-
杨树Populus为中国重要的速生丰产林造林树种,其中欧美杨107 Populus × euramericana ‘Neva’因其材性好、干型美、抗性强和产量高等特点,在中国淮河、黄河流域及辽河流域以南等地区广泛栽植。灌溉是欧美杨人工林生产力维持的重要技术措施,滴灌可根据植物需水规律及时补充根部水分,显著促进林木生长,获得较高的经济效益和生态效益[1-3],该技术在国外的人工林培育方面已有较广泛的应用[4-5]。近年来,国内关于滴灌栽培人工林的研究也相继开展。贺勇等[6]研究发现:滴灌栽培条件下2、3年生欧美杨107幼龄林的蓄积量分别为沟灌的2.22和1.68倍。席本野等[7]研究指出:滴灌使6、7年生的毛白杨Populus tomentosa林分生产力分别较不灌溉平均提高了24%和28%。根系分布和形态特征反映了植物对土壤资源的利用状况,通常认为直径小于2 mm的细根是根系吸收功能的重要部分[8]。细根的生长和分布受树木自身生长特性、土壤的水养条件、温湿度及其他外界环境条件的影响[9-12],其分布也可以反映土壤中水分营养的分配格局[13]及地下部分对土壤资源的利用程度[14-15],这将直接影响林木地上部分的生长和生态效益的发挥[16]。滴灌可以大幅度提高根系数量,影响根系的分布特征[17-18],改善土壤条件[19],提高林地生产力[6-7]。但以往开展滴灌对林木细根的研究,多采用距树干特定距离或随机取样的方法,不能在空间维度反映细根的分布特征。本研究以滴灌和沟灌栽培的5年生欧美杨107为研究对象,对比分析在不同的取样方向、水平距离和土壤深度上细根的空间分布特征,探究不同灌溉方式对细根生长和分布的影响,为河流故道沙地等干旱地区人工林的灌溉调控和合理经营提供依据。
-
研究地位于北京市大兴区林场,处于永定河故道沙地(39°26′~39°51′N,116°13′~116°43′E)。该区属暖温带半湿润大陆性季风气候,年均气温为11.6 ℃,年均降水量为550 mm,年均蒸发量为1 100 mm,无霜期为180~200 d。土壤为永定河故道冲积沙土,地下水位深为36 m,土壤容重为(1.46±0.15) g·cm−3,田间持水量为10%,蓄水能力差,土壤碱解氮质量分数为25.65 mg·kg−1,速效磷质量分数为2.36 mg·kg−1,速效钾质量分数为22.12 mg·kg−1,有机质质量分数为1.50 g·kg−1,从地表向地下1.2 m处均无明显腐殖质层。
-
以5年生欧美杨107人工林为研究对象。该林分于2011年利用滴灌技术扦插造林,株行距3 m×5 m,滴头流量为4 L·h−1,滴头间距为60 cm,滴灌管沿株间铺设。结合土壤湿度传感器,于每年的5−9月,当20 cm土层土壤相对含水量低于60%时进行灌溉,灌溉量由灌溉时长控制,每次灌溉量为6~9 mm,灌溉总量为250 mm。滴灌后能在株间方向形成宽度为1.0~1.2 m,深度为60~70 cm的连续湿润带[19]。沟灌栽培的试验林于2012年造林成活后撤去滴灌管,沿株间方向挖宽1 m、深15 cm的灌溉沟进行灌溉。灌溉量由流量计控制,每次灌溉量为50 mm,春季、秋季各灌溉1次,夏季3次,灌溉总量为250 mm。
-
于2015年10月下旬,分别在滴灌和沟灌栽培的试验林内设置3个面积为30 m×20 m的标准地,每个标准地内有样木40株,在各标准地内每木检尺后选取1株标准木作为研究对象(表1)。取样采用根钻法,根钻内径10 cm,高10 cm,以样木树干为中心,分别选取株间、行间和对角3个方向距树干20、50、100、150 cm处钻取土芯,取样深度为60 cm,每10 cm为1个土层。具体取样点位如图1所示,共计432个土样分别装入标号的塑封袋后带回实验室。
表 1 标准木基本特征
Table 1. Basic characteristics of standard wood
样木
编号滴灌 沟灌 胸径/cm 树高/m 冠幅/m 胸径/cm 树高/m 冠幅/m 1 15.6 17.26 3.63×3.42 13.4 15.24 3.12×2.57 2 15.8 16.87 3.13×3.50 13.6 15.86 3.03×2.61 3 15.8 17.63 3.35×3.17 13.4 15.47 3.07×2.70 将土样在清水中浸泡后,过0.8 mm孔径筛冲洗,分离土样中的根系并用镊子捡取所有活根系。按照传统的根系分类标准[20],以直径≤2 mm作为划分细根的阈值,应用Epson Twain Pro根系扫描系统和WinRhizo根系图像分析系统测定细根长(m);将细根在80 ℃烘箱中烘干至恒量(24 h),用电子天平(精确到0.001 g)测定细根生物量(g)。
-
细根生物量密度(g·m−3)=M土芯/V土芯,细根根长密度(m·m−3)=L土芯/V土芯,比根长(m·g−1)=L土芯/M土芯。其中:M土芯为土芯内细根质量(g),L土芯为土芯内细根长(m),V土芯为土芯内土壤体积(m3)。V土芯=πr2h10−6,其中r为根钻半径,取值5 cm,h为根钻高度,取值10 cm。
-
利用Excel和SPSS 19.0对数据进行统计分析,分别以同一水平距离处不同土层细根指标的累加值作为该水平距离处的细根特征值,采用单因素方差分析比较同一灌溉方式下细根的空间分布特征,采用t检验分析不同灌溉方式下同一水平距离处的细根分布特征。
-
滴灌和沟灌条件下细根生物量密度的分布特征如图2所示。株间方向(图2A),滴灌条件下距树干20、50、100和150 cm处的细根生物量密度分别是沟灌的2.55、2.95、3.17和3.91倍(P<0.05),且随水平距离增加差异增大;滴灌和沟灌条件下距树干20和50 cm处的细根分布较多,细根生物量密度差异不显著,但均显著高于距树干100和150 cm处的细根生物量密度(P<0.05)。对角方向(图2B),滴灌条件下距树干20、50、100和150 cm处的细根生物量密度分别是沟灌的2.42、1.56、1.36和1.10倍,随水平距离的增加差异减小;滴灌条件下细根生物量密度在距树干20 cm处最大,为2 014.77 g·m−3, 然后随水平距离增加显著减小(P<0.05);沟灌条件下距树干20和50 cm处的细根生物量密度分别为832.25和733.35 g·m−3,差异不显著,但均显著高于距树干100和150 cm处的细根生物量密度(P<0.05)。行间方向(图2C),滴灌和沟灌条件下细根生物量密度差异的分布特征与对角方向相同,在距树干20 cm处差异最大(P<0.05),然后随水平距离的增加不断减小;滴灌和沟灌条件下细根生物量密度均在距树干20 cm处最大,分别为1 707.73和631.25 g·m−3,然后随水平距离的增加显著减小(P<0.05)。由此可知,滴灌和沟灌条件下的细根均呈沿灌溉方向为长轴的半椭球状分布,滴灌条件下细根分布的椭球体大于沟灌,且扁率大于沟灌。
滴灌和沟灌条件下细根生物量密度在不同土层的分布差异明显。滴灌条件下株间方向(图2A),距树干20 cm处的细根生物量密度随土层加深呈先增大后减小的分布特征,10~20 cm土层细根生物量密度最大,距树干50、100和150 cm处的细根生物量密度均在0~10 cm土层最大,然后随土层加深不断减小,不同水平距离处细根生物量密度均在40~50 cm土层减小明显;对角和行间方向(图2B,图2C)不同水平距离处的细根生物量密度均在10~20 cm土层最大,随土层呈先增大后减小的垂直分布特征。沟灌条件下,在株间、对角和行间方向的不同水平距离处,细根生物量密度在10~30 cm土层最大,随土层呈先增大后减小的垂直分布特征,0~10 cm土层细根生物量密度较小。
-
滴灌和沟灌条件下细根根长密度的分布特征如图3所示。株间方向(图3A),滴灌条件下距树干20、50、100和150 cm处的细根根长密度分别是沟灌的1.37、1.52、2.42和4.40倍(P<0.05),且随水平距离的增加差异增大;滴灌和沟灌条件下细根根长密度均在距树干50 cm处最大,分别为42 102.00和19 372.16 m·m−3,表现出先增大后减小的水平分布特征,其中滴灌条件下距树干50 cm处的细根根长密度分别是距树干20、100、150 cm处的1.29、1.49和1.72倍(P<0.05);而沟灌条件下距树干50 cm处的细根根长密度是距树干20 cm处的1.04倍,差异不显著,是距树干100和150 cm处的细根根长密度的1.48和2.18倍(P<0.05)。对角方向(图3B),滴灌条件下距树干20 cm处的细根根长密度是沟灌的1.57倍,差异最大(P<0.05),然后随水平距离增加而差异减小,在距树干150 cm处,滴灌条件下的细根根长密度小于沟灌,但差异不显著;滴灌和沟灌条件下的细根根长密度均表现出随水平距离增加不断减小的水平分布特征,在距树干20 cm处最大,分别为26 670.71和17 025.94 m·m−3,均与距树干50 cm处差异不显著,与距树干100和150 cm处差异显著(P<0.05)。行间方向(图3C),滴灌和沟灌条件下细根根长密度差异的分布特征与对角方向相同,距树干20 cm处滴灌条件下的细根根长密度显著大于沟灌(P<0.05),然后随水平距离增加差异减小,滴灌条件下距树干150 cm处的细根根长密度小于沟灌,且差异显著(P<0.05);滴灌条件下距树干20 cm处的细根根长密度为23 003.91 m·m−3,随水平距离的增加显著减小(P<0.05),沟灌条件下距树干20 cm处的细根根长密度为13 444.44 m·m−3,是距树干50 cm处的1.07倍,差异不显著,与距树干100和150 cm处的细根根长密度差异显著(P<0.05)。
滴灌条件下的株间方向(图3A),不同水平距离处的细根根长密度均在0~10 cm土层最大,然后随土层加深不断减小,在40~50 cm土层减小明显;对角和行间方向(图3B,图3C)不同水平距离处细根根长密度随土层加深表现出先增大后减小的分布特征,10~20 cm土层的细根根长密度最大。沟灌条件下,株间、对角和行间方向的细根根长密度均呈先增大后减小的垂直分布特征,不同水平距离处细根根长密度的最大值出现在10~30 cm土层。
-
与细根生物量密度和细根根长密度的分布特征不同,比根长在不同方向的不同水平距离处均表现为沟灌大于滴灌。株间方向(图4A),沟灌条件下不同水平距离处的比根长均显著高于滴灌(P<0.05),在距树干20 cm处差异最大,是滴灌的1.51倍,距树干50 cm处的差异最小,是滴灌的1.41倍;对角方向(图4B),沟灌和滴灌条件下比根长在距树干20 cm处的差异最大(P<0.05),距树干50 cm处最小且差异不显著;行间方向(图4C),比根长的水平分布特征与对角方向类似,距树干20 cm处差异最大(P<0.05),距树干50 cm处差异最小且不显著。滴灌条件下,比根长在不同方向均表现出随水平距离增加而增大的水平分布特征,沟灌条件下比根长的水平分布特征与滴灌相同。以株间方向(图4A)为例,滴灌条件下距树干150 cm处的比根长最大,为120.74 m·g−1,分别是距树干20、50、100 cm处的1.63、1.36和1.22倍(P<0.05);沟灌条件下比根长的最大值也在距树干150 cm处,为175.07 m·g−1,分别是距树干20、50、100 cm处的1.56、1.40和1.18倍(P<0.05)。在不同方向,沟灌条件下比根长大于滴灌且表现出随水平距离先减小后增加的水平分布特征,这说明土壤水分条件是影响比根长的重要因素。
由图4可知:在株间、对角和行间方向距树干20 cm处的0~10 cm土层中,沟灌条件下的比根长分别是滴灌的1.53、1.67和1.55倍,差异明显。在各方向的不同水平距离处,10~20 cm土层的比根长也与滴灌有较大差异,尤其以株间方向(图4A)最大。在距树干20、50、100和150 cm处,沟灌条件下10~20 cm土层的比根长分别是滴灌的1.97、1.65、1.60和1.96倍,其差异明显大于其他土层。
-
滴灌对细根生物量密度影响显著。与沟灌相比,滴灌对细根生物量密度的促进作用主要集中在株间方向以及对角和行间方向距树干50 cm的范围内,这与滴灌后形成湿润带范围基本一致,说明土壤水分条件是影响细根生物量积累的重要因素。杨秀云等[21]研究指出:土壤含水量与细根生物量呈显著的正相关关系,土壤水分是影响林木细根分布的重要因素,这与本研究的结果一致,土壤的水分条件在一定程度上影响细根的空间分布格局。本研究表明:滴灌和沟灌条件下0~40 cm土层的细根生物量分别占0~60 cm土层的81%和73%,细根在0~40 cm土层分布集中,这与闫小莉等[22]、闫美芳等[23]关于细根垂直分布特征的研究结论一致,说明滴灌没有改变细根在垂直方向的分布范围,滴灌对细根生物量的促进作用主要在于量的增加。滴灌条件下株间方向的细根生物量密度在垂直方向表现为表土层最大,对角和行间方向细根生物量密度随土层加深先增大后减小的垂直分布特征与沟灌一致,滴灌改变了株间方向细根生物量在不同土层的积累特征,说明土壤水分条件影响细根的垂直分布。滴灌条件下细根生物量密度在株间、对角和行间方向的水平分布特征与沟灌条件下的细根在不同方向的水平分布特征一致,说明滴灌能促进细根生物量的积累,但未能改变其在水平方向的分布规律,环境条件是影响细根生长和周转的重要因素。这也与杨秀云等[24]关于细根生物量水平分布格局的研究结果一致,但与谢明明等[25]对板栗Castanea mollissima细根水平分布特征的研究结果不同。这可能是受树种本身遗传特性的影响。
滴灌对细根根长密度的影响主要在株间方向以及对角和行间方向距树干50 cm的范围内,这与滴灌对细根生物量密度影响的范围一致。滴灌条件下湿润带范围内的细根根长密度均显著高于沟灌,滴灌对细根根长的促进作用明显,土壤的水分条件显著影响细根的生长[21]。滴灌和沟灌条件下不同水平距离处0~40 cm土层的细根根长占所有土层的比例分别为85%和80%,说明0~40 cm土层是细根在垂直方向的集中分布范围[22-23],这也说明细根的分布范围受林木自身生长调控。滴灌条件下,株间方向细根根长密度随土层不断减小,而对角和行间方向细根根长密度的垂直分布与沟灌条件下细根根长密度随土层加深先增大后减小的分布特征一致,说明滴灌改变了细根根长在株间方向的垂直分布特征。对角和行间方向,滴灌条件下细根根长密度的水平分布特征与沟灌一致,均随水平距离的增大而减小,而在株间方向,滴灌条件下细根根长密度表现出先增加后减少的分布特征,与沟灌条件下细根根长密度的水平分布差异显著,说明细根根长受灌溉方式的影响大于细根生物量,滴灌改变了细根根长在株间方向的分布特征,水分条件是影响细根根长的重要因素。
比根长是表征细根生理功能与形态特征的重要指标,可以指示根系生理活性的大小,能反映根系的生理功能和吸收能力[26]。不同灌溉方式对细根比根长影响显著,沟灌条件下不同水平距离处的比根长均大于滴灌,这说明常规灌溉条件下单位质量的细根吸收水分和养分的能力大于滴灌。与滴灌相比,沟灌条件下细根分布较少,要满足林木生长需求就要以尽可能少的细根投入获得尽可能多的水分,进而造成了比根长的差异。不同灌溉方式下比根长的差异随水平距离的增大先减小后增加,这可能是受不同灌溉方式下细根分布量差异的影响,滴灌条件下的细根分布显著高于沟灌,加上较高的灌溉频率,改善了土壤水分、温度等条件,细根系统吸收的水分营养满足林木的生长需求,造成了单位质量细根吸收能力的差异。比根长随水平距离增大的趋势与甘雅文等[27]的研究结果一致,这是受林木自身生长特性的影响。
细根生长受土壤资源有效性的影响[15, 28]。滴灌条件下细根生物量和根长与沟灌的差异,是受不同灌溉方式下土壤资源异质性的影响。在河流故道沙地的立地条件下,滴灌由于较高的灌溉频率使表土层保持湿润的状态,改变了土壤的水分、温度等条件,有利于细根的生长和周转,同时适宜的土壤温度和水分也有助于林地内凋落物的分解,进而改善土壤条件,进一步促进细根分布和积累。本研究中,滴灌条件下林木的平均胸径为15.70 cm,平均树高为17.28 m,分别是沟灌的1.17和1.11倍,滴灌栽培条件下的林木蓄积量比沟灌高28.5 m3·hm−2。滴灌条件下杨树人工林更多的细根分布,可以更充分地利用土壤资源,吸收水分营养,进而促进林木生长,提高林地生产力。
-
滴灌对杨树人工林细根生长和积累的促进作用明显,尤其在湿润带范围内对细根量的促进作用显著。滴灌条件下铺设滴灌管的株间方向细根呈先增加后减少的水平分布特征,在距树干50 cm处分布最多,与沟灌条件下细根随水平距离增大而减少的分布特征不同。对角和行间方向细根分布与沟灌相同,在距树干20 cm处分布最多,然后随水平距离的增加而减少。滴灌条件下细根在0~40 cm土层分布集中,滴灌没有改变细根在垂直方向的分布范围,但改变了株间方向细根的垂直分布特征。随水平距离增大,滴灌和沟灌条件下的细根比根长均不断增大,其差异在距树干20 cm处最大,然后呈先减小后增加的分布特征。滴灌能明显改善河流故道沙地的土壤条件,提高土壤资源有效性,促进细根的生长和周转,进而提高林地生产力。
Effects of drip irrigation and furrow irrigation on spatial distribution of fine roots of Populus
-
摘要:
目的 探究不同灌溉方式对杨树Populus细根生长和分布的影响,为滴灌培育人工林提供理论和技术依据。 方法 以5年生欧美杨107 Populus × euramericana ‘Neva’为研究对象,在滴灌和沟灌栽培的人工林中选取标准木,分别在株间、对角和行间方向距树干20、50、100和150 cm处采用根钻法取样,比较其细根生物量密度、细根根长密度、细根比根长的差异。 结果 滴灌条件下株间方向的细根生物量密度与沟灌的差异随水平距离增加而增大(P<0.05),对角和行间方向随水平距离增加其差异减小。滴灌下细根生物量密度在株间方向距树干50 cm处最大,对角和行间方向在距树干20 cm处最大。滴灌下株间方向的细根根长密度与沟灌的差异随水平距离增加而增大(P<0.05),对角和行间方向的差异随水平距离增加而减小。滴灌下细根根长密度在株间方向距树干50 cm处最大,对角和行间方向在距树干20 cm处最大。滴灌和沟灌下0~40 cm土层的细根生物量分别占0~60 cm土层的81%和73%,细根根长分别占0~60 cm土层的85%和80%。滴灌和沟灌下的比根长随水平距离增加而增大,且均表现为沟灌大于滴灌,不同方向比根长的差异在距树干20 cm处最大,在距树干50 cm处最小。 结论 滴灌能促进杨树人工林细根的生长和周转,影响细根的空间分布,提高林地生产力。图4表1参28 Abstract:Objective This study aims to investigate the effects of different irrigation methods on the growth and spatial distribution of fine roots of Populus, so as to provide theoretical and technical basis for the cultivation of plantation by drip irrigation. Method The 5-year old ‘107’ Populus × euramericana ‘Neva’ was selected as the research object, and standard trees were selected from the plantations cultivated by drip irrigation and furrow irrigation. Root drills were used to sample trees at 20, 50, 100 and 150 cm from tree trunks in the directions of inter plant, diagonal and inter row. The differences of fine root biomass density, fine root length density and fine root specific root length were compared. Result In inter plant direction, the difference of fine root biomass density between drip irrigation and furrow irrigation increased with the increase of horizontal distance, and the difference was significant (P<0.05). With the increase of horizontal distance, the differences between diagonal and inter row directions decrease. Under drip irrigation, the fine root biomass density was the highest at 50 cm away from the trunk in the direction of inter plant, and the highest at 20 cm away from the trunk in the direction of diagonal and inter row. Under drip irrigation, the difference of fine root length density with furrow irrigation increased with the increase of the horizontal distance(P<0.05), while the difference of diagonal and row direction decreased with the increase of the horizontal distance. Under drip irrigation, the root length density of fine roots was the largest at 50 cm from the trunk in the direction of inter plant, and the largest at 20 cm away from the trunk in the direction of diagonal and inter row. Under drip and furrow irrigation, the fine root biomass of 0−40 cm soil layers accounted for 81% and 73% of that in 0−60 cm soil layers, respectively, while the fine root length accounted for 85% and 80%. The specific root length under drip irrigation and furrow irrigation increased with the increase of horizontal distance, and the difference of specific root length under furrow irrigation was greater than that under drip irrigation. The difference of specific root length in different directions was the largest at 20 cm away from the trunk and the smallest at 50 cm away from the trunk. Conclusion Drip irrigation can promote the growth and turnover of fine roots, affect their spatial distribution, and improve forest productivity. [Ch, 4 fig. 1 tab. 28 ref.] -
Key words:
- drip irrigation /
- furrow irrigation /
- Populus /
- fine roots /
- spatial distribution
-
近年来,国内绿道建设发展迅猛。目前,已有广东、浙江、河北、江苏、四川、福建、安徽、新疆等省(自治区)的众多城市开展了绿道网规划和建设工作。绿道网的规划建设行动源于对日趋严峻的城乡环境问题和对传统生态绿色空间保护政策实效的主动反思和应对,然而,在部分地区绿道建设的快速推进中也出现了绿道生态性不足,存在功能单一、基础设施缺乏、绿道特色欠缺等问题[1]。当前,亟需对已建成的绿道价值进行评价与分析,以便清晰地呈现绿道建设的综合效益,为科学规划和建设绿道提供参考和依据。国内对于绿道评价体系的研究已有一定积累,但多为对绿道某一方面的性质或功能评价,对于绿道服务价值全面系统的评价较少。研究主要集中在2个方面:一为景观资源评价,包括植物景观评价[2]和景观视觉评价等[3];二是功能评价,包括生态效益评价[4-5]、休闲游憩功能评价[6]、生态系统服务功能评价[7]、使用后评价(POE)[8-9]和社会绩效评价[10]。此外,也有学者提出了以“使用者(人)—绿道(环境)”关系为中心的区域绿道网评价体系研究假设以及研究思路,但未进行实证研究[11]。“景观绩效”是“衡量景观解决方案在实现其预设目标的同时满足可持续性方面效率的指标”[12],即基于可持续发展目标,从环境、经济、社会等3个方面对景观进行全面的绩效评价。其评价以生态系统服务为基础,补充适合景观研究内容的评价指标[13],因此更具有针对性。美国景观设计基金会(Landscape Architecture Foundation,简称 LAF)于 2010 年提出“景观绩效系列”(Landscape Performance Series,简称 LPS)研究计划,针对已建成的景观项目,形成一套依托案例调查研究(case study investigation, CSI)的开放性评价体系。当前,景观绩效研究呈现迅速增长的发展态势[13],其研究主要集中于评价指标的选取[14]、评价体系的构建[15-16]和评估方法的应用[17]等方面。国内景观绩效的研究多集中于较小尺度风景园林的建成项目[18-19],或景观绩效中某些可持续特征的部分[13,20],缺少对大尺度区域景观的研究,对建成项目从环境、经济、社会等3个方面进行全面评价的研究也较少。为此,笔者依托案例研究,尝试对浙江青山湖国家森林公园环湖绿道1期的景观绩效进行评价,以期全面评估绿道的综合价值,为绿道的设计与建设提供参考,并向社会传播绿道的综合价值。
1. 研究地概况与研究方法
1.1 研究地概况
浙江省杭州市临安区青山湖国家森林公园环湖绿道(简称“青山湖绿道”)1期,曾入选2017年“浙江省十大经典绿道”,并获2018年浙江建设工程“钱江杯”一等奖,2019年度中国风景园林学会科学技术奖一等奖。青山湖绿道位于杭州市临安区锦城镇东郊。青山湖为大型人工湖,水域开阔,湖山一体,环湖森林覆盖率79%,自然景色优美,生态环境优越。青山湖绿道沿湖而建,连接城、村、湖、山,全长42.195 km,分3期建设,于2019年7月全线贯通。本研究区段为青山湖绿道1期,长10 km,于2017年1月建成开放。
1.2 评价方法
根据中国住房与城乡建设部2016年9月编制的《绿道规划设计导则》(简称《导则》),郊野型绿道的功能包括生态环保、休闲健身、社会与文化、旅游与经济[21]。其中,生态环保作为其核心价值,体现在绿道有助于固土保水、净化空气、缓解热岛等,并为生物提供栖息地及迁徙廊道。以上功能与LPS中游径(trail,包含绿道类项目)[22]、滨水景观再开发(waterfront redevelopment)[23]等相关案例中所采用的评价指标(表1)高度吻合。另外,LPS基于可持续的发展目标,其经济评价指标还加入了节约建设成本。基于以上分析,结合青山湖绿道的实际情况,确定了本研究采用的景观绩效指标体系,包含环境、经济、社会等3个方面的17项指标(表2)。收集分析以上绩效数据,结合统计学、生态学、经济学、使用后评价等方法,进行景观绩效评价。
表 1 郊野型绿道的功能与LPS相关案例评价指标的对照表Table 1 Comparison between the function of country greenways and the evaluation indexes of LPS-related cases《绿道规划设计导则》中的郊野绿道功能 LPS相关案例采用的评价指标 生态环保 固土保水、净化空气、缓解热岛、生物提供栖息地及
迁徙廊道环境 土壤保护、水岸线保护、涵养水源、固碳释氧、空
气质量、调节气温和城市热岛效应、栖息地改善/
保护/创建/恢复旅游与经济 整合旅游资源,促进相关产业发展,提升沿线土地价值 经济 地产价值、工作岗位、旅游业收入、节约建设成本 休闲健身 提供亲近自然、游憩健身的场所和途径,倡导健康的生
活方式社会 娱乐及社会价值、文化保护、健康、教育、可达
性、景观质量社会与文化 连接城乡居民点、公共空间以及历史文化节点,保护和
利用文化遗产,促进人际交往、社会和谐与文化传承表 2 郊野型滨水绿道景观绩效指标体系Table 2 Country waterfront greenway landscape performance indicators system环境绩效 经济绩效 社会绩效 土壤保护 房产价值 文化保护 水岸线保护 工作岗位 健康 涵养水源 旅游业收入 教育价值 固碳释氧 节约建设成本 可达性 调节气温 娱乐及社会价值 景观质量 净化空气 增加物种多样性、
提高生态完整性等1.2.1 环境绩效评价方法
在LPS的案例中,环境绩效的评价多通过相应的绩效评估工具集进行计算,但由于本研究场地尺度较大,利用工具集评估所需的部分数据获取较为困难,故本研究的环境绩效评价,主要参考了欧阳志云等[24]对中国陆地生态系统服务功能进行评估时所综合运用的生态学及经济学方法。吴隽宇[8]曾采用此方法对珠江三角洲区域绿道1号线进行评估。首先确定绿道线路、类型和控制范围,再对其相应的生态系统面积进行计算。研究采用的绿道图纸由绿道的设计单位提供。《浙江省绿道规划设计技术导则》[25]规定,根据绿道所处区域和功能要求,分为城镇型绿道、乡野型绿道、山地型绿道3种类型。其中,乡野型绿道是指城镇规划建设用地范围外,依托林地、园地、湿地、水体、农田,连接风景名胜区、旅游度假区、历史文化名镇名村、农业观光区、特色乡村、农家乐等的绿道。乡野型绿道的总宽度一般不小于100 m。青山湖绿道依托青山湖国家森林公园,一面临水,一面靠山,属于该导则中的乡野型绿道。本研究将100 m作为其控制范围的宽度。以青山湖绿道1期的总体平面图为基本研究范围,将卫星图片导入Auto CAD软件,依据其控制范围的宽度,描绘其具体范围。再根据卫星图片及实地踏勘,确定绿道沿线生态系统的类型,主要包括林地、耕地、草地、湿地、水域等5种类型。根据设计单位提供的信息,在Auto CAD软件中分层描绘,并统计新增及因绿道建设而被保护的各类型生态系统的面积。在此基础上,分别计算其保持土壤、涵养水源、固碳释氧、调节气温、净化空气等方面的环境绩效。
1.2.2 经济绩效评价方法
经济绩效的评估采用市场价值法。工作岗位数据源自现场调研,旅游业收入的数据来自于对绿道周边乡村村委会的调研,节约建设成本的数据由绿道设计单位提供。
1.2.3 社会绩效评价方法
社会绩效的评估主要采用使用后评价、问卷调查等方法。在2017年3−5月、11月、2018年4月,本研究对583位场地使用者进行了现场问卷调查,其中有效问卷531份,问卷有效率91%。问卷内容根据社会绩效的相应指标设置,包括受访者对绿道的娱乐价值、文化保护、教育价值、景观质量评价,以及绿道对受访者健康的影响。
2. 结果与分析
2.1 环境绩效评价
根据彭建等[26]的经验,生态系统面积为有效林地、草地、湿地沼泽和水域面积的和,其中有效林地面积=林地面积+耕地面积×0.2(表3)。
表 3 青山湖绿道1期生态系统面积Table 3 Ecosystem area of Qingshan Lake Greenway Phase I有效林地/hm2 草地/hm2 湿地沼泽/hm2 水域/hm2 生态系统面积/hm2 针叶林 阔叶林 耕地(按0.2系数折算成林地) 1.670 13.692 0.896 7.198 17.250 0.134 40.840 2.1.1 保持土壤效益
保持土壤带来的经济价值,以林地、草地每年减少土壤侵蚀的总量为基础,计算林地、草地对表土损失、肥力损失和减轻泥沙淤积灾害3个方面的价值。(1)林地、草地每年减少的土壤侵蚀总量。潜在土壤侵蚀量是指无任何植被覆盖的情况下,土壤的最大侵蚀量。而不同植被覆盖下的土壤侵蚀量有很大差别。林地、草地减少的土壤侵蚀量=潜在土壤侵蚀量−林地、草地覆盖区土壤侵蚀量。本研究参考欧阳志云等[24]统计的侵蚀模数进行计算(表4~6)。(2)效益估算。①每年减少的土地损失面积及间接价值。根据土壤侵蚀量和土壤耕作层的平均厚度来推算土地损失面积。每年减少的土壤损失量按表5的平均值计,土壤密度以1.3 g·cm−3计,先算出每年减少的土壤损失量对应的体积。将中国耕作土壤的平均厚度0.5 m作为林地、草地的土层厚度[16],进而算出每年林地、草地减少的土地损失面积分别为0.798、0.353 hm2·a−1。单位面积的生产收益根据2014年浙江省林业、牧业生产的平均收益2 224.8和1 489.7元·hm−2·a−1计算,则每年减少的林地、草地损失的经济价值分别为1 094、2 620元·a−1。②减少土壤肥力损失的间接效益。土壤侵蚀带走了大量的土壤营养物质,主要是土壤有机质、氮、磷、钾。根据实地调查,绿道所在区域土壤主要为红黄泥土,按照临安农林信息网[27]中红黄泥土的有机质、氮、磷、钾质量分数为标准,结合每年林地、草地分别减少的土壤损失平均值,估算林地、草地每年减少的有机质、氮、磷、钾元素的损失量分别为195.10 t·a−1、9.21 t·a−1、51.51 kg·a−1、1 075.05 kg·a−1。根据浙江价格网的公示,2018年第3季度浙江省化肥市场价格的平均值约2.52元·kg−1,据此可以估算林地、草地每年减少的土壤氮、磷、钾损失的经济价值为26 044元·a−1。③减少泥沙淤积的经济效益。根据中国主要流域的泥沙运动规律,一般土壤侵蚀流失的泥沙有24%淤积于水库、江河、湖泊,另有33%滞留,37%入海[28]。本研究仅考虑淤积于水库、江河、湖泊的24%,这部分泥沙直接造成蓄水量的下降。按林地、草地每年减少的土壤损失量平均值计算蓄水损失量,再根据蓄水成本计算其价值。按水库建设需投入成本5.714元·m−3计[29],减少泥沙淤积的经济价值为7 897元·a−1。
表 4 每年林地草地的潜在土壤侵蚀量Table 4 Annual potential soil erosion of woodland and grassland侵蚀模数/(t·hm−2·a−1) 林地 草地 总潜在侵蚀量/(t·a−1) 面积/hm2 潜在侵蚀量/
(t·a−1)面积/hm2 潜在侵蚀量/
(t·hm−2·a−1)最低值 192.0 16.258 3 121.536 7.198 1 382.016 4 503.552 最高值 447.7 7 278.707 3 222.545 10 501.251 平均值 319.8 5 199.308 2 301.920 7 501.229 表 5 每年林地草地覆盖区的土壤侵蚀量Table 5 Annual soil erosion of woodland and grassland林地 草地 总侵蚀量/(t·a−1) 侵蚀模数/(t·hm−2·a−1) 面积/hm2 侵蚀量/(t·a−1) 侵蚀模数/(t·hm−2·a−1) 面积/hm2 侵蚀量/(t·a−1) 0.630 16.258 10.243 0.500 7.198 4.535 14.777 表 6 每年林地草地减少的土壤损失量Table 6 Annual reduction in soil loss of woodland and grassland林地减少的土壤损失量/(t·a−1) 草地减少的土壤损失量/(t·a−1) 总减少土壤损失量/(t·a−1) 最低值 3 111.293 最低值 1 377.481 4 488.775 最高值 7 268.464 最高值 3 218.010 10 486.474 平均值 5 189.066 平均值 2 297.386 7 486.452 综合以上,青山湖绿道1期每年保持土壤的总经济价值包括减少土壤损失面积的经济价值3 714元·a−1,减少土壤氮磷钾损失的经济价值26 044元·a−1,减少泥沙淤积的经济价值为7 897元·a−1,合计37 655元·a−1。
2.1.2 涵养水源效益
本研究采用替代工程法评估涵养水源的价值。根据浙江省杭州市临安区气象局的数据,临安多年年均降水量为1 506.0 mm。参考陈波等[30]对杭州西湖风景区绿地储水保土研究,假设降水的蒸散量为65%,则青山湖绿道1期每年截留水量为1 506.0 mm×35%×23.45 hm2=123 636.58 m3。单位库容的水库工程费用仍以5.714元·m−3计,则每年涵养水源价值为70.65万元·a−1。
2.1.3 固碳释氧效益
参考孙燕飞[31]在临安的研究,杉木Cunninghamia Lanceolata林的固碳量为2.44 t·hm−2·a−1,释氧量为6.52 t·hm−2·a−1;针阔混交林的固碳量为2.16 t·hm−2·a−1,释氧量为5.76 t·hm−2·a−1。根据温家石[32]对城市建成区所做研究,考虑到绿道的草坪修剪次数远低于城市内部,假设绿道的草坪修剪次数是后者的1/4,得出绿道草地固碳量6.68 t·hm−2·a−1,草地释氧量为11.55 t·hm−2·a−1。对于生态系统二氧化碳吸收功能经济价值的评估多采用碳税法和造林成本法[33],并取两者的平均值。国际上通常采用瑞典碳税,折合人民币1 010元·t−1,中国造林成本折合为255元·t−1[34]。对于释放氧气的价值采用工业制氧法进行评估,中国工业制氧的平均成本为400元·t−1。经计算可得青山湖绿道1期每年固碳价值为5.17万元·a−1元,释放氧气价值为6.92万元·a−1。
2.1.4 调节气温效益
根据已有研究测定[35],夏季绿地可从环境中吸收81.8 MJ·hm−2·d−1的热量,相当于189台空调机全天工作的制冷效果。室内空调机耗电0.86 kWh·h−1·台−1,电费按浙江省电费价格0.538元·kWh−1计,则绿地节约电费为2 098.7元·hm−2·d−1。按每年使用空调60 d计,则青山湖绿道1期每年调节气温所创造的价值为295.29万元·a−1。
2.1.5 净化空气效益
(1)吸收二氧化硫的价值。阔叶林对二氧化硫的吸收能力为88.65 kg·hm−2·a−1,针叶林对二氧化硫的平均吸收能力值为215.60 kg·hm−2·a−1,两者对二氧化硫的平均吸收能力为152.13 kg·hm−2·a−1,二氧化硫的治理代价为3 000元·t−1,得到吸收二氧化硫价值为0.74万元·a−1。(2)吸收氮氧化物的价值。目前,汽车尾气脱氮治理的代价是1.6万元·t−1。林地可吸收氮氧化物380 kg·hm−2·a−1,得到吸收氮氧化物价值为9.88万元·a−1。(3)滞尘价值。针叶林的滞尘能力为33.20 t·hm−2·a−1,阔叶林的滞尘能力为10.11 t·hm−2·a−1,平均为21.67 t·hm−2·a−1。削减粉尘价格为170元·t−1,则其滞尘价值为5.99万元·a−1。因此,绿道净化空气的总价值为16.61万元·a−1。
2.2 经济绩效评估
2.2.1 房产价值
绿道的建设,极大地改善了周边居民的生活环境。根据安居客网站的数据,绿道建设前的2015年11月与竣工投入使用后的2018年12月相比,紧邻绿道的房产单价增幅约27.76%,可见绿道对于房产价值提升有积极影响。
2.2.2 工作岗位和旅游业收入
绿道建成后为管理维护提供了20个就业岗位,为带动旅游业发展而提供了37个就业岗位。绿道建成后对周边如泥山湾村等乡村的农家乐、民宿等有显著促进作用。据不完全统计,该区域旅游产值增幅超过20.00%。
2.2.3 节约建设成本
回收利用场地遗留的废旧材料,如红砖、青砖、石等,节约了废旧材料外运与处理费用,以及购买等量新材料的材料费和运输费用,节约成本为23.33万元(表7)。利用原有水利废弃设施等构筑物而产生的节约费用,包括拆除、清运、处理费用,及新建相应设施的费用,合计66.75万元(表8)。
表 7 利用废旧建材产生的节约建设成本Table 7 Construction costs savings from the use of waste building materials废旧材料 工程量/ m3 外运处理总价/元 新材料单价(含材料费、运费)/元 新材料总价/元 合计节约建设成本/元 砖 4.4 132 730 3 212 3 344 卵石 16.3 489 330 5 379 5 868 景观石 233.4 2 334 810 189 054 191 388 老石板 54.0 162 603 32 562 32 724 合计 233 324 表 8 利用原有构筑物产生的节约建设成本Table 8 Construction costs savings from the use of existing structures构筑物名称 工程量/ m3 拆除、清运、处理费用/元 新建栈道基础费用/元 合计节约建设成本/元 钓鱼台 63 15 750 31 500 47 250 观星台 675 168 750 337 500 506 250 “鱼头”小品 51 12 750 25 500 38 250 青风徐来亭 101 25 250 50 500 75 750 合计 667 500 2.3 社会绩效评价
根据问卷调查统计结果,青山湖绿道在1期自开放以来,已吸引大量长期使用者,首次来绿道的人群比例较低;绿道的使用者主要来自临安本地,尽管绿道距离杭州主城区有36 km,依然吸引了不少来自杭州的游人。表9记述了社会绩效调查的结果。多数使用者认为绿道建设提升了城市形象,绿道设计体现了临安的历史文化。82.7%的受访者对绿道的骑行或步行体验表示满意。多数受访者认为绿道提升了其户外活动的参与度,近半数使用者表示绿道改变了其生活方式。在可达性方面,公共交通的可达性较差,间接导致了选择私家车出行的游人增多,在节假日游客高峰时期,交通及停车问题较为突出。10.0%的受访者表示绿道当前最突出的问题即到达绿道的路线不畅通。增设绿道附近的公交站点,是增强其可达性及缓解交通与停车压力的有效方式。作为郊野型绿道,青山湖绿道吸引游客的主要因素是其自然环境优美,而绿道设计中对于乡土材料的应用也受到了使用者的关注,57.0%的受访者表示对于可持续设计有了更深的了解。
表 9 青山湖绿道1期的景观绩效评价结果Table 9 Landscape performance evaluation results of Qingshan Lake Greenway Phase I类别 项目 指标 评价结果 环境
绩效土地 土壤保护 经济价值为3.8万元 水岸线保护 未进行评估 水 涵养水源 经济价值为70.65万元 碳及空
气质量固碳释氧 固碳价值为5.17万元,释氧价值为6.92万元 调节气温 经济价值为295.29万元 净化空气 经济价值为16.61万元 栖息地 增加物种多样性、提高
生态完整性等未进行评估 经济
绩效房产价值 绿道建设后,紧邻绿道的房产单价增幅约27.76% 工作岗位 绿道建成后管理维护提供了57个就业岗位 旅游业收入 绿道拉动了地方旅游业的发展,旅游产值增幅超过20.00% 节约建设成本 利用废旧建材节约23.33万元,利用原有构筑物设节约66.75万元 社会
绩效娱乐及社会价值 531名受访者中有82.7%对绿道骑行或步行的体验是满意的,67.0%的受访者认为绿道建设提升了城市形象,有组织的大型徒步、毅行、马拉松活动达到近1.5万余人次 文化保护 73.4%的受访者表示绿道设计体现了临安的历史文化 健康 65%的受访者表示绿道提升了其户外活动的参与度,68%的受访者来绿道活动的目的是散 步,25%选择了旅游观光,17%选择了骑行,10%选择聚会;43%的受访者表示绿道改变 了其生活方式,骑行、散步、聚会、摄影、钓鱼等活动对其生活产生了积极影响; 82%的受访者表示愿意居住在步行可达的范围内 教育价值 9%的受访者表示来此地是为了研究学习,57%的受访者表示对于可持续设计有了更深 的了解 可达性 38%的受访者开私家车到达绿道,其次为步行占30%,骑自行车或电动自行车前来的 占20%,采用公交交通者仅占11% 景观质量 82%的受访者表示由于绿道自然环境优美而选择来此 3. 结论
在环境绩效评价中,青山湖绿道1期的相应经济价值约398.44万元·a−1,其中调节气温价值为295.29万元·a−1,占总价值的74%,其次为涵养水源价值为70.65万元·a−1,占总价值的18%,净化空气价值为16.61万元·a−1,固碳释氧价值为12.09万元·a−1,保持土壤的经济价值较低,为3.80万元·a−1。
在经济绩效评价中,青山湖绿道1期充分利用废旧建材与原有构筑物,节约建设成本约90.08万元;绿道建成后提供了新的工作岗位,拉动了当地旅游业发展。
在社会绩效评价中,绿道的建设提升了城市形象,体现了临安的历史文化,提升了人们的户外活动参与度,在一定程度上改变了人们的生活方式,大多数人因自然环境优美而来到绿道,超半数受访者表示对可持续设计有了更深的了解。
本研究的郊野型滨水绿道景观绩效进行了较为全面的评价,客观、清晰地呈现了绿道建设的综合效益。青山湖绿道1期的建设投入约7 200万元,仅以环境绩效价值398.44万元·a−1计算,约18 a可获得与建设投入相当的经济价值,而其对于地区发展和市民健康的促进也将产生更大的价值。对于场地中废旧建材与原有构筑物进行充分利用,能够创造较大的经济价值。
景观绩效评价可以更全面地考察、直观地展现绿道建成的综合价值,但因绿道的规模尺度较大,沿线的自然、人文资源类型丰富,需要在绿道建设前,即结合评价指标体系进行全面的数据收集,且此过程需要延续至项目建成后的数年,才能够得到更客观且全面的评价结果。本研究也存在一定局限,其中水岸线保护、栖息地恢复等指标由于原始数据缺失而无法获取;经济绩效中,房产价值的增长未排除绿道之外的其他要素影响比例;针对健康等方面的评价可在对使用者进行问卷调查的基础上,采用更完善的研究方法,以获得更客观、准确的结果。
4. 致谢
浙江农林大学风景园林与建筑学院史琰副教授对本文写作提供帮助,谨致谢意。
-
表 1 标准木基本特征
Table 1. Basic characteristics of standard wood
样木
编号滴灌 沟灌 胸径/cm 树高/m 冠幅/m 胸径/cm 树高/m 冠幅/m 1 15.6 17.26 3.63×3.42 13.4 15.24 3.12×2.57 2 15.8 16.87 3.13×3.50 13.6 15.86 3.03×2.61 3 15.8 17.63 3.35×3.17 13.4 15.47 3.07×2.70 -
[1] 司婧, 贾黎明, 韦艳葵, 等. 地下滴灌对杨树速生丰产林碳储量的影响[J]. 北京林业大学学报, 2012, 34(1): 14 − 18. SI Jing, JIA Liming, WEI Yankui, et al. Carbon storage in fast-growing and high-yield poplar plantations under subsurface drip irrigation [J]. J Beijing For Univ, 2012, 34(1): 14 − 18. [2] 秦杏宇, 吕馥龄, 彭晶晶, 等. 滴灌与沟灌栽培杨树人工林土壤水分动态与生产力[J]. 应用生态学报, 2020, 31(5): 1535 − 1542. QIN Xingyu, LÜ Fuling, PENG Jingjing, et al. Soil moisture dynamics and productivity of poplar plantations under drip and furrow irrigation managements [J]. Chin J Appl Ecol, 2020, 31(5): 1535 − 1542. [3] 王梓, 马履一, 贾忠奎, 等. 滴灌下欧美107杨苗高水肥耦合效应[J]. 浙江农林大学学报, 2012, 29(1): 29 − 34. WANG Zi, MA Lüyi, JIA Zhongkui, et al. Interaction of water and fertilizer on seedling height for first-year growth Populus×euramericana ‘74/76’with drip irrigation [J]. J Zhejiang A&F Univ, 2012, 29(1): 29 − 34. [4] MUSSELMAN R C. Response of Transplanted Aspen to Drip Irrigation on Reclaimed Mine Lands[D]. Fort Collins: Colorado State University, 2007. [5] O’NEILL M K, SHOCK C C, LOMBARD K A, et al. Hybrid poplar (Populus ssp.) selections for arid and semi-arid intermountain regions of the western united states [J]. Agrofor Syst, 2010, 79(3): 409 − 418. [6] 贺勇, 兰再平, 孙尚伟, 等. 地面滴灌对107杨幼林生长和水肥利用的影响[J]. 东北林业大学学报, 2015, 43(11): 37 − 41. HE Yong, LAN Zaiping, SUN Shangwei, et al. Effects of drip irrigation on the growth and use efficiency of water and fertilizer of Young ‘107’ poplar plantation [J]. J Northeast For Univ, 2015, 43(11): 37 − 41. [7] 席本野, 王烨, 邸楠, 等. 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响[J]. 生态学报, 2012, 32(17): 5318 − 5329. XI Benye, WANG Ye, DI Nan, et al. Effects of soil water potential on the growth and physiological characteristics of Populus tomentosa pulpwood plantation under subsurface drip irrigation [J]. Acta Ecol Sin, 2012, 32(17): 5318 − 5329. [8] GORDON W S, JACKSON R B. Nutrient concentrations in fine roots [J]. Ecology, 2000, 81(1): 275 − 280. [9] 薛建辉, 王智, 吕祥生. 林木根系与土壤环境相互作用机制研究综述[J]. 南京林业大学学报(自然科学版), 2002, 26(3): 79 − 84. XUE Jianhui, WANG Zhi, LÜ Xiangsheng. Progress on the interaction between tree roots and soil environment [J]. J Nanjing For Univ Sci Ed, 2002, 26(3): 79 − 84. [10] SCHENK H J. Vertical vegetation structure below ground: scaling from root to globe [J]. Prog Bot, 2005, 66(4): 341 − 373. [11] 黄林, 王峰, 周立江, 等. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 2012, 32(19): 6110 − 6119. HUANG Lin, WANG Feng, ZHOU Lijiang, et al. Root distribution in the different forest types and their relationship to soil properties [J]. Acta Ecol Sin, 2012, 32(19): 6110 − 6119. [12] 杨秀云, 韩有志, 张芸香, 等. 采伐干扰对华北落叶松细根生物量空间异质性的影响[J]. 生态学报, 2012, 32(1): 64 − 73. YANG Xiuyun, HAN Youzhi, ZHANG Yunxiang, et al. Effects of cutting disturbance on spatial heterogeneity of fine root biomass of Larix principis-rupprechtii [J]. Acta Ecol Sin, 2012, 32(1): 64 − 73. [13] 张宇清, 朱清科, 齐实, 等. 梯田埂坎立地植物根系分布特征及其对土壤水分的影响[J]. 生态学报, 2005, 15(3): 500 − 506. ZHANG Yuqing, ZHU Qingke, QI Shi, et al. Root system distribution characteristics of plants on the terrace banks and their impact on soil moisture [J]. Acta Ecol Sin, 2005, 15(3): 500 − 506. [14] 郭忠玲, 郑金萍, 马元丹, 等. 长白山几种主要森林群落木本植物细根生物量及其动态[J]. 生态学报, 2006, 26(9): 2855 − 2862. GUO Zhongling, ZHENG Jinping, MA Yuandan, et al. A preliminary study on fine root biomass and dynamics of woody plants in several major forest communities of Changbai Mountain, China [J]. Acta Ecol Sin, 2006, 26(9): 2855 − 2862. [15] GWENZI W, VENEKLAAS E J, HOLMES K W, et al. Spatial analysis of fine root distribution on a recently constructed ecosystem in a water-limited environment [J]. Plant Soil, 2011, 344(1/2): 255 − 272. [16] GILL R A, JACKSON R B. Global patterns of root turnover for terrestrial ecosystems [J]. New Phytol, 2000, 147(1): 13 − 31. [17] 韦艳葵, 贾黎明, 王玲, 等. 地下滴灌条件下杨树速生丰产林林木根系生长特性[J]. 北京林业大学学报, 2007, 29(2): 34 − 40. WEI Yankui, JIA Liming, WANG Ling, et al. Characteristics of root growth in fast-growing and high-yield poplar plantations under subsurface drip irrigation [J]. J Beijing For Univ, 2007, 29(2): 34 − 40. [18] 傅建平, 兰再平, 孙尚伟, 等. 地面滴灌对107杨人工林根系分布的影响[J]. 林业科学研究, 2013, 26(6): 766 − 772. FU Jianping, LAN Zaiping, SUN Shangwei, et al. A study on distribution of root system of Populus × euramericana cv. ‘74 /76’ plantation with ground drip irrigation [J]. For Res, 2013, 26(6): 766 − 772. [19] 傅建平, 兰再平, 孙尚伟, 等. 滴灌条件下杨树人工林土壤的水分运移[J]. 林业科学, 2013, 49(6): 25 − 29. FU Jianping, LAN Zaiping, SUN Shangwei, et al. Soil water movement in a poplar plantation under drip irrigation [J]. Sci Silv Sin, 2013, 49(6): 25 − 29. [20] BLOCK R M A, van REES K C J, KNIGHT J D. A review of fine root dynamics in Populus plantations [J]. Agrofor Syst, 2006, 67(1): 73 − 84. [21] 杨秀云, 韩有志, 武小钢. 华北落叶松林细根生物量对土壤水分、氮营养空间异质性改变的响应[J]. 植物生态学报, 2012, 36(9): 965 − 972. YANG Xiuyun, HAN Youzhi, WU Xiaogang. Response of fine root biomass to changes in spatial heterogeneity of soil moisture and nitrogen in Larix principis-rupprechtii forest [J]. Chin J Plant Ecol, 2012, 36(9): 965 − 972. [22] 闫小莉, 戴腾飞, 贾黎明, 等. 欧美108杨细根形态及垂直分布对水氮耦合措施的响应[J]. 植物生态学报, 2015, 39(8): 825 − 837. YAN Xiaoli, DAI Tengfei, JIA Liming, et al. Responses of the fine root morphology and vertical distribution of Populus × euramericana‘Guariento’ to the coupled effect of water and nitrogen [J]. Chin J Plant Ecol, 2015, 39(8): 825 − 837. [23] 闫美芳, 张新时, 周广胜, 等. 不同树龄杨树人工林的根系呼吸季节动态[J]. 生态学报, 2010, 30(13): 3449 − 3456. YAN Meifang, ZHANG Xinshi, ZHOU Guangsheng, et al. Seasonal dynamics of root respiration in poplar plantations at different developmental stages [J]. Acta Ecol Sin, 2010, 30(13): 3449 − 3456. [24] 杨秀云, 韩有志, 张云香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J]. 植物生态学报, 2008, 32(6): 1277 − 1284. YANG Xiuyun, HAN Youzhi, ZHANG Yunxiang. Effects of horizontal distance on fine root biomass and seasonal dynamics in Larix principis-rupprechtII plantation [J]. Chin J Plant Ecol, 2008, 32(6): 1277 − 1284. [25] 谢明明, 郭素娟, 宋影, 等. 板栗细根的空间分布格局及季节动态[J]. 浙江农林大学学报, 2018, 35(1): 60 − 67. XIE Mingming, GUO Sujuan, SONG Ying, et al. Spatial distribution and seasonal dynamics of fine roots of Castanea mollissima [J]. J Zhejiang A&F Univ, 2018, 35(1): 60 − 67. [26] 权伟, 余少娜, 王国兵, 等. 武夷山不同海拔植被土壤细根比根长季节动态[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 139 − 142. QUAN Wei, YU Shaona, WANG Guobing, et al. Seasonal variations of fine root special root length along an elevation gradient in the Wuyi Mountains of southeastern China [J]. J Nanjing For Univ Sci Ed, 2011, 35(6): 139 − 142. [27] 甘雅文, 李隆, 李鲁华, 等. 南疆核桃与小麦间作系统种间根直径及比根长空间分布特征[J]. 西北农业学报, 2015, 24(5): 56 − 63. GAN Yawen, LI Long, LI Luhua, et al. Spatial distribution of root diameter and specific root length in walnut/wheat agroforestry system in southern Xinjiang [J]. Acta Agric Boreali-occident Sin, 2015, 24(5): 56 − 63. [28] 程云环, 韩有志, 王庆成, 等. 落叶松人工林细根动态与土壤资源有效性关系研究[J]. 植物生态学报, 2005, 29(3): 403 − 410. CHENG Yunhuan, HAN Youzhi, WANG Qingcheng, et al. Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelini plantation [J]. Chin J Plant Ecol, 2005, 29(3): 403 − 410. 期刊类型引用(9)
1. 宋雨璇,刘静. 基于多源数据视角下的厦门山海健康步道活力提升策略研究. 福建建筑. 2024(04): 14-20 . 百度学术
2. 邓迪雅,徐文辉,林旭. 郊野绿道生物多样性的公众感知——以杭州青山湖绿道为例. 中国城市林业. 2024(05): 75-81 . 百度学术
3. 温瑀,秦津,关泽. 秦皇岛海滨国家森林公园北园景观绩效评价. 河北环境工程学院学报. 2023(02): 59-66 . 百度学术
4. 蔡益杭,张明如,张建国. 浙江青山湖绿道小气候要素与游人游憩行为的关系探析. 生态科学. 2023(04): 154-162 . 百度学术
5. 陶一舟,李朝晖,严少君. 安吉天荒坪森林特色小镇景观绩效评价. 浙江农林大学学报. 2023(04): 883-891 . 本站查看
6. 张聪,唐宇力,郭婷婷,张洁,傅东示,幸怡,杨意帆,邵锋. 青山湖滨水绿道景观特征要素与美学感知关系研究. 浙江林业科技. 2023(04): 74-81 . 百度学术
7. 陈丽军,万志芳. 历次五年计划期间中国新建国家森林公园时空分布及动态演化. 世界林业研究. 2022(03): 61-66 . 百度学术
8. 唐庭庭,蒋文伟. 夏季小气候效应对人体舒适度的影响——以临安青山湖绿道为例. 现代园艺. 2022(15): 32-34 . 百度学术
9. 仲启铖,张浪,张桂莲. 基于城市搬迁地的公园绿地建设项目综合效益评价研究——以上海世博公园为例. 园林. 2021(10): 2-10 . 百度学术
其他类型引用(15)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200808