留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缙云县某复垦地块土壤环境质量调查及生态风险评价

周杨 周文斌 马嘉伟 阮忠强 叶正钱 柳丹

冉钰岑, 何芳, 刘菊莲, 等. 极危植物九龙山榧的大小孢子发生和雌雄配子体发育研究[J]. 浙江农林大学学报, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
引用本文: 周杨, 周文斌, 马嘉伟, 等. 缙云县某复垦地块土壤环境质量调查及生态风险评价[J]. 浙江农林大学学报, 2022, 39(2): 388-395. DOI: 10.11833/j.issn.2095-0756.20210289
RAN Yucen, HE Fang, LIU Julian, et al. Microsporogenesis, megasporogensis and development of male and female gametophytes of Torreya jiulongshanensis, a critically endangered plant[J]. Journal of Zhejiang A&F University, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
Citation: ZHOU Yang, ZHOU Wenbin, MA Jiawei, et al. Soil environmental quality investigation and ecological risk assessment of a reclamation land in Jinyun County[J]. Journal of Zhejiang A&F University, 2022, 39(2): 388-395. DOI: 10.11833/j.issn.2095-0756.20210289

缙云县某复垦地块土壤环境质量调查及生态风险评价

DOI: 10.11833/j.issn.2095-0756.20210289
基金项目: 浙江省重点研发计划项目(2018C03028)
详细信息
    作者简介: 周杨(ORCID: 0000-0002-2357-8046),从事耕地土壤质量提升研究。E-mail: 1364284769@qq.com
    通信作者: 柳丹(ORCID: 0000-0003-1102-6639),教授,博士,从事土壤污染与生态修复研究。E-mail: liudan7812@aliyun.com
  • 中图分类号: S153;X53

Soil environmental quality investigation and ecological risk assessment of a reclamation land in Jinyun County

  • 摘要:   目的  进一步探索浙江省缙云县某复垦地土壤环境质量。  方法  于2020年在缙云县某复垦地开展土壤环境质量调查,共采集17组土壤-水稻Oryza sativa籽粒复合样品,测定土壤和籽粒中镉、铅、铬、汞、砷等重金属的质量分数,利用单因子污染指数评价法、内梅罗综合指数法、潜在生态风险评价法和生态风险预警指数对土壤重金属污染程度进行评价。  结果  缙云县某复垦地块0~20 cm土层土壤重金属镉、铬、铅、汞、砷质量分数分别为0.33、107.74、53.40、0.03、18.42 mg·kg−1。其中35.29%的点位土壤砷超标,其余4种重金属均未超过农用地土壤污染风险筛选值,镉、砷平均质量分数高于浙江省土壤背景值。复垦地块个别点位水稻籽粒铬和铅超标。该复垦地块的内梅罗综合污染指数平均值为0.69,有58.82%的点位处于警戒范围;地累积指数从大到小依次为镉(0.08)、铅(0.01)、砷(−0.32)、铬(−0.35)、汞(−3.02);潜在生态风险指数的平均值为74.10,存在轻微生态风险;土壤生态风险预警指数达到中度预警级别。  结论  复垦地块个别点位水稻籽粒铬和铅超标;土壤重金属无点位超标,但具有一定的生态风险,其中重金属镉、铬、铅和砷是研究区最主要的生态风险因子,后续应加强关注。表7参24
  • 九龙山榧Torreya jiulongshanensis为红豆杉科Taxaceae榧属Torreya高大乔木,雌雄异株,仅分布于浙江中部和西南部,模式产地为遂昌九龙山,被列为浙江省极小种群保护植物,最近一次被评估为极危(CR)植物[1]。2021年颁布的《国家重点保护野生植物名录》中,其被列为国家Ⅱ级保护植物(http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm)。目前,九龙山榧的种群数量极少,仅17株,其中模式产地仅1雌2雄共3株,每年结籽量很少,无幼树和幼苗,更新困难,而且生境破坏严重,人为干扰程度大[2-4]。九龙山榧作为榧属的古老孑遗植物,对研究古植物学和古地理学具有重要意义,其对于改良香榧T. grandis ‘Merrillii’品质也可能具有很大的潜在价值[5]

    植物的有性生殖发育异常是濒危的主要原因之一,珍稀濒危植物或多或少存在生殖障碍[6-7]。研究发现:云南红豆杉Taxus yunnanensis不仅生殖周期长,且在1个雌配子体上有多个颈卵器,但最终只有1个或者少数几个颈卵器能得到精子,传粉效率低及雌雄性生殖系统发育不同步是造成其濒危的主要原因[8];香果树Emmenopterys henryi在胚发育过程中存在明显胚后熟现象,致使种子萌发率低,更新困难[9];羊角槭Acer yangjuechi在雌配子体发育过程中存在严重的生殖障碍,出现胚珠败育、胚囊退化及珠心组织细胞死亡等现象,是其濒危的重要原因[10];崖柏Thuja sutchuenensis从大、小孢子叶球形成至种子成熟的整个发育过程中均存在败育,而胚珠败育及雌配子体游离核时期至幼胚发育期间的败育是其生殖障碍的主要原因[11]

    自20世纪初以来,国内外学者先后对榧属几种植物生殖生物学开展了研究[12-14]。然而,关于九龙山榧生殖生物学的研究至今未见报道。本研究采用石蜡切片法,对九龙山榧大、小孢子的发生和雌、雄配子体的发育过程进行研究,并与红豆杉科其他植物加以比较,旨在从生殖生物学角度探讨九龙山榧的种子发育及结籽率低下是否与其大、小孢子的发生和雌、雄配子的发育异常有关,以期为九龙山榧保育措施的制定提供生殖生物学依据。

    九龙山榧取自模式产地:丽水市遂昌县王村口镇西坑下村(28°20′01″N,118°55′22″E,海拔501 m)。以林缘仅有的1雌株和与雌株相近的1雄株为样株。

    2018年6月底至2019年4月初,在小孢子叶球(雄球花)的芽分化到散粉期间,对其外部形态发育过程进行观测、拍照,并记录发育的各个时间段和重要时间节点。2018年6月28日至2019年2月13日,隔3 d采1次;2019年2月中旬至2019年4月初散粉,每天采样。每次取样5个。

    2018年11月12日至2019年11月30日,在大孢子叶球(雌球花)的芽分化到种子发育期间,对其外部形态发育过程进行观测、拍照,记录各个发育时间段和重要时间节点。2018年11月12日至2019年4月4日,隔6 d采1次;2019年4月5—30日,每天取样。每次取样5个。

    2019年4月5—6日的散粉期间,用毛笔对吐露传粉滴的胚珠进行人工授粉,授粉2 h后进行观察,对仍有传粉滴吐露的胚珠进行补粉,直到该大孢子叶球不再吐露传粉滴。2019年5月1日至2019年11月30日,隔6 d对大孢子叶球进行采样。每次采集3~5个。

    采集的大、小孢子叶球浸泡固定于FAA溶液(体积分数为38%甲醛溶液∶冰醋酸∶体积分数为70%乙醇溶液=1∶1∶18,体积比)中,置于4 ℃冰箱中冷藏保存。采用常规石蜡切片法进行制片,切片厚度为5~7 μm[15],用改良爱氏苏木精染色[16],中性树胶封片,在Motic BA410E显微镜下观察并拍照。

    2.1.1   小孢子叶球的生长发育

    2018年6月29日,九龙山榧雄株的多数枝条叶腋处已经可见新生的混合芽,长为2.78~3.96 mm[(2.40±0.11) mm],宽为1.18~1.58 mm[(1.38±0.14) mm],混合芽着生于当年生枝条上,偶见于2年生枝条(图1A)。2018年9月22日,幼嫩的小孢子叶球体积明显变大,长为2.24~2.55 mm[(2.40±0.11) mm],宽为1.18~1.58 mm[(1.36±0.16) mm],外裹鳞片叶,深绿色,顶端扁而宽;营养芽的体积变化不大,顶端与茎端相似,保持较尖的圆锥形(图1B)。此时,从外观上很容易将小孢子叶球与营养芽区分出来。2018年10月12日,小孢子叶球呈圆锥形(图1C),外裹绿色鳞片叶,基部着生4枚苞片,2轮鳞片。小孢子叶球单生,长为2.78~3.96 mm[(3.37±0.47) mm],宽为1.01~1.91 mm[(1.62±0.38) mm],有一短轴,轴上螺旋状紧密排列着30~40枚小孢子叶,小孢子叶背面常着生4个(稀为3或5个)小孢子囊。2019年2月26日,小孢子叶球中下部变圆,呈浅绿色,芽鳞逐渐张开,露出小孢子囊(图1D)。2019年3月25日,小孢子叶球叶轴伸长,小孢子囊突破苞片、鳞片,逐渐伸到芽鳞外(图1E),紧密的小孢子叶变得松散,小孢子囊完全暴露在空气中,开裂后花粉散出,此时小孢子叶球成熟(图1F)。成熟的小孢子叶球呈长圆柱形,饱满,小孢子叶逐渐变成黄绿色。

    图 1  大、小孢子叶球(雌、雄球花)的发育
    Figure 1  Development of microstrobilus and macrostrobilus (male and female strobili)

    2019年4月4日,小孢子囊开始散粉,散粉时间持续4 d,时间较快。散粉前小孢子囊开裂,花粉散出,颜色呈黄色。同一小孢子叶球中,叶轴基部的小孢子囊散粉通常比叶轴上部的早开裂(图1G)。散粉后,小孢子叶球迅速干缩(图1H)。

    2.1.2   大孢子叶球的生长发育

    2018年11月12日,1年生枝条顶端存在普通芽和生殖芽,外观难以区分(图1I)。此时,生殖芽内部的苞叶叶腋出现珠被原基的隆起(图2A)。此后珠被不断生长,2019年3月25日,珠被生长至珠心上方,包被珠心(图2B)。此时,大孢子叶球2个,成对生于叶腋,外观呈圆锥形,长为0.38~0.49 mm[(0.47±0.12) mm],宽为0.26~0.29 mm[(0.28±0.09) mm],两侧微微隆起,外裹绿色鳞片状叶,着生于1年生雌株枝条顶端。每一大孢子叶球的短轴上紧密排列着4枚两两交互对生的苞片和最基部1枚侧生的苞片,具1个直立胚珠。2019年3月28日,在小孢子叶球即将散粉前,大孢子叶球逐渐从外包苞片和鳞片中突破,伸到芽鳞外,胚珠开始暴露在空气中,为接收花粉做准备(图1J)。2019年4月6日,假种皮开始露出(图2C)。此时,大孢子叶球呈圆球形,长为1.48~2.12 mm[(1.86±0.24) mm],宽为1.07~1.47 mm[(1.37±0.28) mm]。2019年4月4—7日为散粉期,胚珠的珠孔端吐露出传粉滴,授粉后传粉滴消失(图1K)。2019年4月23日,假种皮的长度逐渐生长至珠被1/2处,可见明显的珠孔和珠心上部的溶解腔(图2D)。2019年4月30日,胚珠个体逐渐变大,外层的珠被和假种皮逐渐伸长,但还未完全包裹住胚珠的珠孔(图1L)。2019年6月8—29日,成对的大孢子叶球仅1个发育,发育的假种皮长度逐渐超过珠被,突破鳞片,包裹住胚珠(图1M图1N),先端较尖。2019年8月29日,胚珠长度增大,深绿色,胚珠着生的枝条顶端出现新生的小孢子叶球(图1O)。2019年9月22日,大孢子叶球呈卵球形,长为6.18~7.28 mm[(6.85±0.42) mm],宽为3.15~3.50 mm[(3.32±0.11) mm],胚珠底部变黄,假种皮先端变红(图1P)。

    图 2  大孢子发生和雌配子体发育(含受精作用)
    Figure 2  Megasporogenesis and female gametophyte development (including fertilization)

    2018年8月20日,小孢子叶原基表皮下方的孢原细胞已经分化形成次生造孢细胞。次生造孢细胞紧密相连,呈多边形(图3A)。2018年11月12日,外层的次生壁细胞开始分裂、分化,小孢子囊由外而内最终形成矩形的表皮层,呈椭圆形的小孢子囊内壁,呈不规则散状排列的2层中层细胞,以及最内呈长条形的绒毡层(图3B)。小孢子囊发育类型为基本型。2018年11月15日,造孢细胞分化形成小孢子母细胞,最初的小孢子母细胞由于体积较大、排列紧密,呈多边形,胞质浓厚,细胞核大(图3C)。2019年1月3日,在小孢子母细胞不断形成时期,最外层的表皮细胞经垂周分裂后,垂周壁加厚,径向壁延长,细胞内液泡化,细胞核和核仁逐渐消失,木质化加强,以适应内部小孢子母细胞数目的增加;内壁细胞径向延长,并纤维化加厚;中层细胞被挤压,切向壁延长呈扁平状紧贴内壁;绒毡层细胞在小孢子母细胞时期最初呈长条形单核延长,发育后期细胞个体逐渐变大,细胞质变浓,并以单核或双核形式存在(图3D)。2019年2月2日,排列紧密的小孢子母细胞逐渐从胼胝质中解离,变成游离的小孢子母细胞,形状从多边形变为圆形(图3E)。

    图 3  小孢子发生和雄配子体发育(含精子形成)
    Figure 3  Microsporogenesis and male gametophyte development (including spermatogenesis)

    2019年2月26日至3月6日为小孢子母细胞减数分裂期。小孢子母细胞经过第1次减数分裂,形成2个子核(图3F),2个子核之间不形成细胞壁直接进入减数分裂Ⅱ期,再次分裂之后形成四面体形、左右对称形2种类型的四分体(图3G)。小孢子囊壁和中层细胞开始解体,绒毡层细胞多为双核,由绒毡层出现的位置判断绒毡层细胞为周原质团细胞,绒毡层类型为变形绒毡层。小孢子囊内约7%绒毡层出现异常膨大,堆叠在一起(图3H)。2019年3月12日,四分体中的4个小孢子之间开始形成各自的细胞壁(图3I)。2019年3月16日,四分体开始解体,胼胝质壁消失,小孢子的细胞壁逐渐加厚,形成游离小孢子细胞(图3J),绒毡层部分细胞进入药室内部(图3K)。2019年3月19日为小孢子细胞单核靠边期,表皮细胞木质化加强,内壁继续解体,中层细胞仅留下残迹,绒毡层仍以双核或单核形式存在(图3L)。一些小孢子囊内游离小孢子内液泡化导致细胞变形,约占11%(图3M)。

    2019年3月31日,单核靠边的小孢子细胞壁开始逐渐增厚,细胞核经过有丝分裂形成2个核,细胞质也在2个核之间形成细胞板将2个核隔开,其中大的核为管核,小的核为生殖核。此时,成熟花粉粒形成(图3N)。成熟花粉粒的直径为30 μm,双核,表面褶皱成不规则状,无气囊。花粉成熟期时,小孢子囊内壁与中层细胞仅剩残迹,绒毡层消失,表皮细胞完全木质化并且带状加厚(图3O)。2019年4月4—7日,开始散粉时,小孢子囊囊基部囊壁没有加厚的开裂口破裂,从开裂口散出(图3P)。2019年5月30日,在胚珠上方花粉粒萌发成花粉管,伸入珠心组织1/3处,花粉管中可清晰看到管细胞、生殖细胞和不育细胞,生殖细胞比不育细胞稍大(图3Q)。2019年6月24日,花粉管入侵至珠心1/2处,生殖核明显增大,管核与不育核明显变小,且即将消失(图3R)。2019年7月27日,花粉管抵达雌配子体壁,此时管核和不育核已消失,位于花粉管先端的精原细胞已分裂成2个形状相似、大小相同的精细胞。精细胞核大、细胞质浓,形状为椭圆形或圆形(图3S)。2019年11月29日,花粉管伸长至颈卵器上方,精细胞明显增大,细胞质浓厚(图3T)。九龙山榧小孢子及雄配子体发育进程见表1

    表 1  九龙山榧的有性生殖过程
    Table 1  Process of sexual reproduction in T. jiulongshanensis
    发育时期(年-月-日)小孢子和雄配子体发育大孢子和雌配子体发育
    2018-08-20 次生造孢细胞
    2018-11-15 小孢子母细胞形成
    2019-02-26—2019-03-06 小孢子母细胞减数分裂期
    2019-03-12—2019-03-16 四分体时期
    2019-03-16 小孢子从四分体中相互分离
    2019-03-19 单核靠边期
    2019-04-06 散粉与传粉 造孢组织
    2019-04-23 减数分裂Ⅱ后期
    2019-05-18 功能大孢子
    2019-05-30 管细胞、生殖细胞和不育细胞
    2019-06-06 游离核时期
    2019-06-24 管核与不育核即将消失
    2019-07-27 精原细胞分裂形成两个大小相同的精细胞
    2019-08-11 细胞化阶段
    2019-09-22 颈卵器母细胞
    2019-09-22—2019-11-29 颈卵器阶段
    2019-11-29 受精
    下载: 导出CSV 
    | 显示表格

    2019年4月6日,在散粉期,珠心下方与珠被齐平的水平线上出现一团核大、质浓、呈多边形的造孢细胞(图2E)。①大孢子发生时期:2019年4月23日,造孢细胞分化,在近中央位置形成大孢子母细胞,并进行减数分裂Ⅰ,形成大孢子二分体,二分体再进行减数分裂Ⅱ(图2F),最终形成纵向直列的4个大孢子。2019年5月18日,合点端的大孢子不断发育,最终形成功能性大孢子,近珠孔的3个大孢子逐渐退化(图2G)。②游离核时期:2019年6月6日,合点端的功能大孢子继续进行多次有丝分裂,形成多核的雌配子体,但不形成细胞壁,细胞核呈游离状态,分布在雌配子体的细胞质中(图2H)。游离核之间由染色质丝相连。③细胞化时期:2019年8月11日,当游离核分裂8次,形成256个游离核后,在连接游离核间原生质丝的基础上,开始向心式形成细胞壁,最后整个雌配子体完全细胞化(图2I)。④颈卵器时期:当雌配子体不断发育到一定程度,近珠孔端的一些细胞开始逐渐膨大,形成颈卵器母细胞。2019年9月22日,颈卵器母细胞进行平周和垂周分裂,最终形成4个较小的颈细胞和1个较大的中央细胞(图2J)。刚形成的颈细胞呈圆形,细胞核明显,个体较周围细胞小,中央细胞呈圆形,细胞核较大,周围细胞质浓。中央细胞进行1次不均等分裂,形成卵核和腹沟核,腹沟核很快消失。由于此过程发生较快,因此未捕捉到正在退化的腹沟核。2019年9月30日,初形成的卵核位于颈卵器的近珠孔端,周围有少量细胞质包围,卵核下方有1个大液泡(图2K)。2019年10月13日,卵核开始下沉,往颈卵器的中央开始移动,同时蛋白泡出现(图2L)。2019年11月12日,受精前,成熟的颈卵器中蛋白泡消失,细胞质变浓,卵细胞发育成熟且位于中央,等待受精(图2M)。九龙山榧的颈卵器为椭圆形,多数位于雌配子体的近珠孔端,同一胚珠中有2个颈卵器。颈卵器的周围通常紧密排列着1层套细胞,套细胞的细胞核大、体积较小(图2L~M)。本研究观察到九龙山榧每个胚珠中只产生1个雌配子体,含2个单生型颈卵器,与香榧相同。九龙山榧的大孢子及雌配子体发育进程见表1

    九龙山榧的受精作用发生于2019年11月29日,从传粉到受精约7个月,在花粉管中产生2个大小相似的精细胞(图3T),受精前其中一个精细胞进入颈卵器中与卵细胞结合,另一个则停留在花粉管中(图2N)。在精细胞接触卵细胞前,精细胞边缘整齐,细胞核明显,两者接触时,精细胞边缘开始变得模糊,细胞质因变得蓬松而染色较浅(图2O)。在精细胞和卵细胞逐渐融合的过程中,精细胞核区逐渐消失,细胞质相融(图2P)。

    裸子植物小孢子母细胞发育节律主要分为4种类型[17-20]:①小孢子母细胞的减数分裂过程起始于初冬,进入休眠期停止减数分裂,在翌年春季解除休眠后完成后续发育,如侧柏Platycladus orientalis。②翌年春天形成造孢细胞,再分化成小孢子母细胞,小孢子母细胞不经过休眠直接开始进行减数分裂,如穗花杉Amentotaxus argotaenia。③小孢子母细胞于当年年底前已经分化形成,经过翌年春季才开始后续的减数分裂过程,如欧洲赤松Pinus sylvestris。④小孢子母细胞进行减数分裂并形成游离小孢子再越冬,翌年春季继续发育为成熟花粉,红豆杉属Taxus加拿大红豆杉T. canadenesis、短叶红豆杉T. brevifolia、南方红豆杉T. wallichiana var. mairei和云南红豆杉T. yunnanensis等属此类型。九龙山榧与香榧小孢子母细胞的发育方式相同[21],这种发育方式避免了其减数分裂过程受到寒冷冬季低温影响,降低了减数分裂发生异常的风险。九龙山榧在减数分裂时期部分小孢子囊的绒毡层发生异常增生和膨大现象。陈祖铿等[22]对穗花杉研究发现:绒毡层细胞发生异常膨大在裸子植物发育中为异常现象,其结果会导致小孢子母细胞受到挤压,在减数分裂过程中发生异常,最终引起花粉败育。这也曾在太白红杉Larix chinensis [23]的小孢子发育过程中有过报道。九龙山榧花粉囊中的绒毡层从小孢子母细胞时期一直持续存在到单核靠边期,直到形成成熟花粉粒才完全降解。绒毡层的延迟降解可能会争夺游离小孢子细胞发育所需的营养物质和空间。单核靠边期时,少部分小孢子囊中出现小孢子细胞内液泡化现象,导致一些细胞形状变化、破裂。但由于花粉粒能在雌花胚珠的珠心上方萌发出花粉管,且雄配子体的发育基本正常,说明花粉粒具备正常的生理活性和后期生殖功能,这与本研究对其花粉活力测定的结果一致。由此可见,小孢子的发生和雄配子体的发育均正常。

    裸子植物的花粉萌发普遍迟缓且花粉管的生长非常缓慢[24]。穗花杉于5月底开始散粉,7月中下旬形成精子,历时约2个月[25];短叶红豆杉于4月底萌发花粉管,6月初形成精子,历时1个多月[26];南方红豆杉2月中下旬散粉,4月中旬体细胞迅速分裂形成2个精子,历时约2个月[20];香榧于4月下旬散粉,7月中下旬花粉管中体细胞核分裂出2个大小相等的精核,过程近3个月[27]。九龙山榧4月初散粉,4月底花粉才开始萌发出花粉管,7月底雌配子体上方产生2个精原细胞。因此,九龙山榧从传粉到形成精子,整个过程历时近4个月,发育周期均较红豆杉科其他种更长。这可能是雄配子体在花粉管中发育缓慢以等待颈卵器中的卵细胞发育成熟以完成受精[20]。受精延迟现象在裸子植物中普遍存在。白豆杉Pseudotaxus chienii于4月17日传粉,5月下旬陆续发生受精作用,两者相隔1个多月[28];穗花杉于5月25日至6月15日传粉,7月20—29日受精,两者相隔约2个月[22];云南红豆杉的受精作用发生于3月底至4月初,传粉与受精相隔约4个月[8];香榧于4月下旬授粉,9月上旬发生受精作用,从传粉到受精间隔4~5个月[27]。在本研究中,九龙山榧于4月初开始传粉,11月下旬发生受精作用,从传粉到受精需要约7个月,晚于红豆杉科已经报道的大多数植物。

    植物有性生殖过程的任何一个环节出现障碍,都会造成生殖失败,种子减少,更新困难从而致濒[29]。九龙山榧小孢子叶球8月中旬开始发生,至2019年7月底才形成精子,历时11个月余;大孢子叶球11月中上旬开始发生,至2019年11月底才进行受精作用,过程历时12个月余,雌雄生殖系统发育的周期均较红豆杉科以往报道的其他种更长。生殖过程历时久、环节多,增加花粉败育、胚珠死亡的概率[8],且从传粉到受精时间跨度大,加之个体数量极少,仅1雌株2雄株,胚珠发育严重滞后于小孢子叶球的散粉期,可能导致受精率降低甚至受精作用受阻。此外,陈佳妮等[30]发现:香榧结籽高于榧树,在于前者成熟叶片的氮含量和光合能力显著高于后者。九龙山榧为喜光的阳生树种[31],其结籽率低的原因可能还与雌株树体老化、光合生理特性、外界营养不足等有关。

    可见,九龙山榧冗长的生殖周期、复杂的生殖过程和雌性生殖系统发育明显滞后于雄性生殖系统,加之人为干扰强、树体老化、营养不足、个体数量少等均可能造成其结籽率底、自然更新困难,进而致濒。从实际出发,对九龙山榧的保育可以借鉴香榧的培育技术:①由于九龙山榧雌雄异株,小种群中的花粉密度很难达到较高的水平,胚珠传粉滴的吐露容易受不良天气的影响,因此在散粉期收集足够的花粉,将花粉合理优化保存,分期在晴天进行人工授粉以提高授粉率[32];②加强雌株的科学管理,平衡施肥,追施磷、钾复合肥[33],浅根多次施肥,繁殖期叶面施淡肥[34],从而促进胚的发育和提高坐果率。

    材料采集过程中得到浙江遂昌王村口镇西坑下村严东根先生的无私帮助。在此深表谢意!

  • 表  1  复垦地块土壤pH和养分质量分数

    Table  1.   Status of soil pH and nutrient content in reclaimed land

    项目pH有机质/(g·kg−1)全氮/(g·kg−1)有效磷/(mg·kg−1)有效钾/(mg·kg−1)
    0~2020~400~2020~400~2020~400~2020~400~2020~40 cm
    最小值  6.737.423.984.79189.90205.004.995.31205.00207.80
    最大值  8.538.529.9410.10406.90431.4037.7824.24431.40293.40
    平均值  8.158.246.516.97284.04288.8514.5412.70288.85245.79
    标准差  0.480.301.701.3457.3859.328.555.5959.3223.73
    变异系数/%5.853.6826.1219.2320.2020.5458.7744.0520.549.65
    下载: 导出CSV

    表  2  复垦地块土壤重金属质量分数

    Table  2.   Soil heavy metal content of reclaimed land

    项目镉/( mg·kg−1)铬/( mg·kg−1)铅/( mg·kg−1)汞/( mg·kg−1)砷/( mg·kg−1)
    0~2020~400~2020~400~2020~400~2020~400~2020~40 cm
    最小值  0.2090.24071.8072.8043.1044.600.0210.0298.617.39
    最大值  0.5980.497145.00139.0067.1065.300.0340.05823.7021.40
    平均值  0.3300.310107.74106.6753.4054.060.0300.04018.4216.67
    标准差  0.0980.06422.1720.286.906.370.0040.0143.463.95
    变异系数/%30.0520.6120.5819.0112.9311.7914.8135.1218.7723.72
    超标率/% 0000000000
    下载: 导出CSV

    表  3  复垦地块水稻籽粒重金属质量分数

    Table  3.   Heavy metal content of rice in reclaimed land

    项目镉/(mg·kg−1)铬/(mg·kg−1)铅/(mg·kg−1)汞/(mg·kg−1)砷/(mg·kg−1)
    最小值  0.0190.300.040.01
    最大值  0.0721.600.310.02
    平均值  0.0370.740.110.01
    标准差  0.0150.370.090.00
    限量值  0.2001.000.200.020.50
    变异系数/%40.7149.5782.0524.75
    超标率/% 018.7512.5000
      说明:−表示未检测出,其中检测限制镉为<0.003 mg·kg−1,铬为<0.03 mg·kg−1,铅为<0.04 mg·kg−1,汞为<0.01 mg·kg−1
         砷为<0.04 mg·kg−1
    下载: 导出CSV

    表  4  水稻土壤重金属污染指数

    Table  4.   Heavy metal pollution index of paddy soil

    项目单因子污染指数综合指数
    最大值  0.750.360.051.190.470.88
    最小值  0.260.180.000.430.210.37
    平均值  0.430.240.010.900.320.69
    标准差  0.140.050.020.180.080.11
    变异系数/%32.7721.96145.9720.4224.0217.70
    下载: 导出CSV

    表  5  基于污染指数法重金属污染点位分布

    Table  5.   Distribution of heavy metal pollution points based on pollution index method

    单因子指数污染等级点位占比/%综合指数污染等级点位占比/%
    Pi≤1 清洁   100 100 100 64.71 100 P≤0.7 安全   41.18
    1<Pi≤2 轻度污染 0 0 0 35.29 0 0.7<P≤1.0 警戒   58.82
    2<Pi≤3 中度污染 0 0 0 0 0 1.0<P≤2.0 轻度污染 0
    Pi>3 重度污染 0 0 0 0 0 2.0<P≤3.0 中度污染 0
    下载: 导出CSV

    表  6  重金属元素地累积指数评价特征值统计表

    Table  6.   Statistical table of evaluation characteristic values of accumulation index of heavy metal elements

    元素IgeoIgeo≤00<Igeo≤11<Igeo≤22<Igeo≤33<Igeo≤4
    变化范围平均值样品数比率/%样品数比率/%样品数比率/%样品数比率/%样品数比率/%
    −0.52~1.00 0.08 10 58.82 7 41.18 0 0 0 0 0 0
    −0.28~0.35 0.01 10 58.82 7 41.18 0 0 0 0 0 0
    −3.40~−2.72 −3.02 6 35.29 0 0 0 0 0 0 0 0
    −1.39~0.07 −0.32 16 94.12 1 5.88 0 0 0 0 0 0
    −0.91~0.10 −0.35 15 88.24 2 11.76 0 0 0 0 0 0
    下载: 导出CSV

    表  7  水稻土重金属潜在生态风险评价

    Table  7.   Evaluation of potential ecological risks of heavy metals in paddy soils

    项目ErIRIER
    最大值  89.7 9.59 9.09 15.80 3.22 121.15 4.02
    最小值  31.35 6.16 0.00 5.74 1.60 52.96 3.22
    平均值  49.16 7.63 2.64 12.28 2.39 74.10 3.67
    标准差  14.77 0.99 3.73 2.31 0.49 17.19 0.21
    变异系数/% 30.05 12.93 141.53 18.77 20.58 23.19 5.68
    下载: 导出CSV
  • [1] 任露陆, 蔡宗平, 王固宁, 等. 不同钝化机制矿物对土壤重金属的钝化效果及微生物响应[J]. 农业环境科学学报, 2021, 40(7): 1470 − 1480.

    REN Lulu, CAI Zongping, WANG Guning, et al. Effects of minerals with different immobilization mechanisms on heavy metal availability and soil microbial responses [J]. J Agro-Environ Sci, 2021, 40(7): 1470 − 1480.
    [2] 胡雪芳, 田志清, 梁亮, 等. 不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析[J]. 环境科学, 2018, 39(7): 3409 − 3417.

    HU Xuefang, TIAN Zhiqing, LIANG Liang, et al. Comparative analysis of different soil amendment treatments on rice heavy metal accumulation and yield effect in Pb and Cd contaminated farmland [J]. Environ Sci, 2018, 39(7): 3409 − 3417.
    [3] 马佳燕, 马嘉伟, 柳丹, 等. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报, 2021, 38(2): 336 − 345.

    MA Jiayan, MA Jiawei, LIU Dan, et al. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu Plain [J]. J Zhejiang A&F Univ, 2021, 38(2): 336 − 345.
    [4] YE Xinxin, MA Yibing, SUN Bo. Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety [J]. J Environ Sci, 2012, 24(9): 1647 − 1654.
    [5] 郝社锋, 任静华, 范健, 等. 江苏某市水稻籽粒重金属富集特征及健康风险评价[J]. 环境污染与防治, 2021, 43(2): 217 − 222.

    HAO Shefeng, REN Jinghua, FAN Jian, et al. Heavy metals accumulation characteristics and health risk assessment of rice grain produced in Jiangsu area [J]. Environ Pollut Prev, 2021, 43(2): 217 − 222.
    [6] LIU J G, LIANG J S, LI K Q, et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress [J]. Chemosphere, 2003, 52(9): 1467 − 1473.
    [7] 李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239 − 249.

    LI Zhongyu, LI Yanguang, LI Weiliang, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry [J]. Rock Mineral Anal, 2021, 40(2): 239 − 249.
    [8] 郭英英. 平朔矿区复垦地不同植被下苔藓植物群落数量生态研究[D]. 太原: 山西大学, 2020.

    GUO Yingying. Quantitative Ecology of Bryophyte Community under Different Revegetation Patterns on the Reclaimed Dumps in Pingshuo Mining Area[D]. Taiyuan: Shanxi University, 2020.
    [9] WANG Feifei, GUAN Qingyu, TIAN Jing, et al. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor [J/OL]. Catena, 2020, 191(3). doi: 10.1016/j.catena.2020.104573.
    [10] 李春芳, 曹见飞, 吕建树, 等. 不同土地利用类型土壤重金属生态风险与人体健康风险[J]. 环境科学, 2018, 39(12): 342 − 352.

    LI Chunfang, CAO Jianfei, LÜ Jianshu, et al. Ecological risk assessment of soil heavy metals for different types of land use and evaluation of human health [J]. Environ Sci, 2018, 39(12): 342 − 352.
    [11] CHEN Xiuxiu, LIU Yumin, ZHAO Qingyue, et al. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application[J/OL]. Environ Pollut, 2020, 262: 114348 [2021-03-30]. doi: 10.1016/j.envpol.2020.114348.
    [12] 田美玲, 钟雪梅, 张云霞, 等. 矿业活动影响区稻田土壤和稻米中重金属含量及健康风险[J]. 环境科学, 2018, 39(6): 2919 − 2926.

    TIAN Meiling, ZHONG Xuemei, ZHANG Yunxia, et al. Concentrations and health risk assessments of heavy metal contents in soil and rice of mine contaminated areas [J]. Enviorn Sci, 2018, 39(6): 2919 − 2926.
    [13] 李卫平, 王非, 杨文焕, 等. 包头市南海湿地土壤重金属污染评价及来源解析[J]. 生态环境学报, 2017, 26(11): 1977 − 1984.

    LI Weiping, WANG Fei, YANG Wenhuan, et al. Pollution assessment and source apportionment of heavy metals in Nanhai wetland soil of Baotou City [J]. Ecol Environ Sci, 2017, 26(11): 1977 − 1984.
    [14] 李伟, 布多, 孙晶, 等. 拉萨巴嘎雪湿地土壤重金属分布及生态风险评价[J]. 环境化学, 2021, 40(1): 195 − 203.

    LI Wei, BU Duo, SUN Jing, et al. Distribution and ecological risk assessment of heavy metal elements in the surface sediments of Bagaxue wetlands in Lhasa [J]. Environl Chem, 2021, 40(1): 195 − 203.
    [15] 杜昊霖, 王莺, 王劲松, 等. 青藏高原典型流域土壤重金属分布特征及其生态风险评价[J]. 环境科学, 2021, 42(9): 4422 − 4431.

    DU Haolin, WANG Ying, WANG Jinsong, et al. Distribution characteristics and ecological risk assessment of soil heavy metals in typical watersheds of Qinghai-Tibet Plateau [J]. Enviorn Sci, 2021, 42(9): 4422 − 4431.
    [16] HAKANSON L. An ecological risk index for aquatic pollution control: a sedimentological approach [J]. Water Res, 1980, 14(8): 975 − 1001.
    [17] SAEEDDI M, ZANJANI A J. Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments [J]. Ecol Indic, 2015, 58: 235 − 243.
    [18] ZHANG Zhaoyong, LI Juying, MAMAT Z, et al. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China [J]. Ecotoxicol Environ Saf, 2016, 126: 94 − 101.
    [19] GUO Weihua, LIU Xianbin, LIU Zhanguang, et al. Pollution and potential ecological risk evaluation of heavy metals in the sediments around dongjiang harbor, Tianjin [J]. Procedia Environ Sci, 2010, 2(1): 729 − 736.
    [20] 张云芸, 马瑾, 魏海英, 等. 浙江省典型农田土壤重金属污染及生态风险评价[J]. 生态环境学报, 2019, 28(6): 1233 − 1241.

    ZHANG Yunyun, MA Jin, WEI Haiying, et al. Heavy metals in typical farmland soils of Zhejiang Province: levels, sources and ecological risks [J]. Ecol Environ Sci, 2019, 28(6): 1233 − 1241.
    [21] 李思民, 王豪吉, 朱曦, 等. 土壤pH和有机质含量对重金属可利用性的影响[J]. 云南师范大学学报(自然科学版), 2021, 41(1): 49 − 55.

    LI Simin, WANG Haoji, ZHU Xi, et al. Effects of soil pH and organic matter on the content of bioavailable heavy metals [J]. J Yunnan Norm Univ Nat Sci Ed, 2021, 41(1): 49 − 55.
    [22] 郭红伟, 郭世荣, 黄保健. 大棚辣椒不同连作年限土壤理化性质研究[J]. 江苏农业科学, 2011, 39(5): 452 − 455.

    GUO Hongwei, GUO Shirong, HUANG Baojian. Study on soil physical and chemical properties of different continuous cropping years of hot pepper in greenhouse [J]. Jiangsu Agric Sci, 2011, 39(5): 452 − 455.
    [23] 孙小花, 胡新元, 陆立银, 等. 黄土高原马铃薯不同连作年限土壤理化性质及微生物特性[J]. 干旱地区农业研究, 2019, 37(4): 184 − 192.

    SUN Xiaohua, HU Xinyuan, LU Liyin, et al. Soil physical and chemical properties and microbial characteristics of potato in different continuous cropping years on the Loess Plateau [J]. Agric Res Arid Areas, 2019, 37(4): 184 − 192.
    [24] 邢金峰, 仓龙, 任静华. 重金属污染农田土壤化学钝化修复的稳定性研究进展[J]. 土壤, 2019, 51(2): 224 − 234.

    XING Jinfeng, CANG Long, REN Jinghua. Remediation stability of in situ chemical immobilization of heavy metals contaminated soil: a review [J]. Soil, 2019, 51(2): 224 − 234.
  • [1] 孙经宇, 孙向阳, 李素艳, 王晨晨, 岳宗伟.  北京市通州区绿地土壤重金属源解析及风险评价 . 浙江农林大学学报, 2024, 41(3): 517-525. doi: 10.11833/j.issn.2095-0756.20230435
    [2] 彭麟迪, 汪琼, 张红丽, 郑成洁, 王南媛, 潘曲波.  滇池西岸湿地公园园林植物外来种生态风险评价 . 浙江农林大学学报, 2023, 40(1): 217-226. doi: 10.11833/j.issn.2095-0756.20220301
    [3] 邵晗, 王虎, 王妍, 徐红枫, 苏倩, 刘云根.  岩溶石漠化地区不同利用方式对土壤肥力和重金属质量分数的影响 . 浙江农林大学学报, 2022, 39(3): 635-643. doi: 10.11833/j.issn.2095-0756.20210437
    [4] 马佳燕, 马嘉伟, 柳丹, 傅伟军, 叶正钱.  杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价 . 浙江农林大学学报, 2021, 38(2): 336-345. doi: 10.11833/j.issn.20950756.20200309
    [5] 彭博, 刘鹏, 王妍, 张叶飞, 杨波.  普者黑流域表层水和沉积物中重金属污染特征及风险评价 . 浙江农林大学学报, 2021, 38(4): 746-755. doi: 10.11833/j.issn.2095-0756.20200547
    [6] 叶朝军, 吴家胜, 钟斌, 陈俊任, 郭佳, 徐美贞, 柳丹.  EDTA和有机酸对毛竹修复重金属污染土壤的强化作用 . 浙江农林大学学报, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
    [7] 张延平, 陈振超, 汤富彬, 任传义, 倪张林, 屈明华.  浙、川、湘毛竹主产区冬笋重金属质量分数及健康风险评估 . 浙江农林大学学报, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [8] 郑秀文, 崔鹏, 石嘉伟, 杨静静, 陈敏敏, 郑瑶, 许玲, 刘宏波.  水稻OsZFP互作蛋白的筛选与鉴定 . 浙江农林大学学报, 2017, 34(6): 1024-1028. doi: 10.11833/j.issn.2095-0756.2017.06.008
    [9] 张建云, 高才慧, 朱晖, 钟水根, 杨纹砚, 郑均泷, 吴胜春, 单胜道, 王志荣, 张进, 曹志洪, Peter CHRISTIE.  生物质炭对土壤中重金属形态和迁移性的影响及作用机制 . 浙江农林大学学报, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [10] 张素, 梁鹏, 吴胜春, 张进, 曹志洪.  节能灯产地竹林土壤重金属污染的时空分布特征 . 浙江农林大学学报, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [11] 许佳霖, 武帅, 梁鹏, 张进, 吴胜春.  高虹镇稻米中重金属污染状况及健康风险评价 . 浙江农林大学学报, 2017, 34(6): 983-990. doi: 10.11833/j.issn.2095-0756.2017.06.003
    [12] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [13] 梁立成, 余树全, 张超, 钱力, 齐鹏.  浙江省永康市城区土壤重金属空间分布及潜在生态风险评价 . 浙江农林大学学报, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [14] 钟斌, 陈俊任, 彭丹莉, 刘晨, 郭华, 吴家森, 叶正钱, 柳丹.  速生林木对重金属污染土壤植物修复技术研究进展 . 浙江农林大学学报, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [15] 晏闻博, 柳丹, 彭丹莉, 李松, 陈俊任, 叶正钱, 吴家森, 王海龙.  重金属矿山生态治理与环境修复技术进展 . 浙江农林大学学报, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [16] 胡杨勇, 马嘉伟, 叶正钱, 柳丹, 赵科理.  东南景天Sedum alfredii修复重金属污染土壤的研究进展 . 浙江农林大学学报, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [17] 郭明, 武晓鹏, 孙东海, 周建钟, 张华.  新型基质固相萃取重金属离子分析及残留关联性 . 浙江农林大学学报, 2012, 29(4): 551-557. doi: 10.11833/j.issn.2095-0756.2012.04.011
    [18] 李冬林, 金雅琴, 张纪林, 阮宏华.  秦淮河河岸带典型区域土壤重金属污染分析与评价 . 浙江农林大学学报, 2008, 25(2): 228-234.
    [19] 姜培坤, 徐秋芳, 罗煦钦, 王俊奇.  雷竹笋重金属含量及其与施肥的关系 . 浙江农林大学学报, 2004, 21(4): 424-427.
    [20] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
  • 期刊类型引用(1)

    1. 马长乐,杨建欣,桂晴,龚买玉,周龙飞,刘佳. 榧树属植物资源研究进展. 经济林研究. 2024(04): 1-13 . 百度学术

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210289

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/2/388

计量
  • 文章访问数:  815
  • HTML全文浏览量:  252
  • PDF下载量:  39
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-04-15
  • 修回日期:  2021-12-14
  • 录用日期:  2021-12-29
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-03-25

缙云县某复垦地块土壤环境质量调查及生态风险评价

doi: 10.11833/j.issn.2095-0756.20210289
    基金项目:  浙江省重点研发计划项目(2018C03028)
    作者简介:

    周杨(ORCID: 0000-0002-2357-8046),从事耕地土壤质量提升研究。E-mail: 1364284769@qq.com

    通信作者: 柳丹(ORCID: 0000-0003-1102-6639),教授,博士,从事土壤污染与生态修复研究。E-mail: liudan7812@aliyun.com
  • 中图分类号: S153;X53

摘要:   目的  进一步探索浙江省缙云县某复垦地土壤环境质量。  方法  于2020年在缙云县某复垦地开展土壤环境质量调查,共采集17组土壤-水稻Oryza sativa籽粒复合样品,测定土壤和籽粒中镉、铅、铬、汞、砷等重金属的质量分数,利用单因子污染指数评价法、内梅罗综合指数法、潜在生态风险评价法和生态风险预警指数对土壤重金属污染程度进行评价。  结果  缙云县某复垦地块0~20 cm土层土壤重金属镉、铬、铅、汞、砷质量分数分别为0.33、107.74、53.40、0.03、18.42 mg·kg−1。其中35.29%的点位土壤砷超标,其余4种重金属均未超过农用地土壤污染风险筛选值,镉、砷平均质量分数高于浙江省土壤背景值。复垦地块个别点位水稻籽粒铬和铅超标。该复垦地块的内梅罗综合污染指数平均值为0.69,有58.82%的点位处于警戒范围;地累积指数从大到小依次为镉(0.08)、铅(0.01)、砷(−0.32)、铬(−0.35)、汞(−3.02);潜在生态风险指数的平均值为74.10,存在轻微生态风险;土壤生态风险预警指数达到中度预警级别。  结论  复垦地块个别点位水稻籽粒铬和铅超标;土壤重金属无点位超标,但具有一定的生态风险,其中重金属镉、铬、铅和砷是研究区最主要的生态风险因子,后续应加强关注。表7参24

English Abstract

冉钰岑, 何芳, 刘菊莲, 等. 极危植物九龙山榧的大小孢子发生和雌雄配子体发育研究[J]. 浙江农林大学学报, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
引用本文: 周杨, 周文斌, 马嘉伟, 等. 缙云县某复垦地块土壤环境质量调查及生态风险评价[J]. 浙江农林大学学报, 2022, 39(2): 388-395. DOI: 10.11833/j.issn.2095-0756.20210289
RAN Yucen, HE Fang, LIU Julian, et al. Microsporogenesis, megasporogensis and development of male and female gametophytes of Torreya jiulongshanensis, a critically endangered plant[J]. Journal of Zhejiang A&F University, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
Citation: ZHOU Yang, ZHOU Wenbin, MA Jiawei, et al. Soil environmental quality investigation and ecological risk assessment of a reclamation land in Jinyun County[J]. Journal of Zhejiang A&F University, 2022, 39(2): 388-395. DOI: 10.11833/j.issn.2095-0756.20210289
  • 近年来,由于工业、交通等多重因素的影响,使得土壤环境遭受重金属污染的威胁[1]。重金属污染不仅会导致土壤质量退化,降低作物品质和粮食产量,从时间尺度上来看,还会通过食物链危害人类和动物的健康[2]。重金属流入土壤后很难被发现,其长期性、不可逆性等特性也导致重金属污染极难从土壤中完全去除,极大限制了中国的农业发展[3]。作为中国主要的粮食作物之一,水稻Oryza sativa占据了中国55%的谷物年消耗量,其安全问题受到许多学者的关注[4]。研究发现:水稻对土壤中的镉、铬、铅、砷和汞等重金属元素均具有吸收作用[5],而水稻植株累积重金属会抑制其对营养元素锌、铁、镁等的吸收[6],降低水稻籽粒品质。中国南方的水稻土壤重金属污染较为普遍,严重威胁中国的粮食安全。因此,评估重金属污染土壤所产水稻对人体健康产生的风险,研究稻田土壤-水稻系统重金属的健康风险具有重要意义。

    土壤复垦指在矿产资源开采、化工产业和燃煤发电等生产过程中被破坏的土地,采取整治措施,使其恢复到可利用状态。复垦地具有基质复杂、干扰因素较多、前处理困难、污染物种类多等特点[7-8]。本研究区域(浙江省缙云县某自然村废弃场地复垦点,以下称复垦地块)原为金属镍提炼点。调查显示:复垦地块部分地区存在重金属超标现象,因此复垦后有必要对农产品的安全风险进行评估。早期的研究在进行重金属健康风险评价时,或只考虑土壤直接暴露途径[9-10],或只考虑稻米途径[11-12],评价结果可能被低估。本研究共采集复垦地块17组土壤-水稻籽粒复合样品(其中有1地块无水稻样品),研究水稻籽粒及根际土中重金属分布特征,结合GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》、GB/T 36869—2018《水稻生产的土壤 镉、铅、铬、汞、砷安全阈值》等相关标准,评价重金属污染土壤所产水稻的健康风险,为土壤污染防控及农产品质量安全提供科学依据。

    • 缙云县地处浙江省中南部丘陵山区(28°25′~28°57′N,119°52′~120°25′E)。缙云县属中亚热带季风气候区,总体上热量充足,降水充沛,温暖湿润,冬夏略长,春秋略短,四季分明。年平均气温为18.3 ℃,年降水量为1 387.7 mm,年日照时数为1 504.3 h。

      复垦地块由缙云县某公司(用地面积约3 557 m2)完成复垦,并种植水稻。于2020年9月水稻收获期对复垦地块进行采样调查,分别采集土壤及水稻籽粒样品,分析土壤及水稻籽粒样品的重金属质量分数,进行风险评价。

    • 分别采集土壤样品17个,水稻籽粒样品16个。采用全球定位系统定位,在0~20、20~40 cm分层采集土壤样品,同时采集对应的水稻籽粒样品。在每个取样点以周围5 m×5 m正方形范围内设置5~6个采样点,均匀混合为1个样品。土壤样品自然风干后挑拣出石子、动植物残体等,混匀磨碎过2.00 mm筛和0.15 mm筛备用。水稻籽粒用去离子水洗净,70 ℃烘干至恒量,使用脱壳机脱壳粉碎后备用。

    • 土壤pH采用水土质量比2.5∶1.0浸提,pH计测定;土壤有机质采用重铬酸钾容量外加热法测定;全氮采用凯氏定氮法测定;有效磷采用氟化钠-盐酸提取,紫外/可见分光光度计测定;有效钾以1 mol·L−1中性乙酸铵提取,火焰分光光度法测定。

      土壤重金属全量采用HNO3-HCl-HClO4微波消解后测定;水稻籽粒重金属采用硝酸微波消解后测定。待测液中的镉、铅采用石墨炉原子吸收光谱仪测定,汞、砷采用原子荧光光谱仪测定,铬采用火焰原子吸收光谱仪测定。测定时均加入国家标准土壤标样和大米国家标准参比物分别进行质量控制。分析结果符合质量控制要求。

    • 单因子污染指数法针对土壤中单一污染物进行评价。其计算公式为:

      $$ P_i=C_i/T_i 。 $$ (1)

      式(1)中:Pi为重金属元素i的污染指数;Ci为重金属元素i的质量分数(mg·kg−1);Ti为重金属元素i的评价标准(mg·kg−1)。

      内梅罗综合污染指数法[13-14]是在单因子污染指数评价的基础上对重金属污染进行综合性评价。其计算公式为:

      $$ {{P}}_{{综}}=\sqrt{({{P}}_{{i}{{\rm{max}}}}^{{2}}+{{P}}_{{i}{{\rm{ave}}}}^{{2}}){/2}} 。 $$ (2)

      式(2)中:P为土壤污染综合指数;Piave为土壤中各污染指数平均值;Pimax为土壤中各污染指数最大值。

    • 地累积指数(Igeo)法[15]被应用于自然成岩作用对背景值及人为活动对环境的影响评价。Igeo的计算公式如下

      $$ {{I}}_{\text{geo}}\text={\text{log}}_{\text{2}}\left[\frac{{{C}}_{{i}}}{{{1.5}{B}}_{{i}}}\right] 。 $$ (3)

      式(3)中:Igeo为地累积指数;Ci为重金属元素i的质量分数(mg·kg−1);Bi为重金属元素i的地球化学背景值(mg·kg−1)。

    • 潜在生态风险评价指数法采用HAKANSON[16]提出的生态风险指数法进行评价,以沉积学理论为基础,综合考虑了元素的富集程度及独特的毒性和综合生态危害[17-18]。其计算公式如下:

      $$ {{F}}_{{{\rm{r}}}{i}}={{C}}_{{i}}{/}{{C}} {;} $$ (4)
      $$ {{E}}_{{{\rm{r}}}{i}}={{T}}_{{{\rm{r}}}{i}}{{F}}_{{{\rm{r}}}{i}} {;} $$ (5)
      $$ {I_{\rm{R}}} = \sum\limits_{i = 1}^n {{E_{{\rm{r}}i}}} 。 $$ (6)

      式(4)~(6)中:Ci为重金属元素i的质量分数(mg·kg−1);C为重金属元素i的参比值。FrTrEr分别为重金属污染系数、毒性响应系数和潜在生态危害指数。镉、铅、汞、砷、铬的毒性响应系数分别为30、5、40、10、2[19]IR为5种重金属元素的综合潜在生态风险值。

      采用生态风险预警指数[20]对水稻土生态风险进行预警评估。IER的计算公式为:

      $$ {{I}}_{{{\rm{ER}}}}=\sum\limits_{i = 1}^n {{I}}_{{{{{{{\rm{ER}}{{i}}}}}}}}=\sum\limits_{i = 1}^n \left(\frac{{{C}}_{{{{{{{\rm{A}}{{i}}}}}}}}}{{{C}}_{{{{{{{\rm{R}}{{i}}}}}}}}{-1}}\right) 。 $$ (7)

      式(7)中:IER为生态风险预警指数;IERi为重金属元素i的生态风险指数;CAi为重金属元素i的质量分数(mg·kg−1);CRi为重金属元素i的参比值。

    • 采用Excel 2016对土壤及水稻籽粒重金属质量分数进行描述性统计分析。采用SPSS 22.0进行Spearman相关性分析。数据可视化绘制由Origin 8.5完成。

    • 土壤pH和有机质质量分数对土壤重金属有效性均具有较大的影响。在相同的重金属污染水平下,土壤高pH、高有机质质量分数有利于降低重金属生物有效性,抑制作物对重金属的吸收和积累,降低其重金属污染风险[21]。根据调研结果,复垦地块0~20 cm土层土壤pH为6.73~8.53,平均为8.15,属于碱性土壤;土壤有机质为3.98~9.94 g·kg−1,平均为6.51 g·kg−1。20~40 cm土层土壤pH为7.42~8.52,平均为8.24;土壤有机质质量分数为4.79~10.10 g·kg−1,平均为6.97 g·kg−1(表1)。

      表 1  复垦地块土壤pH和养分质量分数

      Table 1.  Status of soil pH and nutrient content in reclaimed land

      项目pH有机质/(g·kg−1)全氮/(g·kg−1)有效磷/(mg·kg−1)有效钾/(mg·kg−1)
      0~2020~400~2020~400~2020~400~2020~400~2020~40 cm
      最小值  6.737.423.984.79189.90205.004.995.31205.00207.80
      最大值  8.538.529.9410.10406.90431.4037.7824.24431.40293.40
      平均值  8.158.246.516.97284.04288.8514.5412.70288.85245.79
      标准差  0.480.301.701.3457.3859.328.555.5959.3223.73
      变异系数/%5.853.6826.1219.2320.2020.5458.7744.0520.549.65

      复垦地块0~20 cm土层土壤有机质质量分数<10.00 g·kg−1,全氮平均值为284.04 mg·kg−1,有效磷平均质量分数为14.54 mg·kg−1。从总体来看,调查地块养分质量分数偏低。

    • 复垦地块0~20 cm土层土壤重金属镉、铬、铅、汞、砷的质量分数分别为0.209~0.598、71.80~145、43.10~67.10、0.021~0.034、8.61~23.70 mg·kg−1,均值分别为0.330、107.74、53.40、0.030 mg·kg−1、18.42 mg·kg−1。20~40 cm土层土壤镉、铬、铅、汞、砷的质量分数分别为0.240~0.497、72.80~139.00、44.60~65.30、0.029~0.058、7.39~21.40 mg·kg−1,均值分别为0.310、106.67、54.06、0.040、16.60 mg·kg−1(表2)。2层土壤中重金属质量分数从高到底依次为为铬、铅、砷、镉、汞。

      表 2  复垦地块土壤重金属质量分数

      Table 2.  Soil heavy metal content of reclaimed land

      项目镉/( mg·kg−1)铬/( mg·kg−1)铅/( mg·kg−1)汞/( mg·kg−1)砷/( mg·kg−1)
      0~2020~400~2020~400~2020~400~2020~400~2020~40 cm
      最小值  0.2090.24071.8072.8043.1044.600.0210.0298.617.39
      最大值  0.5980.497145.00139.0067.1065.300.0340.05823.7021.40
      平均值  0.3300.310107.74106.6753.4054.060.0300.04018.4216.67
      标准差  0.0980.06422.1720.286.906.370.0040.0143.463.95
      变异系数/%30.0520.6120.5819.0112.9311.7914.8135.1218.7723.72
      超标率/% 0000000000

      依据农用地土壤污染风险筛选值,耕层土壤砷有35.29%的点位超标,镉、铬、铅和汞4种重金属质量分数均未超标;但以GB/T 36869—2018《水稻生产的土壤 镉、铅、铬、汞、砷安全阈值》作为对比,有少数点位的镉元素超出安全阈值,同时有88.24%点位的耕层土壤砷元素超出安全阈值,从长期来看,对水稻安全生产而言,重金属镉与砷仍然具有一定的风险。这是因为土壤pH会随着作物种植年份的延长而逐渐下降[22-23],而重金属的绝对值不会降低,重金属的生物有效值就会随之增加[24]。因此,镉和砷为复垦地块需要重点关注的重金属元素。试验测定重金属元素质量分数变异程度较低,变异系数均小于40%,说明复垦后人为活动对该区域的重金属影响不大,5种重金属元素在空间上存在相似的污染程度。

    • 根据GB 2762—2017 《食品安全国家标准 食品中污染物限量》可知:复垦地块水稻个别点位铬和铅超标,超标率为12.50%~18.75% (表3),可能原因是土壤中重金属铬和铅质量分数分别为71.80~145.00和43.10~67.10 mg·kg−1,虽然未超出风险筛选值,但其质量分数相对比较高,从而导致水稻吸收的铬和铅超出限量值。

      表 3  复垦地块水稻籽粒重金属质量分数

      Table 3.  Heavy metal content of rice in reclaimed land

      项目镉/(mg·kg−1)铬/(mg·kg−1)铅/(mg·kg−1)汞/(mg·kg−1)砷/(mg·kg−1)
      最小值  0.0190.300.040.01
      最大值  0.0721.600.310.02
      平均值  0.0370.740.110.01
      标准差  0.0150.370.090.00
      限量值  0.2001.000.200.020.50
      变异系数/%40.7149.5782.0524.75
      超标率/% 018.7512.5000
        说明:−表示未检测出,其中检测限制镉为<0.003 mg·kg−1,铬为<0.03 mg·kg−1,铅为<0.04 mg·kg−1,汞为<0.01 mg·kg−1
           砷为<0.04 mg·kg−1
    • 以GB 15618—2018《农用地土壤污染风险筛选值》为依据,计算复垦地块土壤重金属的单因子污染指数和综合污染指数。以0~20 cm耕层土壤进行评价,重金属镉、铅、汞、砷、铬的单因子污染指数平均值分别为0.43、0.24、0.01、0.90、0.32 (表4),部分点位重金属砷单因子污染指数大于1.00,其余4种重金属单因子污染指数平均值均小于1.00。

      表 4  水稻土壤重金属污染指数

      Table 4.  Heavy metal pollution index of paddy soil

      项目单因子污染指数综合指数
      最大值  0.750.360.051.190.470.88
      最小值  0.260.180.000.430.210.37
      平均值  0.430.240.010.900.320.69
      标准差  0.140.050.020.180.080.11
      变异系数/%32.7721.96145.9720.4224.0217.70

      根据重金属元素不同污染级别点位数占比可知(表5):有64.61%的点位土壤砷单因子污染指数小于1.00,其余35.29%的点位土壤砷超标。镉、铅、汞、铬等4种元素的单因子污染指数全部都小于1.00,无超标点位。从内梅罗综合指数(表5)看,复垦地块土壤镉、铅、汞、砷、铬综合指数为0.37~0.88,其中41.18%的点位处于安全范围,58.82%的点位处于警戒线。总体来看,复垦地块土壤环境受到重金属威胁,后续应加大保护修复力度,防止重金属污染,保护农产品安全。

      表 5  基于污染指数法重金属污染点位分布

      Table 5.  Distribution of heavy metal pollution points based on pollution index method

      单因子指数污染等级点位占比/%综合指数污染等级点位占比/%
      Pi≤1 清洁   100 100 100 64.71 100 P≤0.7 安全   41.18
      1<Pi≤2 轻度污染 0 0 0 35.29 0 0.7<P≤1.0 警戒   58.82
      2<Pi≤3 中度污染 0 0 0 0 0 1.0<P≤2.0 轻度污染 0
      Pi>3 重度污染 0 0 0 0 0 2.0<P≤3.0 中度污染 0
    • 以浙江省土壤背景值为参比,对镉、铅、汞、砷、铬等5种重金属元素进行地累积指数评价(表6)。可以得出:5种重金属元素的Igeo从大到小依次为镉(0.08)、铅(0.01)、砷(−0.32)、铬(−0.35)、汞(−3.02)。在所有采样点位中,汞的Igeo均小于0,呈现出无污染状态,污染最严重的为镉,其次为铅,地累积指数分别为0.08和0.01,呈现出轻微污染的状态。铅和镉在复垦地块仅有58.82%的点位处于未被污染状态,其余41.18%的点位处于轻微富集状态,个别样点的砷、铬元素存在轻微富集现象(表6)。

      表 6  重金属元素地累积指数评价特征值统计表

      Table 6.  Statistical table of evaluation characteristic values of accumulation index of heavy metal elements

      元素IgeoIgeo≤00<Igeo≤11<Igeo≤22<Igeo≤33<Igeo≤4
      变化范围平均值样品数比率/%样品数比率/%样品数比率/%样品数比率/%样品数比率/%
      −0.52~1.00 0.08 10 58.82 7 41.18 0 0 0 0 0 0
      −0.28~0.35 0.01 10 58.82 7 41.18 0 0 0 0 0 0
      −3.40~−2.72 −3.02 6 35.29 0 0 0 0 0 0 0 0
      −1.39~0.07 −0.32 16 94.12 1 5.88 0 0 0 0 0 0
      −0.91~0.10 −0.35 15 88.24 2 11.76 0 0 0 0 0 0
    • 重金属元素铅、汞、砷、铬在研究区域的Er平均值均小于40,表明这4种重金属元素均处于轻度生态危害程度且各个采样点生态危害程度相差不大。5种重金属元素潜在危害程度从高到低排序为镉(49.16)、砷(12.28)、铅(7.63)、汞(2.64)、铬(2.39),镉的潜在生态风险指数最高。这说明镉是复垦地块最主要的生态风险因子,主要在“中等”生态危害等级中分布,占比64.71%,其次为轻微生态风险点位,占比29.41%。依据IR进行评价,复垦地块总体处于轻微生态风险状态。研究区域土壤生态风险预警指数(IER)变化范围为3.22~4.02,平均值为3.67,达到中度预警级别(表7)。

      表 7  水稻土重金属潜在生态风险评价

      Table 7.  Evaluation of potential ecological risks of heavy metals in paddy soils

      项目ErIRIER
      最大值  89.7 9.59 9.09 15.80 3.22 121.15 4.02
      最小值  31.35 6.16 0.00 5.74 1.60 52.96 3.22
      平均值  49.16 7.63 2.64 12.28 2.39 74.10 3.67
      标准差  14.77 0.99 3.73 2.31 0.49 17.19 0.21
      变异系数/% 30.05 12.93 141.53 18.77 20.58 23.19 5.68
    • 在整体空间内,复垦地块土壤砷元素有35.29%的点位超标,镉、铬、铅和汞4种重金属均未超过土壤重金属污染筛选值,但以GB/T 36869—2018《水稻生产的土壤 镉、铅、铬、汞、砷安全阈值》作为参比,少数点位镉元素超出安全阈值,砷元素有88.24%的点位超出安全阈值。在对应的水稻籽粒样品中,复垦地块个别点位有铬和铅超标。根据生态风险评价结果,镉的潜在生态风险指数最高,是研究区最主要的生态风险因子。从总体来看,复垦地个别点位水稻籽粒铬和铅超标;土壤砷元素有部分点位超标,其他重金属存在着一定的生态风险。由于土壤pH会随着种植年限的延长而下降,可能会导致重金属超标。因此,重金属镉、铬、铅和砷是研究区最主要的生态风险因子,后续需要进一步加强农田土壤环境监管,保障土壤环境安全和农产品安全。

参考文献 (24)

目录

/

返回文章
返回