相关,海拔梯度显著影响该区域的蚂蚁物种多样性。有研究表明:凋落物覆盖率增高可增加蚂蚁的物种丰富度[33],但蚂蚁物种丰富度与凋落物的数量间无显著相关性,本研究中各垂直带蚂蚁物种数与草本盖度、地被物的盖度和厚度负相关,但相关性不显著,与前人研究结果一致[34];物种数与乔木郁闭度呈显著正相关,在四川王朗自然保护区[ 35]、青藏高原西南坡[36]和西北坡[37]等地区的研究也存在这种相关关系,可能是高大的乔木给蚂蚁提供了较理想的栖息场所、食物来源,蚂蚁群落得以发展。从栖息生境来看,天山中-西段的植被多为草丛和灌丛,仅在海拔相对较低的地方分布有阔叶林、针阔混交林,生态系统脆弱,保护和利用好区域内的昆虫生物多样性,对维持和改善生态系统具有重要意义。
4. 结论
在新疆天山中-西段4个垂直带共记录到蚂蚁2亚科12属29种,优势种为草地铺道蚁、黑毛蚁和丝光蚁。新疆天山中-西段的蚂蚁物种多样性明显高于祁连山国家公园青海片区,与天山东段和中段接近,低于同为干旱区的伊朗中部。整体而言,天山中-西段4个垂直带蚂蚁群落多样性指数随海拔升高而呈现降低趋势。物种数和多样性指数与海拔显著负相关,且物种数与乔木郁闭度显著正相关,海拔显著影响该地区的蚂蚁物种多样性,同时坡向、湿度、植被等也起到重要作用。各垂直带间的蚂蚁群落相似性总体较低,表明蚂蚁群落分化明显。
5. 致谢
感谢西南林业大学图书馆房华老师和研究生杨蕊、韩秀、杨林、钱怡顺在标本采集和样地调查,本科生杨润娇、何丽华、杨洋和潘宇航在标本整理与制作中的帮助。
-
表 1 大雷山夏蜡梅群落样地调查特征
Table 1. Survey characteristics of S. chinensis community plot in Dalei Mountain
样地编号 植被类型 地理坐标 海拔/m 坡向 坡度/(°) 坡位 群落郁闭度 人为干扰 Q1 化香树林 28°59′05.24″N,120°49′12.37″E 808 西坡 17 上坡 0.7 间接 Q2 山胡椒林 28°59′02.56″N,120°49′10.87″E 814 西北坡 28 上坡 0.6 间接 Q3 灯台树林 28°58′53.17″N,120°49′01.14″E 824 东坡 30 下坡 0.6 小 Q4 杉木林 28°58′55.71″N,120°49′01.34″E 827 西南坡 5 谷底 0.5 直接 Q5 毛竹林 28°59′18.20″N,120°48′43.84″E 736 西北 22 下坡 0.8 直接 说明:化香树Platycarya strobilacea,山胡椒Lindera glauca,灯台树Bothrocaryum controversum,杉木Cunninghamia lanceolata,毛竹 Phyllostachys edulis 表 2 大雷山夏蜡梅群落各层重要值前5的物种及重要值一览表
Table 2. List of species and importance values of the top 5 important values of each layer of S. chinensis community in Dalei Mountain
植物 层次 重要值/% Q1 Q2 Q3 Q4 Q5 灯台树Bothrocaryum controversum 乔木层 10.71 11.16 短柄枹Quercus serrata var. brevipetiolata 乔木层 9.62 化香树Platycarya strobilacea 乔木层 12.86 7.99 黄山松Pinus taiwanensis 乔木层 2.28 黄檀Dalbergia hupeana 乔木层 9.28 柳杉Cryptomeria japonica var. sinensis 乔木层 29.11 毛竹Phyllostachys edulis 乔木层 67.08 榕叶冬青Ilex ficoidea 乔木层 1.47 山胡椒Lindera glauca 乔木层 5.98 13.95 山樱花Cerasus serrulata 乔木层 7.41 杉木Cunninghamia lanceolata 乔木层 32.23 1.39 水马桑Weigela japonica var. sinica 乔木层 9.12 微毛柃Eurya hebeclados 乔木层 5.52 细枝柃Eurya loquaiana 乔木层 6.40 夏蜡梅Sinocalycanthus chinensis 乔木层 6.07 10.07 6.48 16.06 小叶白辛树Pterostyrax corymbosus 乔木层 10.58 窄基红褐柃Eurya rubiginosa var. attenuata 乔木层 2.32 浙闽樱桃Cerasus schneideriana 乔木层 7.94 臭辣树Evodia fargesii 灌木层 12.60 红果山胡椒Lindera erythrocarpa 灌木层 5.77 红脉钓樟Lindera rubronervia 灌木层 3.28 黄檀Dalbergia hupeana 灌木层 9.08 木荷Schima superba 灌木层 11.57 蓬蘽Rubus hirsutus 灌木层 14.81 山胡椒Lindera glauca 灌木层 7.47 4.00 山橿Lindera reflexa 灌木层 10.10 6.82 8.49 6.34 7.80 山莓Rubus corchorifolius 灌木层 7.67 太平莓Rubus pacificus 灌木层 5.84 细枝柃Eurya loquaiana 灌木层 4.97 夏蜡梅Sinocalycanthus chinensis 灌木层 13.42 22.21 30.79 50.65 悬铃木叶苎麻 Boehmeria tricuspis 灌木层 27.91 宜昌荚蒾Viburnum erosum 灌木层 3.65 中国绣球Hydrangea chinensis 灌木层 25.76 4.07 3.31 巴东过路黄Lysimachia patungensis 草本层 5.06 穿孔薹草Carex foraminata 草本层 8.11 丛枝蓼Polygonum posumbu 草本层 9.76 褐果薹草Carex brunnea 草本层 6.26 10.40 4.23 虎杖Reynoutria japonica 草本层 29.18 金星蕨Parathelypteris glanduligera 草本层 39.33 6.18 京鹤鳞毛蕨Dryopteris kinkiensis 草本层 5.91 犁头草Viola japonica 草本层 7.13 辽宁堇菜Viola rossii 草本层 30.43 13.94 芒尖薹草Carex doniana 草本层 5.33 南山堇菜Viola chaerophylloides 草本层 9.53 求米草Oplismenus undulatifolius 草本层 10.35 8.22 柔枝莠竹Microstegium vimineum 草本层 13.92 三脉紫菀Aster ageratoides 草本层 6.10 透茎冷水花Pilea pumila 草本层 18.34 长梗黄精Polygonatum filipes 草本层 8.87 长江蹄盖蕨Athyrium iseanum 草本层 9.76 长柱头薹草Carex teinogyna 草本层 9.60 紫花堇菜Viola grypoceras 草本层 6.47 7.94 表 3 夏蜡梅群落5个样地乔木层物种多样性指数
Table 3. Species diversity index of trees in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 化香树 12.86 39 0.94 1.36 0.37 6.51 Q2 山胡椒 13.95 36 0.94 1.35 0.38 6.01 Q3 灯台树 11.16 43 0.94 1.39 0.37 7.18 Q4 杉木 32.23 25 0.80 0.93 0.29 4.17 Q5 毛竹 67.08 19 0.52 0.58 0.20 3.17 平均值 27.45 32 0.83 1.12 0.32 5.41 表 4 夏蜡梅群落5个样地灌木层物种多样性指数
Table 4. Species diversity index of shrubs in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 中国绣球 25.76 34 0.89 1.22 0.34 8.18 Q2 夏蜡梅 22.21 40 0.91 1.27 0.34 9.62 Q3 夏蜡梅 30.79 36 0.87 1.18 0.33 8.66 Q4 悬铃木叶苎麻 27.91 24 0.88 1.12 0.35 5.77 Q5 夏蜡梅 50.65 33 0.73 0.98 0.28 7.93 平均值 31.46 33 0.86 1.15 0.33 8.03 表 5 夏蜡梅群落5个样地草本层物种多样性指数
Table 5. Species diversity index of herbs in 5 plots of S. schinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 金星蕨 39.33 26 0.82 1.04 0.32 6.25 Q2 辽宁堇菜 30.43 22 0.88 1.14 0.37 5.29 Q3 辽宁堇菜 13.94 25 0.92 1.21 0.38 6.01 Q4 透茎冷水花 18.34 45 0.92 1.29 0.34 10.82 Q5 虎杖 29.18 25 0.88 1.16 0.36 6.01 平均值 26.24 29 0.88 1.17 0.35 6.88 -
[1] 郑万钧, 章绍尧, 洪涛, 等. 中国经济树木新种及学名订正[J]. 林业科学, 1963, 8(1): 1 − 14. CHENG Wanchun, CHANG Shaoyao, HONG Tao, et al. Species novae et nomines emendata arborum utilium Chinae [J]. Sci Silv Sin, 1963, 8(1): 1 − 14. [2] 郑万钧, 章绍尧. 蜡梅科的新属: 夏蜡梅属[J]. 植物分类学报, 1964, 9(2): 135 − 138. CHENG Wanchun, CHANG Shaoyao. Genus novum Calycanthacearum Chinae orientalis [J]. J Syst Evol, 1964, 9(2): 135 − 138. [3] 谈探. 濒危植物夏蜡梅种群遗传多样性与分子系统地理学研究[D]. 北京: 北京林业大学, 2008. TAN Tan. Genetic Diversity and Molecular Phylogeography of Sinocalycanthus chinensis, an Endangered Plant Endemic to China[D]. Beijing: Beijing Forestry University, 2008. [4] 刘华红, 周莉花, 黄耀辉, 等. 群落演替对夏蜡梅种群分布和数量的影响[J]. 生态学报, 2016, 36(3): 620 − 628. LIU Huahong, ZHOU Lihua, HUANG Yaohui, et al. Effects of community succession on population distribution and size of Sinocalycanthus chinensis (Cheng et S. Y. Chang) Cheng et S. Y. Chang [J]. Acta Ecol Sin, 2016, 36(3): 620 − 628. [5] 李林初. 夏蜡梅属起源的探讨[J]. 西北植物学报, 1988, 8(2): 67 − 72. LI Linchu. Critical note on the origin of Calycanthus L. [J]. Acta Bot Boreali-Occident Sin, 1988, 8(2): 67 − 72. [6] 徐耀良, 张若蕙, 周骋. 夏蜡梅的群落学研究[J]. 浙江林学院学报, 1997, 14(4): 355 − 362. XU Yaoliang, ZHANG Ruohui, ZHOU Cheng. Study on communities of Calycanthus chinensis [J]. J Zhejiang For Coll, 1997, 14(4): 355 − 362. [7] 金则新, 李钧敏, 朱小燕. 夏蜡梅总黄酮、总绿原酸含量及其环境因子相关性分析[J]. 浙江大学学报(理学版), 2007, 34(4): 459 − 464. JIN Zexin, LI Junmin, ZHU Xiaoyan. Content of total flavonoids and total chlorogenic acid in the endangered plant Sinocalycanthus chinensis and their correlations with the environmental factors [J]. J Zhejiang Univ Sci Ed, 2007, 34(4): 459 − 464. [8] 刘丽丽, 金则新, 李建辉. 浙江大雷山夏蜡梅群落植物物种多样性及其与土壤因子相关性[J]. 植物研究, 2010, 30(1): 57 − 64. LIU Lili, JIN Zexin, LI Jianhui. Plant species diversity inSinocalycanthus chinensis community and its correlation with soil factors in Dalei Mountain of Zhejiang Province [J]. Bull Bot Res, 2010, 30(1): 57 − 64. [9] 金则新, 李钧敏, 柯世省, 等. 夏蜡梅保护生物学[M]. 北京: 科学出版社, 2010: 1 − 353. [10] MANUEL C, MOLLES J. Ecology, Concept and Applications[M]. 2nd. New York: McGraw-Hill Companies, 2002: 186 − 254. [11] CRAWLEY M J. Plant Ecology[M]. London: Bllackwell Scientific Publications, 1986: 97 − 185. [12] 董瑞瑞, 唐战胜, 陈建华, 等. 珍稀濒危植物紫茎群落树种的种间联结性[J]. 安徽农业科学, 2018, 46(5): 127 − 129, 153. DONG Ruirui, TANG Zhansheng, CHEN Jianhua, et al. Interspecific correlations among tree species in the Stewartia sinensis community in Qianjiangyuan National Park, Zhejiang Province [J]. J Anhui Agric Sci, 2018, 46(5): 127 − 129, 153. [13] 洪仲棉. 天台山森林植被及其利用和保护[J]. 植物生态学与地植物学学报, 1988, 12(3): 232 − 236. HONG Zhongmian. The rational utilize and protect of forest vegetation in Tian-Tai Mountain [J]. Acta Phytoecol Geobot Sin, 1988, 12(3): 232 − 236. [14] 张彩绯. 天台45年气候变化规律初探[J]. 浙江气象, 2007, 28(2): 12 − 15. ZHANG Caifei. A preliminary study on the climate change of Tiantai in the past 45 years [J]. J Zhejiang Meteorol, 2007, 28(2): 12 − 15. [15] 胡正华, 于明坚, 丁炳扬, 等. 古田山国家级自然保护区常绿阔叶林类型及其群落物种多样性研究[J]. 应用与环境生物学报, 2003, 9(4): 341 − 345. HU Zhenghua, YU Mingjian, DING Bingyang, et al. Types of evergreen broad-leaved forests and their species diversity in Gutian Mountain National Nature Reserve [J]. Chin J Appl Environ Biol, 2003, 9(4): 341 − 345. [16] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究(Ⅱ)丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3): 268 − 277. MA Keping, HUANG Jianhui, YU Shunli, et al. Plant community diversity in Dongling Mountain, Beijing, China (Ⅱ) species richness, evenness and species diversities [J]. Acta Ecol Sin, 1995, 15(3): 268 − 277. [17] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6): 533 − 548. FANG Jingyun, WANG Xiangping, SHEN Zehao, et al. Methods and protocols for plant community inventory [J]. Biodiversity Sci, 2009, 17(6): 533 − 548. [18] 张若蕙, 刘洪谔, 沈锡康, 等. 8种蜡梅的繁殖[J]. 浙江林业科技, 1994, 14(1): 1 − 7. ZHANG Ruohui, LIU Honge, SHEN Xikang, et al. Propagation of eight species of Calycanthaceae [J]. J Zhejiang For Sci Technol, 1994, 14(1): 1 − 7. [19] SCHLUTER D. A variance test for detecting species associations, with some example application [J]. Ecology, 1984, 65(3): 998 − 1005. [20] 王伯荪, 彭少麟. 南亚热带常绿阔叶林种间联结测定技术研究(Ⅰ)种间联结测试的探讨与修正[J]. 植物生态学报, 1985, 9(4): 274 − 285. WANG Bosun, PENG Shaolin. Studies on the measuring techniques of interspecific association of lower-subtropical evergreen-broadleaved forests (Ⅰ) The exploration and the revision on the measuring formulas of interspecific association [J]. Chin J Plant Ecol, 1985, 9(4): 274 − 285. [21] 陈珍慧. 珍稀特有植物华顶杜鹃的种群特征和保护遗传学研究[D]. 杭州: 杭州师范大学, 2016: 23 − 24. CHEN Zhenhui. Studies on Population Characteristics and Protective Genetics of Rhododendron huadingense, A Rare Species Endemic to China[D]. Hangzhou: Hangzhou Normal University, 2016: 23 − 24. [22] 周先叶, 王伯荪, 李鸣光, 等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报, 2000, 24(3): 332 − 339. ZHOU Xianye, WANG Bosun, LI Mingguang, et al. An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural Reserve, Guangdong Province [J]. Chin J Plant Ecol, 2000, 24(3): 332 − 339. [23] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1995: 143 − 430. [24] 马金娥, 金则新, 张文标. 濒危植物夏蜡梅及其伴生植物的光合日进程[J]. 植物研究, 2007, 27(6): 708 − 714. MA Jin’e, JIN Zexin, ZHANG Wenbiao. The diurnal changes of photosynthesis in the endangered plant Sinocalycanthus chinensis and its accompanying plants [J]. Bull Bot Res, 2007, 27(6): 708 − 714. 期刊类型引用(1)
1. 王鹏,王雪峰,赵溪月. 基于双目视觉系统的幼龄格木生长因子测定. 森林与环境学报. 2024(06): 628-638 . 百度学术
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200349