留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应

张庆晓 陈珺 朱向涛 王楠 白尚斌

张庆晓, 陈珺, 朱向涛, 王楠, 白尚斌. 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200542
引用本文: 张庆晓, 陈珺, 朱向涛, 王楠, 白尚斌. 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200542
ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin. On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200542
Citation: ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin. On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200542

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应

doi: 10.11833/j.issn.2095-0756.20200542
基金项目: 国家自然科学基金面上基金资助项目(31770680,31770681);浙江省自然科学基金面上基金资助项目(LY14C160010);暨阳“533 英才计划”项目(2018C5);浙江省省院合作项目(2019SY06)
详细信息
    作者简介: 张庆晓(ORCID: 0000-0002-5855-8184),从事林业生态研究。E-mail: 512172003@qq.com
    通信作者: 白尚斌(ORCID: 0000-0002-0747-3252),教授,博士,从事全球变化与森林生态功能及树木对养分胁迫、环境污染的适应研究。E-mail: sequia96@163.com
  • 中图分类号: S714.2

On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis

  • 摘要:   目的  探讨毛竹Phyllostachys edulis入侵及采伐对杉木Cunninghamia lanceolata林土壤温室气体排放通量及理化性质的影响,为科学管控毛竹入侵现象提供理论依据。  方法  采用静态箱-气相色谱法对毛竹纯林(毛竹林)、采伐入侵毛竹后的杉木释放林(释放林)、毛竹-杉木混交林(混交林)和杉木纯林(杉木林)土壤温室气体通量进行短期原位监测。  结果  毛竹的入侵及采伐均增加了土壤二氧化碳(CO2)排放通量,毛竹林、释放林、混交林和杉木林排放通量分别为827.55、485.09、374.33和300.44 mg·m−2·h−1;氧化亚氮(N2O)排放通量分别为120.86、98.03、82.89和70.23 µg·m−2·h−1;土壤甲烷(CH4)吸收通量分别为155.38、145.77、135.26和119.62 µg·m−2·h−1。土壤温度从大到小依次为混交林(19.77 ℃)、释放林(18.72 ℃)、毛竹林(18.49 ℃)、杉木林(18.32 ℃),土壤含水率依次为释放林(27.32%)、杉木林(23.04%)、毛竹林(18.67%)、混交林(16.36%)。相关性分析表明:4种林分土壤CO2、N2O 排放通量和CH4 吸收通量均与土壤温湿度呈极显著正相关(P<0.01),且具有一致动态变化规律;与土壤无机氮(${ {\rm{NH}}^{+}_{4}\text{-}{\rm{N}}} $${ {\rm{NO}}^{-}_{3}\text{-}{\rm{N}}} $)呈正相关;与土壤微生物生物量碳(MBC)呈负相关。  结论  毛竹入侵及采伐均导致杉木林土壤温室气体排放通量增加,对区域大气环境造成负面影响;土壤温度、土壤含水率是3种温室气体排放的主要土壤指标,是引起不同林分间温室气体排放差异的主要原因。表5参50
  • 表  1  4种林分基本情况

    Table  1.   General situation of four types of stands

    林分
    类型
    pH海拔/m郁闭度毛竹密度/
    (株·hm−2)
    杉木密度/
    (株·hm−2)
    毛竹林4.08±0.14 b1700.802 067±117 b
    释放林4.46±0.08 a1700.75889±189 b
    混交林4.43±0.10 a1800.851 092±259 a878±214 b
    杉木林4.14±0.11 b1900.901 733±157 a
      说明:数据为平均值±标准误。同列不同小写字母表示不     同林分差异显著(P<0.05)
    下载: 导出CSV

    表  2  4种林分土壤温室气体通量

    Table  2.   Soil greenhouse gases fluxes of four types of forests

    林分CO2排放通量/(mg·m−2·h−1)
    7月8月9月10月11月12月月平均通量
    毛竹林1362.83±45.50 Aa1355.47±64.51 Aa976.98±10.75 Ba678.60±14.14 Ca389.90±64.57 Da201.54±17.49 Ea827.55±14.41 a
    释放林1067.60±67.46 Ab906.95±63.96 Bb525.57±38.42 Cb280.36±26.53 Db78.67±6.26 Eb51.39±5.17 Eb485.09±28.33 b
    混交林951.70±45.80 Ab533.83±16.15 Bc479.24±53.94 Bb175.66±22.53 Cc57.07±13.21 Db48.46±5.34 Db374.33±7.90 c
    杉木林719.63±22.33 Ac481.77±18.67 Bc408.80±14.19 Cb115.99±7.88 Dc44.08±5.67 Eb32.35±3.31 Eb300.44±2.95 d
    林分N2O排放通量/(µg·m−2·h−1)
    7月8月9月10月11月12月月平均通量
    毛竹林190.36±19.48 Aa163.02±8.36 ABa145.95±15.68 ABa122.82±12.08 Ba55.59±3.53 Ca47.40±7.09 Ca120.86±4.06 a
    释放林158.04±7.80 Aab139.15±8.44 Aa125.78±14.99 Aab67.64±6.06 Bb61.16±5.24 Ba36.44±4.86 Ba98.03±5.63 b
    混交林138.19±5.80 Ab132.87±16.12 Aa106.52±10.42 Aab49.41±9.44 Bb36.90±9.26 Ba33.47±5.48 Ba82.89±3.16 c
    杉木林129.26±12.96 Ab118.20±20.84 Aa77.07±12.08 Bb37.21±5.54 BCb35.35±8.97 BCa24.28±3.42 Ca70.23±2.54 c
    林分CH4吸收通量/(µg·m−2·h−1)
    7月8月9月10月11月12月月平均通量
    毛竹林192.28±17.14 Aa196.35±5.15 Aa163.82±9.69 ABa155.25±10.89 ABa123.95±8.55B Ca100.62±11.31 Ca155.38±7.29 a
    释放林165.62±14.46 Aa167.35±14.12 Aa141.02±11.79 ABa132.34±12.60 ABab123.18±8.70 ABa92.04±9.20 BAa135.26±0.85 b
    混交林179.35±8.90 Aa179.86±14.11 Aa147.69±16.98 ABa136.48±5.54 ABab128.53±7.34 Ba102.68±9.65 Ba145.77±2.34 ab
    杉木林159.07±9.29 Aa151.44±10.73 Aa136.18±16.50 ABa110.88±8.71 BCc95.10±3.95 CDa65.05±4.75 Da119.62±2.82 c
      说明:同行不同大写字母表示不同月份间差异显著(P<0.05);同列不同小写字母表示不同林分间差异显著(P<0.05)
    下载: 导出CSV

    表  3  4种林分土壤温度与土壤含水率

    Table  3.   Soil temperature and soil moisture content of four types of forests

    林分土壤温度/℃
    7月8月9月10月11月12月月平均温度
    毛竹林23.31±0.25 a25.72±0.07 b25.03±0.06 a15.00±0.00 b8.82±0.17 a9.05±.08 a18.49±0.07 b
    释放林28.91±1.12 a25.27±0.23 b23.80±0.00 b15.28±0.19 b9.17±0.35 a9.90±0.18 a18.72±0.22 b
    混交林29.06±0.55 a26.95±0.40 a24.89±0.19 a17.62±0.34 a10.33±0.48 a9.77±.26 a19.77±0.24 a
    杉木林26.73±0.55 a24.80±0.13 b23.48±0.06 b15.57±0.27 b9.62±0.34 a9.72±0.29 a18.32±0.09 b
    林分土壤含水率/%
    7月8月9月10月11月12月月平均含水率
    毛竹林31.19±4.06 b20.24±4.39 b22.27±1.51 bc15.33±2.18 b10.47±0.42 a12.51±0.41 a18.67±1.96 bc
    释放林47.75±0.85 a32.35±1.91 a32.23±0.92 a21.67±0.63 a13.31±2.08 a16.59±0.89 a27.32±0.32 a
    混交林29.20±3.97 b19.63±2.34 b16.67±3.01 c11.98±0.67 b7.12±0.55 a13.56±1.00 a16.36±1.75 c
    杉木林38.58±0.89 ab25.41±1.17 ab28.15±1.98 ab16.85±1.23 b13.03±1.86 a16.22±2.62 a23.04±1.54 ab
      说明:同列不同小写字母表示不同林分间差异显著(P<0.05)
    下载: 导出CSV

    表  4  4种林分土壤理化性质

    Table  4.   Soil physical and chemical properties of four types of forests

    林分pH$w_{ {\rm{NH}_4^{+} }\text{-}{\rm{N}} }$/(mg·kg−1)$w_{ {\rm{NO}_3^{-} }\text{-}{\rm{N}}}$/(mg·kg−1)MBC/(mg·kg−1)MBN/(mg·kg−1)
    毛竹林4.03±0.06 a6.27±0.75 b11.37±1.95 a615.57±81.88 a116.17±22.55 a
    释放林4.21±0.08 a12.53±1.74 a16.90±2.06 a767.26±45.22 a129.51±12.63 a
    混交林4.26±0.01 a5.67±1.52 b16.39±3.79 a708.71±91.09 a143.19±17.07 a
    杉木林4.20±0.02 a6.03±0.93 b17.70±1.35 a511.87±60.59 a103.56±13.43 a
      说明:同列不同小写字母表示不同林分间差异显著(P<0.05)
    下载: 导出CSV

    表  5  土壤温室气体通量与土壤理化性质的Pearson相关系数

    Table  5.   Pearson correlation coefficient among soil greenhouse gases fluxes and soil properties

    林分气体土壤温度土壤含水率土壤pH${ {\rm{NH}}^{+}_{4}\text{-}{\rm{N}} }$${ {\rm{NO}}^{-}_{3}\text{-}{\rm{N}}} $MBCMBN
    毛竹林CO20.944**0.760**−0.7310.933**0.851*−0.710−0.029
    N2O0.914**0.744**−0.941**0.7590.6150.726−0.266
    CH40.838**0.568*−0.5910.4800.688−0.5440.122
    释放林CO20.957**0.924**0.7050.912*0.838*−0.5590.187
    N2O0.938**0.882**0.7350.986**0.855*−0.5940.047
    CH40.796**0.677**0.8000.7270.709−0.0580.395
    混交林CO20.913**0.863**0.979**0.6600.108−0.3170.857*
    N2O0.915**0.789**0.991**0.7320.348−0.2260.878*
    CH40.802**0.586*0.833*0.7590.314−0.0060.926**
    杉木林CO20.952**0.926**0.956**0.871*0.698−0.7130.460
    N2O0.868**0.773**0.945**0.844*0.673−0.7870.304
    CH40.882**0.744**0.949**0.6110.537−0.7220.343
      说明:*表示P<0.05,**表示P<0.01
    下载: 导出CSV
  • [1] 张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2, CH4, N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4): 966 − 975. doi:  10.3724/SP.J.1011.2011.00966

    ZHANG Yuming, HU Chunsheng, ZHANG Jiabao, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils [J]. Chin J Eco-Agric, 2011, 19(4): 966 − 975. doi:  10.3724/SP.J.1011.2011.00966
    [2] 俞淑红, 周国模, 施拥军, 等. 毛竹碳汇造林初期净碳汇量监测与不确定性分析[J]. 浙江农林大学学报, 2016, 33(5): 807 − 815. doi:  10.11833/j.issn.2095-0756.2016.05.012

    YU Shuhong, ZHOU Guomo, SHI Yongjun, et al. Net carbon sinks in the initial stages of moso bamboo stands [J]. J Zhejiang A&F Univ, 2016, 33(5): 807 − 815. doi:  10.11833/j.issn.2095-0756.2016.05.012
    [3] TANG Xuli, LIU Shuguang, ZHOU Guoyi, et al. Soil-atmospherics exchange of CO2, CH4 and N2O in three subtropical forest ecosystems in southern China [J]. Global Change Biol, 2006, 12(3): 546 − 560. doi:  10.1111/j.1365-2486.2006.01109.x
    [4] BALLANTYNE A P, ANDRES R, HOUGHTON R, et al. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty [J]. Biogeosciences, 2015, 12(8): 2565 − 2584. doi:  10.5194/bg-12-2565-2015
    [5] 杨玉盛, 董彬, 谢锦升, 等. 森林土壤呼吸及其对全球变化的响应[J]. 生态学报, 2004, 24(3): 583 − 591. doi:  10.3321/j.issn:1000-0933.2004.03.028

    YANG Yusheng, DONG Bin, XIE Jinsheng, et al. Soil respiration of forest ecosystems and its respondence to global change [J]. Acta Ecol Sin, 2004, 24(3): 583 − 591. doi:  10.3321/j.issn:1000-0933.2004.03.028
    [6] 李智超, 张勇强, 厚凌宇, 等. 杉木人工林土壤微生物对林分密度的响应[J]. 浙江农林大学学报, 2020, 37(1): 76 − 84. doi:  10.11833/j.issn.2095-0756.2020.01.010

    LI Zhichao, ZHANG Yongqiang, HOU Lingyu, et al. Response of soil microorganism to stand density in Cunninghamia lanceolata plantation [J]. J Zhejiang A&F Univ, 2020, 37(1): 76 − 84. doi:  10.11833/j.issn.2095-0756.2020.01.010
    [7] 杨玉盛, 邱仁辉, 何宗明, 等. 不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究[J]. 林业科学, 1998, 34(6): 3 − 11. doi:  10.3321/j.issn:1001-7488.1998.06.001

    YANG Yusheng, QIU Renhui, HE Zongming, et al. Studies on the stand net productivity and biological cycle of nutrient elements elements in the 29-year old plantations of Chinese fir on different rotations [J]. Sci Silv Sin, 1998, 34(6): 3 − 11. doi:  10.3321/j.issn:1001-7488.1998.06.001
    [8] 范少辉, 马祥庆, 陈绍栓, 等. 多代杉木人工林生长发育效应的研究[J]. 林业科学, 2000, 36(4): 9 − 15. doi:  10.3321/j.issn:1001-7488.2000.04.002

    FAN Shaohui, MA Xiangqing, CHEN Shaoshuan, et al. Comparative study on growth and development of generation plantations of Chinese fir [J]. Sci Silv Sin, 2000, 36(4): 9 − 15. doi:  10.3321/j.issn:1001-7488.2000.04.002
    [9] 姚利辉, 康文星, 赵仲辉, 等. 会同杉木人工林不同生长阶段植物固碳特征[J]. 生态学报, 2015, 35(4): 1187 − 1197.

    YAO Lihui, KANG Wenxing, ZHAO Zhonghui, et al. Carbon fixed characteristics of plant of Chinese fir (Cunninghamia lanceolata) plantation at different growth stages in Huitong [J]. Acta Ecol Sin, 2015, 35(4): 1187 − 1197.
    [10] 邸富宏. 中国南方杉木人工林碳动态模拟研究[J]. 西北农林科技大学学报(自然科学版), 2016, 44(8): 127 − 134.

    DI Fuhong. Simulation of carbon dynamics of Chinese fir plantation in southern China [J]. J Northwest A&F Univ Nat Sci Ed, 2016, 44(8): 127 − 134.
    [11] 徐睿, 姜春前, 白彦锋, 等. 杉木纯林和混交林土壤温室气体通量的差异[J]. 浙江农林大学学报, 2019, 36(2): 307 − 317. doi:  10.11833/j.issn.2095-0756.2019.02.012

    XU Rui, JIANG Chunqian, BAI Yanfeng, et al. Soil greenhouse gas fluxes in pure and mixed stands of Chinese fir [J]. J Zhejiang A&F Univ, 2019, 36(2): 307 − 317. doi:  10.11833/j.issn.2095-0756.2019.02.012
    [12] 钟雅琪, 钟全林, 李宝银, 等. 毛竹扩张对亚热带常绿阔叶林主要树种叶结构型性状的影响[J]. 生态学报, 2020, 40(14): 5018 − 5028.

    ZHONG Yaqi, ZHONG Quanlin, LI Baoyin, et al. Effects of Phyllostachys edulis expansion on leaf structural traits of main tree species in subtropical evergreen broad-leaved forests [J]. Acta Ecol Sin, 2020, 40(14): 5018 − 5028.
    [13] 陈双林, 吴柏林, 吴明, 等. 退化低丘红壤新造毛竹林地上部分生物量的研究[J]. 江西农业大学学报, 2004, 26(4): 527 − 531. doi:  10.3969/j.issn.1000-2286.2004.04.011

    CHEN Shuanglin, WU Bolin, WU Ming, et al. A study on aboveground biomass of Young bamboo stands of Phyllostachys pubescens in degenerative hill soil area [J]. Acta Agric Univ Jiangxi, 2004, 26(4): 527 − 531. doi:  10.3969/j.issn.1000-2286.2004.04.011
    [14] YEN Tianming. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies [J]. J For Res, 2015, 20(1): 1 − 8. doi:  10.1007/s10310-014-0455-0
    [15] ZHOU Guomo, MENG Cifu, JIANG Pekun, et al. Review of carbon fixation in bamboo forests in China [J]. Bot Rev, 2011, 77(3): 262 − 270. doi:  10.1007/s12229-011-9082-z
    [16] NATH A J, LAL R, DAS A K. Managing woody bamboos for carbon farming and carbon trading [J]. Global Ecol Conserv, 2015, 3(2): 654 − 663.
    [17] 蒋灵华, 毛朝明, 吴恒祝, 等. 浙江省松阳县毛竹林经营现状调查与分析[J]. 世界竹藤通讯, 2015, 13(5): 28 − 34.

    JIANG Linghua, MAO Chaoming, WU Hengzhu, et al. Investigation and analysis of moso forest management in Songyang County, Zhejiang Province [J]. World Bamboo Rattan, 2015, 13(5): 28 − 34.
    [18] BOWDEN R D, NEWKIRK K M, RULLO G M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions [J]. Soil Biol Biochem, 1998, 30(12): 1591 − 1597. doi:  10.1016/S0038-0717(97)00228-9
    [19] WANG Hui, LIU Shirong, WANG Jingxin, et al. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China [J]. For Ecol Manage, 2013, 300: 4 − 13. doi:  10.1016/j.foreco.2012.04.005
    [20] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 1987, 19(6): 703 − 707. doi:  10.1016/0038-0717(87)90052-6
    [21] XU Qiufang, JIANG Peikun, WU Jiasen, et al. Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity [J]. Biol Invasions, 2015, 17: 433 − 444. doi:  10.1007/s10530-014-0741-y
    [22] 方慧云. 生物质炭输入对毛竹林固碳量及土壤温室气体排放的影响[D]. 杭州: 浙江农林大学, 2019.

    FANG Huiyun. Effects of Biochar Application on Carbon Sequestration and Greenhouse Gases Emission in Moso Bamboo Forests [D]. Hangzhou: Zhejiang A&F University, 2019.
    [23] 刘骏, 杨清培, 宋庆妮, 等. 毛竹种群向常绿阔叶林扩张的细根策略[J]. 植物生态学报, 2013, 37(3): 230 − 238. doi:  10.3724/SP.J.1258.2013.00023

    LIU Jun, YANG Qingpei, SONG Qingni, et al. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2013, 37(3): 230 − 238. doi:  10.3724/SP.J.1258.2013.00023
    [24] 徐道炜. 戴云山自然保护区毛竹向杉木扩张对林分土壤质量及其凋落物分解的影响[D]. 福州: 福建农林大学, 2018.

    XU Daowei. Study on the Soil Quality and Litter Decomposition in the Forest Stand of Phyllostachys edulis Expansion to the Cunninghamia lanceolata in Daiyun Mountaion Nature Reserve [D]. Fuzhou: Fujian Agriculture and Forestry University, 2018.
    [25] DANNENMANN M, GASCHE R, LEDEBUHR A, et al. The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking on calcareous soils [J]. Eur J For Res, 2007, 126(2): 331 − 346. doi:  10.1007/s10342-006-0153-3
    [26] YASHIRO Y, WAN R K, OKUDA T, et al. The effects of logging on soil greenhouse gas (CO2, CH4, N2O) flux in a tropical rain forest, Peninsular Malaysia [J]. Agric For Meteorol, 2008, 148(5): 799 − 806. doi:  10.1016/j.agrformet.2008.01.010
    [27] BORKEN W, DAVIDSON E A, SAVAGE K, et al. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil [J]. Soil Biol Biochem, 2006, 38(6): 1388 − 1395. doi:  10.1016/j.soilbio.2005.10.011
    [28] ZERVA A, MENCUCCINI M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation [J]. Soil Biol Biochem, 2005, 37(11): 2025 − 2036. doi:  10.1016/j.soilbio.2005.03.004
    [29] 张炜, 莫江明, 方运霆, 等. 氮沉降对森林土壤主要温室气体通量的影响[J]. 生态学报, 2008, 28(5): 2309 − 2319. doi:  10.3321/j.issn:1000-0933.2008.05.048

    ZHANG Wei, MO Jiangming, FANG Yunting, et al. Effects of nitrogen deposition on the greenhouse gas fluxes from forest soils [J]. Acta Ecol Sin, 2008, 28(5): 2309 − 2319. doi:  10.3321/j.issn:1000-0933.2008.05.048
    [30] 冯虎元, 程国栋, 安黎哲. 微生物介导的土壤甲烷循环及全球变化研究[J]. 冰川冻土, 2004, 26(4): 411 − 419. doi:  10.3969/j.issn.1000-0240.2004.04.006

    FENG Huyuan, CHENG Guodong, AN Lizhe. Microbial-mediated methane cycle in soils and global change: a review [J]. J Glaciol Geocryol, 2004, 26(4): 411 − 419. doi:  10.3969/j.issn.1000-0240.2004.04.006
    [31] MORISHITA T, MATSUURA Y, KAJIMOTO T, et al. CH4 and N2O dynamics of a Larix gmelinii forest in a continuous permafrost region of central Siberia during the growing season [J]. Polar Sci, 2014, 8(2): 156 − 165. doi:  10.1016/j.polar.2014.01.004
    [32] ZONA D, JANSSENS I A, AUBINET M, et al. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land [J]. Agric For Meteorol, 2013, 169: 100 − 110. doi:  10.1016/j.agrformet.2012.10.008
    [33] 严俊霞, 李洪建, 李君剑, 等. 山西高原落叶松人工林土壤呼吸的空间异质性[J]. 环境科学, 2015, 36(5): 1793 − 1801.

    YAN Junxia, LI Hongjian, LI Junjian, et al. Spatial heterogeneity of soil respiration in a planted larch forest in Shanxi Plateau [J]. Environ Sci, 2015, 36(5): 1793 − 1801.
    [34] 王磊, 程淑兰, 方华军, 等. 外源性 $ {\rm{NH}}^{+}_{4}\text{-}{\rm{N}} $ $ {\rm{NO}}^{-}_{3}\text{-}{\rm{N}} $输入对亚热带人工林土壤N2O排放的影响[J]. 土壤学报, 2016, 53(3): 724 − 734.

    WANG Lei, CHENG Shulan, FANG Huajun, et al. Effects of inputs of extraneous $ {\rm{NH}}^{+}_{4}\text{-}{\rm{N}} $ and $ {\rm{NO}}^{-}_{3}\text{-}{\rm{N}} $ on soil nitrous oxide emission in subtropical plantation, South China [J]. Acta Pedol Sin, 2016, 53(3): 724 − 734.
    [35] FENDER A C, GANSERT D, JUNGKUNST H F, et al. Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil [J]. Soil Biol Biochem, 2013, 57: 587 − 597. doi:  10.1016/j.soilbio.2012.08.004
    [36] BAGGS E M, BLUM H. CH4 oxidation and emissions of CH4 and N2O from Lolium perenne swards under elevated atmospheric CO2 [J]. Soil Biol Biochem, 2004, 36(4): 713 − 723. doi:  10.1016/j.soilbio.2004.01.008
    [37] 刘硕, 李玉娥, 孙晓涵, 等. 温度和土壤含水量对温带森林土壤温室气体排放的影响[J]. 生态环境学报, 2013, 22(7): 1093 − 1098. doi:  10.3969/j.issn.1674-5906.2013.07.001

    LIU Shuo, LI Yu’e, SUN Xiaohan, et al. Effects of temperature and soil moisture on greenhouse gases emission of temperate forest soil [J]. Ecol Environ Sci, 2013, 22(7): 1093 − 1098. doi:  10.3969/j.issn.1674-5906.2013.07.001
    [38] 孙海龙. 采伐方式对东北温带次生林土壤温室气体通量和碳储量的影响[D]. 哈尔滨: 东北林业大学, 2017.

    SUN Hailong. Effects of Harvest Methods on Soil Greenhouse Gases and Soil Carbon Storage in the Temperate Secondary Forest [D]. Harbin: Northeast Forestry University, 2017.
    [39] 朱旭丹. 不同更新方式对皆伐杉木林土壤温室气体排放的短期影响[D]. 杭州: 浙江农林大学, 2016.

    ZHU Xudan. Short-term Effects of Different Regenerations after Clearfelling on Soil Greenhouse Gases in Chinese Fir Plantation[D]. Hangzhou: Zhejiang A&F University, 2016.
    [40] 高升华, 张旭东, 汤玉喜, 等. 滩地美洲黑杨人工林皆伐对地表甲烷通量的短期影响[J]. 林业科学, 2013, 49(1): 7 − 13. doi:  10.11707/j.1001-7488.20130102

    GAO Shenghua, ZHANG Xudong, TANG Yuxi, et al. Short-term effects of clear-cutting of Populus deltoides plantation on methane flux on the beach land of Yangtze River [J]. Sci Silv Sin, 2013, 49(1): 7 − 13. doi:  10.11707/j.1001-7488.20130102
    [41] 张小朋, 殷有, 于立忠, 等. 土壤水分与养分对树木细根生物量及生产力的影响[J]. 浙江林学院学报, 2010, 27(4): 606 − 613.

    ZHANG Xiaopeng, YIN You, YU Lizhong, et al. Influence of water and soil nutrients on biomass and productivity of fine tree roots: a review [J]. J Zhejiang For Coll, 2010, 27(4): 606 − 613.
    [42] BORKEN W, DAVIDSON E A, SAVAGE K, et al. Drying and wetting effects on carbon dioxide release from organic horizons [J]. Soil Sci Soc Am J, 2003, 67(6): 1888 − 1896. doi:  10.2136/sssaj2003.1888
    [43] ROSACKER L L, KIEFT T L. Biomass and adenylate energy charge of a grassland soil during drying [J]. Soil Biol Biochem, 1990, 22(8): 1121 − 1127. doi:  10.1016/0038-0717(90)90038-2
    [44] 谢军飞, 李玉娥. 农田土壤温室气体排放机理与影响因素研究进展[J]. 中国农业气象, 2002, 23(4): 47 − 52. doi:  10.3969/j.issn.1000-6362.2002.04.013

    XIE Junfei, LI Yu’e. A Review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils [J]. Chin J Agrometeorol, 2002, 23(4): 47 − 52. doi:  10.3969/j.issn.1000-6362.2002.04.013
    [45] BODELIER P L E, HAHN A P, ARTH I R, et al. Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice [J]. Biogeochemistry, 2000, 51: 225 − 257. doi:  10.1023/A:1006438802362
    [46] VELDKAMP E, WEITZ A M, KELLER M. et al. et al. Management effects on methane fluxes in humid tropical pasture soils [J]. Soil Biol Biochem, 2001, 33(11): 1493 − 1499. doi:  10.1016/S0038-0717(01)00060-8
    [47] KELLER M, VARNER R, DIAS J D, et al. Soil-atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest, Brazil [J]. Earth Int, 2005, 9(23): 1 − 28. doi:  10.1175/EI125.1
    [48] MUHAMMAD W, VAUGHAN S M, DALAL R C, et al. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a vertisol [J]. Biol Fert Soils, 2011, 47: 15 − 23. doi:  10.1007/s00374-010-0497-1
    [49] LI Feiyue, CAO Xinde, ZHAO Ling, et al. Short-term effects of raw rice straw and its derived biochar on greenhouse gas emission in five typical soils in China [J]. Soil Sci Plant Nutrit, 2013, 59: 800 − 811. doi:  10.1080/00380768.2013.821391
    [50] ZAVALLONI C, ALBERTI G, BIASIOL S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study [J]. Appl Soil Ecol, 2011, 50: 45 − 51. doi:  10.1016/j.apsoil.2011.07.012
  • [1] 蒋仲龙, 叶柳欣, 刘军, 林松, 徐旻昱, 吴家森, 刘娟, 刘海英.  封育年限对毛竹林凋落物和土壤持水效能的影响 . 浙江农林大学学报, 2020, 37(5): 860-866. doi: 10.11833/j.issn.2095-0756.20190603
    [2] 彭鑫怡, 李永春, 王秀玲, 李永夫, 陈志豪, 徐秋芳.  植物入侵对土壤微生物的影响 . 浙江农林大学学报, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
    [3] 李媛媛, 张双燕, 王传贵, 方徐勤.  毛竹采伐剩余物的化学成分、纤维形态及纸浆性能 . 浙江农林大学学报, 2019, 36(2): 219-226. doi: 10.11833/j.issn.2095-0756.2019.02.002
    [4] 何姗, 刘娟, 姜培坤, 周国模, 王会来, 李永夫, 吴家森.  经营管理对森林土壤有机碳库影响的研究进展 . 浙江农林大学学报, 2019, 36(4): 818-827. doi: 10.11833/j.issn.2095-0756.2019.04.023
    [5] 柳丽娜, 金爱武.  集约经营毛竹林土壤养分空间变异特征初探 . 浙江农林大学学报, 2011, 28(5): 828-832. doi: 10.11833/j.issn.2095-0756.2011.05.025
    [6] 刘烁, 周国模, 白尚斌.  基于光照强度变化的毛竹扩张对杉木影响的探讨 . 浙江农林大学学报, 2011, 28(4): 550-554. doi: 10.11833/j.issn.2095-0756.2011.04.005
    [7] 徐华潮, 骆有庆.  松材线虫入侵对森林生态系统的影响 . 浙江农林大学学报, 2010, 27(3): 445-450. doi: 10.11833/j.issn.2095-0756.2010.03.020
    [8] 蒋俊明, 朱维双, 刘国华, 费世民, 陈秀明.  川南毛竹林土壤肥力研究 . 浙江农林大学学报, 2008, 25(4): 486-490.
    [9] 林琼影, 陈建新, 杨淑贞, 温国胜.  毛竹气体交换特征 . 浙江农林大学学报, 2008, 25(4): 522-526.
    [10] 徐秋芳, 俞益武, 钱新标, 吴家森.  湖州市材用笋用毛竹林土壤理化性质比较分析 . 浙江农林大学学报, 2003, 20(1): 102-105.
    [11] 徐秋芳, 姜培坤.  有机肥对毛竹林间及根区土壤生物化学性质的影响 . 浙江农林大学学报, 2000, 17(4): 364-368.
    [12] 徐凤兰, 魏坦, 刘爱琴.  杉木泡桐混交幼林地土壤的物理性质 . 浙江农林大学学报, 2000, 17(3): 285-288.
    [13] 江志标, 俞勤民.  施肥对杉木实生苗某些生理特性和土壤养分的影响 . 浙江农林大学学报, 1999, 16(4): 365-368.
    [14] 郑郁善, 管大耀, 李仁昌.  杉木( 19年生)毛竹混交林水源涵养能力研究 . 浙江农林大学学报, 1998, 15(1): 63-98.
    [15] 徐有明, 林汉, 万伏红.  马尾松纸浆材材性变异和采伐林龄的确定* . 浙江农林大学学报, 1997, 14(1): 8-15.
    [16] 林开敏, 林国清, 张沈龙, 俞立烜.  天然阔叶林与杉木连栽林地土壤肥力的差异* . 浙江农林大学学报, 1995, 12(2): 221-225.
    [17] 何光训.  杉木连栽林地土壤酚类物质降解受阻的内外因 . 浙江农林大学学报, 1995, 12(4): 434-439.
    [18] 姜培坤, 徐秋芳, 钱新标, 张春桃.  杉木檫树根际土壤磷素研究* . 浙江农林大学学报, 1995, 12(3): 242-246.
    [19] 姜培坤, 蒋秋怡, 董林根, 钱新标, 金荣根.  杉木擦树根际土壤生化特性比较分析* . 浙江农林大学学报, 1995, 12(1): 1-5.
    [20] 姜培坤, 蒋秋怡, 徐秋芳, 钱新标, 张钦相.  杉木檫树根际土壤有机化合物研究 . 浙江农林大学学报, 1994, 11(3): 235-240.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200542

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2021-05-18

杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应

doi: 10.11833/j.issn.2095-0756.20200542
    基金项目:  国家自然科学基金面上基金资助项目(31770680,31770681);浙江省自然科学基金面上基金资助项目(LY14C160010);暨阳“533 英才计划”项目(2018C5);浙江省省院合作项目(2019SY06)
    作者简介:

    张庆晓(ORCID: 0000-0002-5855-8184),从事林业生态研究。E-mail: 512172003@qq.com

    通信作者: 白尚斌(ORCID: 0000-0002-0747-3252),教授,博士,从事全球变化与森林生态功能及树木对养分胁迫、环境污染的适应研究。E-mail: sequia96@163.com
  • 中图分类号: S714.2

摘要:   目的  探讨毛竹Phyllostachys edulis入侵及采伐对杉木Cunninghamia lanceolata林土壤温室气体排放通量及理化性质的影响,为科学管控毛竹入侵现象提供理论依据。  方法  采用静态箱-气相色谱法对毛竹纯林(毛竹林)、采伐入侵毛竹后的杉木释放林(释放林)、毛竹-杉木混交林(混交林)和杉木纯林(杉木林)土壤温室气体通量进行短期原位监测。  结果  毛竹的入侵及采伐均增加了土壤二氧化碳(CO2)排放通量,毛竹林、释放林、混交林和杉木林排放通量分别为827.55、485.09、374.33和300.44 mg·m−2·h−1;氧化亚氮(N2O)排放通量分别为120.86、98.03、82.89和70.23 µg·m−2·h−1;土壤甲烷(CH4)吸收通量分别为155.38、145.77、135.26和119.62 µg·m−2·h−1。土壤温度从大到小依次为混交林(19.77 ℃)、释放林(18.72 ℃)、毛竹林(18.49 ℃)、杉木林(18.32 ℃),土壤含水率依次为释放林(27.32%)、杉木林(23.04%)、毛竹林(18.67%)、混交林(16.36%)。相关性分析表明:4种林分土壤CO2、N2O 排放通量和CH4 吸收通量均与土壤温湿度呈极显著正相关(P<0.01),且具有一致动态变化规律;与土壤无机氮(${ {\rm{NH}}^{+}_{4}\text{-}{\rm{N}}} $${ {\rm{NO}}^{-}_{3}\text{-}{\rm{N}}} $)呈正相关;与土壤微生物生物量碳(MBC)呈负相关。  结论  毛竹入侵及采伐均导致杉木林土壤温室气体排放通量增加,对区域大气环境造成负面影响;土壤温度、土壤含水率是3种温室气体排放的主要土壤指标,是引起不同林分间温室气体排放差异的主要原因。表5参50

English Abstract

张庆晓, 陈珺, 朱向涛, 王楠, 白尚斌. 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200542
引用本文: 张庆晓, 陈珺, 朱向涛, 王楠, 白尚斌. 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200542
ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin. On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200542
Citation: ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin. On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200542

返回顶部

目录

    /

    返回文章
    返回