留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川省广安市古树名木树龄估算及空间分布特征

张艳丽 杨家军

张艳丽, 杨家军. 四川省广安市古树名木树龄估算及空间分布特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190585
引用本文: 张艳丽, 杨家军. 四川省广安市古树名木树龄估算及空间分布特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190585
ZHANG Yanli, YANG Jiajun. Age estimation and spatial distribution characteristics of ancient and famous trees in Guang’an City, Sichuan Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190585
Citation: ZHANG Yanli, YANG Jiajun. Age estimation and spatial distribution characteristics of ancient and famous trees in Guang’an City, Sichuan Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190585

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

四川省广安市古树名木树龄估算及空间分布特征

doi: 10.11833/j.issn.2095-0756.20190585
基金项目: 四川省科技计划资助项目(18YYJC0211)
详细信息
    作者简介: 张艳丽,高级工程师,博士,从事森林遥感、森林保护与利用研究。E-mail:zhangyanli_qinyu@163.com
    通信作者: 杨家军,工程师,从事森林保护研究。E-mail:yjjxjdx@sohu.com
  • 中图分类号: S718.5

Age estimation and spatial distribution characteristics of ancient and famous trees in Guang’an City, Sichuan Province

  • 摘要:   目的  广安市古树名木众多。研究古树名木地理分布特征、树龄与生长环境及生态因子间的关系,对古树名木保护具有重要意义。  方法  利用标准差椭圆了解古树名木分布特征,通过地理加权回归模型(GWR)和多元线性回归模型(MLR)模拟树高、胸围、平均冠幅、海拔和坡度对树龄的回归强度。  结果  ①广安市古树名木沿水系、山脉、交通线呈线状分布;政府驻地、红色旅游区向外扩散呈圈层结构;乡村多于城市,平地占主导;正常株多于衰弱株,生长环境适中;高海拔区多于低海拔区,垂直差异明显。②地理加权回归模型优于普通最小二乘法模型(OLS),平均冠幅、胸围、树高是影响树龄的关键因素,坡度对树龄影响较小,海拔与树龄呈负相关关系。③多元线性回归模型相关系数比地理加权回归模型高0.297,各解释变量与回归变量的系数强度同地理加权回归模型高度一致,且对300 a以下的古树树龄估算精度较高。  结论  标准差椭圆可定量分析古树名木的空间分布特征,地理加权回归模型和多元线性回归模型可准确估算古树树龄。图4表3参21
  • 图  1  广安市古树名木分布示意图

    Figure  1.  Distribution of ancient and famous trees in Guang’an City

    图  2  古树名木生态特征方向性空间分布示意图

    拟合椭圆大小代表空间分布范围,椭圆长半轴为生长空间指示方向,短半轴越短代表方向性越明显

    Figure  2.  Directional spatial distribution of ecological characteristics of ancient and famous trees

    图  3  GWR模型标准化残差及回归系数空间分布示意图

    Figure  3.  Spatial distribution of standardized residuals and regression coefficients of GWR Model

    图  4  多元线性回归模型(A)和地理加权回归模型(B)拟合图

    Figure  4.  Fitting chart of multiple linear regression model (A) and geographical weighted regression model (B)

    表  1  广安市古树资源数据处理前后描述性统计表

    Table  1.   Descriptive statistics of ancient tree resources before and after data processing in Guang’an City

    指标处理前(n=638)处理后(n=494)
    树龄/a树高/m胸围/cm平均冠幅/m海拔/m坡度/(°)树龄/a树高/m胸围/cm平均冠幅/m海拔/m坡度/(°)
    均值 161.1855.02306.6415.47350.45.11149.4353.88312.1514.81347.601.18
    标准差78.0533.89186.646.1762.9411.5845.5334.40178.085.3659.422.84
    偏度 7.030.410.940.510.093.580.990.490.610.180.102.28
    峰度 100.05−0.650.700.080.0416.530.06−0.58−0.61−0.65−0.133.77
    下载: 导出CSV

    表  2  OLS模型和GWR模型结果统计

    Table  2.   Statistical table of results of OLS model and GWR model

    模型Sigma值决定系数(R2)阿凯克信息准则(AICc)
    OLS0.6360.2495 180.298
    GWR0.4850.2825 100.239
    下载: 导出CSV

    表  3  古树生态学特征的Pearson相关性分析

    Table  3.   Pearson correlation analysis of ecological characteristics of ancient trees

    指标树龄树高胸围平均冠幅海拔坡度
    树龄  1.0000.111 **0.174 **0.203 **−0.0120.016
    树高  0.111 **1.0000.201**0.457 **−0.0660.181**
    胸围  0.174**0.201**1.0000.429 **−0.217**−0.189 **
    平均冠幅0.203 **0.457 **0.429 **1.0000.0160.011
    海拔  −0.012−0.066−0.217**0.0161.0000.043
    坡度  0.0160.181**−0.189 **0.0110.0431.000
       说明:*表示在0.05水平上相关显著,**表示在0.01水平上相关极显著
    下载: 导出CSV
  • [1] 贾恒锋, 牟玉梅, 旦增罗布, 等. 西藏尼木县古树年龄鉴定及生长历史分析[J]. 应用生态学报, 2018, 29(7): 2401 − 2410.

    JIA Hengfeng, MOU Yumei, DANZENG Luobu, et al. Age investigation and growth history analysis of old trees in Nyemo County of Tibet, China [J]. Chin J Appl Ecol, 2018, 29(7): 2401 − 2410.
    [2] 米锋, 李吉跃, 张大红, 等. 北京地区林木损失额的价值计量研究: 有关古树名木科学文化价值损失额计量方法的探讨[J]. 北京林业大学学报, 2006, 28(增刊 2): 141 − 148.

    MI Feng, LI Jiyue, ZHANG Dahong, et al. The quantitative estimation of forest tree loss in Beijing: discuss on the computation method of measuring the loss of antique and rare tress, scientific culture value [J]. J Beijing For Univ, 2006, 28(suppl 2): 141 − 148.
    [3] 邢福武. 中国的珍稀植物 [M]. 长沙: 南教育出版社, 2005: 54 − 55.
    [4] FRITTS H C. Tree Rings and Climate[M]. Caldwell: The Blackburn Press, 2001: 132 − 139.
    [5] 孟宪宇. 测树学 [M]. 2版. 北京: 国林业出版社, 1996.
    [6] 吴祥定. 树木年轮与气候变化 [M]. 北京: 气象出版社, 1990.
    [7] 王懿祥, 戴文圣, 白尚斌, 等. 古树名木调查方法的改进[J]. 浙江林学院学报, 2006, 23(5): 549 − 553.

    WANG Yixiang, DAI Wensheng, BAI Shangbin, et al. Improved survey method of ancient and famous trees [J]. J Zhejiang For Coll, 2006, 23(5): 549 − 553.
    [8] 谢丽宏, 黄钰辉, 温小莹, 等. 广东省新丰江水库古树资源特征与分布格局[J]. 林业与环境科学, 2017, 33(4): 34 − 38. doi:  10.3969/j.issn.1006-4427.2017.04.007

    XIE Lihong, HUANG Yuhui, WEN Xiaoying, et al. Resource characteristics and distribution patten of ancient trees in Xinfengjiang reservoir, Guangdong Province [J]. For Environ Sci, 2017, 33(4): 34 − 38. doi:  10.3969/j.issn.1006-4427.2017.04.007
    [9] 卢紫君, 刘锡辉, 涂慧萍. 广州市中心城区古树名木的资源现状与开发利用[J]. 林业与环境科学, 2017, 33(1): 77 − 80. doi:  10.3969/j.issn.1006-4427.2017.01.015

    LU Zijun, LIU Xihui, TU Huiping. The resources and utilization of ancient and famous trees in central districts of Guangzhou City [J]. For Environ Sci, 2017, 33(1): 77 − 80. doi:  10.3969/j.issn.1006-4427.2017.01.015
    [10] LIAO Hongying, REN Mingxun. Distribution patterns of long-lived individuals of relict plants around Fanjingshan Mountain in China: implications for in situ conservation [J]. Collectanea Bot, 2015, 34: e002. doi:  10.3989/collectbot.2015.v34.002
    [11] 国家林业局. 古树名木普查技术规范: Y/2738−2016 [S]. 北京: 中国标准出版社, 2016.
    [12] 周婷, 牛安逸, 马姣娇, 等. 国家湿地公园时空格局特征[J]. 自然资源学报, 2019, 34(1): 26 − 39.

    ZHOU Ting, NIU Anyi, MA Jiaojiao, et al. Spatio-temporal pattern of national wetland parks [J]. J Nut Resour, 2019, 34(1): 26 − 39.
    [13] 蒋金亮, 徐建刚, 吴文佳, 等. 中国人-地碳源汇系统空间格局演变及其特征分析[J]. 自然资源学报, 2014, 29(5): 757 − 768. doi:  10.11849/zrzyxb.2014.05.003

    JIANG Jinliang, XU Jiangang, WU Wenjia, et al. Patterns and dynamics of China’s Human-nature carbon source-sink system [J]. J Nut Resour, 2014, 29(5): 757 − 768. doi:  10.11849/zrzyxb.2014.05.003
    [14] 赵璐, 赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 2014, 34(8): 979 − 986.

    ZHAO Lu, ZHAO Zuoquan. Projecting the spatial variation of economic based on the specific ellipses in China [J]. Sci Geogr Sin, 2014, 34(8): 979 − 986.
    [15] FISCHER M M, GETIS A. Handbook of Applied Spatial Analysis[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2010: 27-149.
    [16] FORTHCOMING A S, CARLTON M, BRONSON C. The geography of parameter space: an investigation of spatial non-stationarity [J]. Geogr Inf Syst, 1996, 10(5): 605 − 627.
    [17] ANSELIN L. The local indicators of spatial association: LISA [J]. Geogr Anal, 1995, 27(2): 93 − 115.
    [18] 李记, 徐爱俊. 古树名木旅游最优路线设计与实现[J]. 浙江农林大学学报, 2018, 35(1): 153 − 160. doi:  10.11833/j.issn.2095-0756.2018.01.020

    LI Ji, XU Aijun. Design and implementation of the optimal tourist route of ancient trees [J]. J Zhejiang A&F Univ, 2018, 35(1): 153 − 160. doi:  10.11833/j.issn.2095-0756.2018.01.020
    [19] 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3): 533 − 544.

    JIANG Zhenlan, YANG Yusheng, SHA Jinming. Application of GWR model in hyperspectral prediction of soil heavy metals [J]. Acta Geogr Sin, 2017, 72(3): 533 − 544.
    [20] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted regression-modelling spatial non-stationarity [J]. J Royal Stat Soc, 1998, 47(3): 431 − 443. doi:  10.1111/1467-9884.00145
    [21] 杨晴青, 刘倩, 尹莎, 等. 秦巴山区乡村交通环境脆弱性及影响因素: 以陕西省洛南县为例[J]. 地理学报, 2019, 74(6): 1236 − 1251. doi:  10.11821/dlxb201906012

    YANG Qingqing, LIU Qian, YIN Sha, et al. Vulnerability and influencing factors of rural transportation environment in Qinling-Daba mountainous areas: a case study of Luonan county in Shaanxi Province [J]. Acta Geogr Sin, 2019, 74(6): 1236 − 1251. doi:  10.11821/dlxb201906012
  • [1] 葛扬, 张建国.  浙江省森林特色小镇空间分布特征及影响因素分析 . 浙江农林大学学报, 2020, 37(2): 374-381. doi: 10.11833/j.issn.2095-0756.2020.02.024
    [2] 李政欣, 包亚芳, 孙治.  浙江省3A级景区村庄空间分布特征及其影响因素 . 浙江农林大学学报, 2019, 36(6): 1096-1106. doi: 10.11833/j.issn.2095-0756.2019.06.006
    [3] 张红桔, 马闪闪, 赵科理, 叶正钱, 汪智勇, 白珊.  山核桃林地土壤肥力状况及其空间分布特征 . 浙江农林大学学报, 2018, 35(4): 664-673. doi: 10.11833/j.issn.2095-0756.2018.04.012
    [4] 谢明明, 郭素娟, 宋影, 张丽, 孙慧娟.  板栗细根的空间分布格局及季节动态 . 浙江农林大学学报, 2018, 35(1): 60-67. doi: 10.11833/j.issn.2095-0756.2018.01.008
    [5] 朱宇颐, 解潍嘉, 黄华国.  基于三维模型ENVI-met对黑河森林和北方森林的潜热及显热通量模拟 . 浙江农林大学学报, 2018, 35(3): 440-452. doi: 10.11833/j.issn.2095-0756.2018.03.007
    [6] 李记, 徐爱俊.  古树名木旅游最优路线设计与实现 . 浙江农林大学学报, 2018, 35(1): 153-160. doi: 10.11833/j.issn.2095-0756.2018.01.020
    [7] 郭含茹, 张茂震, 徐丽华, 袁振花, 陈田阁.  基于地理加权回归的区域森林碳储量估计 . 浙江农林大学学报, 2015, 32(4): 497-508. doi: 10.11833/j.issn.2095-0756.2015.04.002
    [8] 张佳佳, 傅伟军, 杜群, 张国江, 姜培坤.  浙江省森林凋落物碳密度空间分布的影响因素 . 浙江农林大学学报, 2013, 30(6): 814-820. doi: 10.11833/j.issn.2095-0756.2013.06.003
    [9] 王金亮, 程鹏飞, 徐申, 王小花, 程峰.  基于遥感信息模型的香格里拉森林生物量估算 . 浙江农林大学学报, 2013, 30(3): 325-329. doi: 10.11833/j.issn.2095-0756.2013.03.003
    [10] 王妍, 卢琦, 王玉华, 敖文明, 乔殿学.  呼伦贝尔沙地樟子松落种与种子库特征 . 浙江农林大学学报, 2012, 29(6): 883-888. doi: 10.11833/j.issn.2095-0756.2012.06.012
    [11] 俞静芳, 余树全, 张超, 李土生.  应用CASA模型估算浙江省植被净初级生产力 . 浙江农林大学学报, 2012, 29(4): 473-481. doi: 10.11833/j.issn.2095-0756.2012.04.001
    [12] 王妍, 卢琦, 吴波, 程立岩, 王玉华.  呼伦贝尔沙地樟子松种群更新潜力 . 浙江农林大学学报, 2011, 28(2): 248-253. doi: 10.11833/j.issn.2095-0756.2011.02.012
    [13] 席本野, 贾黎明, 刘寅, 王烨.  宽窄行栽植模式下三倍体毛白杨吸水根系的空间分布与模拟 . 浙江农林大学学报, 2010, 27(2): 259-265. doi: 10.11833/j.issn.2095-0756.2010.02.016
    [14] 曹永慧, 萧江华, 陈双林, 吴柏林, 吴明, 张德明.  竹阔混交林中阔叶树对毛竹生长的影响及竞争关系 . 浙江农林大学学报, 2006, 23(1): 35-40.
    [15] 王懿祥, 戴文圣, 白尚斌, 江峰, 金祖达.  古树名木调查方法的改进 . 浙江农林大学学报, 2006, 23(5): 549-553.
    [16] 夏爱梅, 达良俊, 朱虹霞, 赵明水.  天目山柳杉群落结构及其更新类型 . 浙江农林大学学报, 2004, 21(1): 44-50.
    [17] 金国龙, 孟鸿飞.  诸暨市古树资源调查研究 . 浙江农林大学学报, 2004, 21(2): 164-167.
    [18] 楼涛, 赵明水, 杨淑贞, 庞春梅, 王祖良, 刘亮.  天目山国家级自然保护区古树名木资源 . 浙江农林大学学报, 2004, 21(3): 269-274.
    [19] 鲁小珍, 叶镜中, 孙多.  带输入项的线性自回归模型在树木物候预测中的应用 . 浙江农林大学学报, 1998, 15(2): 201-206.
    [20] 曹良俊, 郑国良, 张跃仙, 郦宜武, 朱勇强.  武义县古树名木资源调查 . 浙江农林大学学报, 1998, 15(4): 435-439.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190585

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/4/1

计量
  • 文章访问数:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 修回日期:  2020-01-13

四川省广安市古树名木树龄估算及空间分布特征

doi: 10.11833/j.issn.2095-0756.20190585
    基金项目:  四川省科技计划资助项目(18YYJC0211)
    作者简介:

    张艳丽,高级工程师,博士,从事森林遥感、森林保护与利用研究。E-mail:zhangyanli_qinyu@163.com

    通信作者: 杨家军,工程师,从事森林保护研究。E-mail:yjjxjdx@sohu.com
  • 中图分类号: S718.5

摘要:   目的  广安市古树名木众多。研究古树名木地理分布特征、树龄与生长环境及生态因子间的关系,对古树名木保护具有重要意义。  方法  利用标准差椭圆了解古树名木分布特征,通过地理加权回归模型(GWR)和多元线性回归模型(MLR)模拟树高、胸围、平均冠幅、海拔和坡度对树龄的回归强度。  结果  ①广安市古树名木沿水系、山脉、交通线呈线状分布;政府驻地、红色旅游区向外扩散呈圈层结构;乡村多于城市,平地占主导;正常株多于衰弱株,生长环境适中;高海拔区多于低海拔区,垂直差异明显。②地理加权回归模型优于普通最小二乘法模型(OLS),平均冠幅、胸围、树高是影响树龄的关键因素,坡度对树龄影响较小,海拔与树龄呈负相关关系。③多元线性回归模型相关系数比地理加权回归模型高0.297,各解释变量与回归变量的系数强度同地理加权回归模型高度一致,且对300 a以下的古树树龄估算精度较高。  结论  标准差椭圆可定量分析古树名木的空间分布特征,地理加权回归模型和多元线性回归模型可准确估算古树树龄。图4表3参21

English Abstract

张艳丽, 杨家军. 四川省广安市古树名木树龄估算及空间分布特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190585
引用本文: 张艳丽, 杨家军. 四川省广安市古树名木树龄估算及空间分布特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190585
ZHANG Yanli, YANG Jiajun. Age estimation and spatial distribution characteristics of ancient and famous trees in Guang’an City, Sichuan Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190585
Citation: ZHANG Yanli, YANG Jiajun. Age estimation and spatial distribution characteristics of ancient and famous trees in Guang’an City, Sichuan Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190585

返回顶部

目录

    /

    返回文章
    返回