留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟根系分泌物输入对森林土壤氮转化的影响研究综述

蔡银美 张成富 赵庆霞 李昕颖 何腾兵

蔡银美, 张成富, 赵庆霞, 李昕颖, 何腾兵. 模拟根系分泌物输入对森林土壤氮转化的影响研究综述[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210293
引用本文: 蔡银美, 张成富, 赵庆霞, 李昕颖, 何腾兵. 模拟根系分泌物输入对森林土壤氮转化的影响研究综述[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210293
CAI Yinmei, ZHANG Chengfu, ZHAO Qingxia, LI Xinying, HE Tengbing. Effect of simulated root exudates input on soil nitrogen transformation: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210293
Citation: CAI Yinmei, ZHANG Chengfu, ZHAO Qingxia, LI Xinying, HE Tengbing. Effect of simulated root exudates input on soil nitrogen transformation: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210293

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

模拟根系分泌物输入对森林土壤氮转化的影响研究综述

doi: 10.11833/j.issn.2095-0756.20210293
基金项目: 贵州省科技厅基础条件平台建设项目(黔科合平台人才〔2019〕5701号);贵州大学引进人才科研项目(贵大人基合字〔2017〕68号)
详细信息
    作者简介: 蔡银美(ORCID: 0000-0001-7686-6749),从事森林土壤生态研究。E-mail: 1830056589@qq.com
    通信作者: 赵庆霞(ORCID: 0000-0002-9774-6612),讲师,博士,从事逆境下植物生理生态适应机制研究。E-mail: qxzhao@gzu.edu.cn
  • 中图分类号: S714

Effect of simulated root exudates input on soil nitrogen transformation: a review

  • 摘要: 在全球气候变化加速植物生长和生物量积累的背景下,氮素是森林生态系统初级生产力的主要限制因子之一。根系分泌物所介导的根际微生物过程在驱动森林生态系统土壤养分循环和增加氮素有效性方面具有重要意义。基于此,本研究综述了模拟根系分泌物输入对森林土壤氮素矿化、硝化与反硝化过程的影响及其机制。发现根系分泌物中的有机酸、糖类和氨基酸等物质均能促进有机质的分解和氮素矿化,在一定程度上能缓解植物对氮的需求。不同碳含量和碳氮比的根系分泌物输入驱动根际微生物行使不同养分利用策略,通过生物和非生物作用,根系分泌物矿化有机质中的氮素供给植物吸收利用;根系分泌物中的生物硝化抑制剂能抑制土壤硝化作用,减少氮素的淋溶;根系分泌物还通过控制根际与氮转化相关的反硝化细菌群落来促进土壤反硝化作用。综上,植物通过增加根系分泌物的输入能提高地下碳分配,影响根际土壤氮素转化,在维持森林土壤氮素循环和缓解养分限制等方面具有重要作用。表2参70
  • 表  1  根系分泌物输入对土壤氮转化的影响

    Table  1.   Effects of root exudates on soil nitrogen transformation

    森林类型土壤类型种类输入量或输入速率输入方式影响文献
    云杉和冷杉 Abies fabri 棕色森林土壤 葡萄糖,草酸 单位根系表面积碳输入速率为5 μg·cm−2·h−1 蠕动泵连续添加 提高酶活性,促进氮矿化 [19]
    火炬松 Pinus taeda 辉绿岩发育的微酸性土壤 富马酸、丙二酸、草酸、柠檬酸、葡萄糖、果糖和蔗糖 单位根系表面积碳输入速率为0、20、100和200 mg·cm−2 ·d−1 蠕动泵连续添加 增加土壤微生物对氮的降解 [9]
    栎树 Quercus 潮土,母质为砂质沉积物 葡萄糖,丙氨酸 单位质量的土壤添加碳为
    1 mg·g−1
    一次性
    添加
    丙氨酸产生最大的激发效应,增加土壤微生物活性 [21]
    常绿阔叶林 酸性土壤 D-葡萄糖、D-果糖、D-木糖、草酸、延胡索酸、琥珀酸、乙酸、L-脯氨酸、L-精氨酸、L-甘氨酸、丝氨酸和谷氨酸 单位质量的土壤添加碳为0、0.3、0.6、1.2 mg·g−1 一次性
    添加
    添加0.6和1.2 mg·g−1碳显著提高氮转化相关酶的活性 [22]
    棕色森林土壤 葡萄糖、蔗糖、果糖、核糖、阿拉伯糖、甘氨酸、缬氨酸、谷氨酰胺、丝氨酸、丙氨酸 苹果酸、柠檬酸、丙二酸、草酸和延胡索酸 添加碳为0、0.375、0.750、1.500和3.000 mg·d−1 注射器连续添加 提高NH4 +-N含量,显著增加反硝化速率 [18]
    北美红栎 Quercus rubra和红花槭 Acer rubrum 砂质壤土,母质为冰川碛物 柠檬酸、草酸、富马酸、丙二酸和葡萄糖,氯化铵(NH4Cl)模拟氮含量 仅含碳,碳质量浓度为
    500 mg·L−1;碳氮比为10
    蠕动泵连续添加 提高土壤微生物生物量、微生物活性和外切酶活性 [23]
    栎木 Quercus spp.和马尾松 Pinus massoniana 微酸性土壤,母质为砂岩和页岩 柠檬酸、草酸,富马酸、丙二酸和葡萄糖 仅含碳,添加碳为
    0.053 6 g·m−2·d−1;碳氮比为10,添加碳为0.021 6 g·m−2 ·d−1;碳氮比为25,添加碳为0.053 6 g·m−2·d−1
    每次定量连续添加 增强酶功能 [24]
    云杉 暗棕壤 葡萄糖、柠檬酸和谷氨酸 仅含氮,氮质量浓度为
    6 mg·L–1;碳氮比为10、50、100;碳质量浓度为60 mg·L−1
    每次定量连续添加 增加胞外酶分泌,加速土壤有机质分解和无机氮释放 [25]
      说明:−表示文献中无森林类型信息
    下载: 导出CSV

    表  2  植物根系分泌生物硝化抑制剂的种类和效果

    Table  2.   Types and effects of biological nitrification inhibitors secreted by plant roots

    分类植物种类生物硝化抑制剂物质种类抑制方式文献
    草本臂形草 臂形草内酯   环二萜类AMO和HAO    [12] 
    作物高粱  高粱醌     苯醌类 AMO和HAO    [45] 
    作物高粱  对羟基苯丙酸甲酯苯丙酸类AMO       [44-46]
    作物高粱  樱花素     黄酮类 AMO和HAO    [45] 
    作物水稻  1,9-癸二醇    脂肪醇 AMO       [48-49]
    木本卡兰贾树水黄皮素    抑制氨氧化细菌活性[50] 
    下载: 导出CSV
  • [1] HU Hangwei, CHEN Deli, HE Jizheng. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates [J]. FEMS Microbiol Rev, 2015, 39(5): 729 − 749. doi:  10.1093/femsre/fuv021
    [2] SAXE H, CANNELL M G R, JOHNSEN Q, et al. Tree and forest functioning in Response to global warming [J]. New Phytol, 2001, 149(3): 369 − 399. doi:  10.1046/j.1469-8137.2001.00057.x
    [3] 赵悦. 转Bt基因抗虫棉根分泌物对土壤N转化的影响及机制[D]. 武汉: 华中农业大学, 2016

    ZHAO Yui. Effect and Mechanis of Root Exudates from Transgenic Bt Cotton on the Soil N Cycling[J]. Wuhan: Huazhong Agricultural University, 2016.
    [4] 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1): 406 − 415. doi:  10.3321/j.issn:1000-0933.2009.01.049

    HE Jizheng, ZHANG Limei. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle [J]. Acta Ecol Sin, 2009, 29(1): 406 − 415. doi:  10.3321/j.issn:1000-0933.2009.01.049
    [5] HUDSON J M G, HENRY G H R. Increased plant biomass in a high Arctic heath community from 1981 to 2008 [J]. Ecology, 2009, 90(10): 2657 − 2663. doi:  10.1890/09-0102.1
    [6] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1): 98 − 108.

    HE Jizheng, ZHANG Limei. Key processes and microbial mechanisms of soil nitrogen transformation [J]. Microbiol Bull, 2013, 40(1): 98 − 108.
    [7] OFFRE P, SPANG A, SCHLEPER C. Archaea in biogeochemical cycles [J]. Annu Rev Microbiol, 2013, 67(1): 437 − 457. doi:  10.1146/annurev-micro-092412-155614
    [8] DRAKE J E, ANNE G B, HOFMOCKEL K S, et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2 [J]. Ecol Lett, 2011, 14(4): 349 − 357. doi:  10.1111/j.1461-0248.2011.01593.x
    [9] MEIER I C, FINZI A C, PHILLIPS R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools [J]. Soil Biol Biochem, 2017, 106: 119 − 128. doi:  10.1016/j.soilbio.2016.12.004
    [10] YIN Huajun, LI Yufei, XIAO Juan, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming [J]. Glob Change Biol, 2013, 19(7): 2158 − 2167. doi:  10.1111/gcb.12161
    [11] PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation [J]. Ecol Lett, 2011, 14(2): 187 − 194. doi:  10.1111/j.1461-0248.2010.01570.x
    [12] SUBBARAO G V, NAKAHARA K, HURTADO M P, et al. Evidence for biological nitrification inhibition in Brachiaria pastures [J]. Proc Natl Acad Sci, 2009, 106(41): 17302 − 17307. doi:  10.1073/pnas.0903694106
    [13] COSKUN D, BRITTO D T, SHI Weiming, et al. How plant root exudates shape the nitrogen cycle [J]. Trends Plant Sci, 2017, 22(8): 661 − 673. doi:  10.1016/j.tplants.2017.05.004
    [14] HAICHAR F E, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground [J]. Soil Biol Biochem, 2014, 77: 69 − 80. doi:  10.1016/j.soilbio.2014.06.017
    [15] NGUYEN C. Rhizodeposition of organic C by plants: mechanisms and controls [J]. Agronomie, 2003, 23(5/6): 375 − 396.
    [16] BRZOSTEK E R, GRECO A, DRAKE, J E, et al. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils [J]. Biogeochemistry, 2013, 115: 65 − 76. doi:  10.1007/s10533-012-9818-9
    [17] HAMER U, MARSCHNER B. Priming effects of sugars, amino acids, organic acids and catechol on the mineralization of lignin and peat [J]. J Plant Nutr Soil Sci, 2002, 165(3): 261 − 268. doi:  10.1002/1522-2624(200206)165:3<261::AID-JPLN261>3.0.CO;2-I
    [18] LANGARICA-FUENTES A, MANRUBIA M, GILES M E, et al. Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil [J]. Soil Biol Biochem, 2018, 120: 70 − 79. doi:  10.1016/j.soilbio.2018.01.034
    [19] YUAN Yuanshuang, ZHAO Wenqiang, ZHANG Ziliang, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots [J]. Soil Biol Biochem, 2018, 121: 16 − 23. doi:  10.1016/j.soilbio.2018.03.002
    [20] BLAGODATSKAYA E, YUYUKINA T, BLAGODATSKY S, et al. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects [J]. Soil Biol Biochem, 2011, 43(4): 778 − 786. doi:  10.1016/j.soilbio.2010.12.011
    [21] BERNAL B, MCKINLEY D C, HUNGATE B A, et al. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs [J]. Soil Biol Biochem, 2016, 98: 85 − 94. doi:  10.1016/j.soilbio.2016.04.007
    [22] 胡凯, 陶建平, 黄科, 等. 模拟根系分泌物碳输入对凋落叶分解中微生物群落动态的影响[J]. 应用与环境生物学报, 2020, 26(2): 417 − 424.

    HU Kai, TAO Jianping, HUANG Ke, et al. Effects of simulated root exudate carbon input on the dynamics of microbial community during litter decomposition [J]. Chin J Appl Environ Biol, 2020, 26(2): 417 − 424.
    [23] DRAKE J E, DARBY B A, GIASSON M A, et al. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest [J]. Biogeosciences, 2013, 10(2): 821 − 838. doi:  10.5194/bg-10-821-2013
    [24] TIAN Kai, KONG Xiangshi, YUAN Liuhuan, et al. Priming effect of litter mineralization: the role of root exudate depends on its interactions with litter quality and soil condition [J]. Plant Soil, 2019, 440(1/2): 457 − 471.
    [25] 梁儒彪, 梁进, 乔明锋, 等. 模拟根系分泌物C∶N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5): 466 − 476. doi:  10.17521/cjpe.2015.0045

    LIANG Rubiao, LIANG Jing, QIAO Mingfeng, et al. Effects of simulated root exudates C∶N stoichiometry on soil carbon dynamics and microbial community structure in subalpine forests of western Sichuan [J]. Chin J Plant Ecol, 2015, 39(5): 466 − 476. doi:  10.17521/cjpe.2015.0045
    [26] 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055 − 1070. doi:  10.17521/cjpe.2018.0156

    YIN Huanjun, ZHANG Ziliang, LIU Qing. Research on the ecology of forest root exudates: problems and prospects [J]. Chin J Plant Ecol, 2018, 42(11): 1055 − 1070. doi:  10.17521/cjpe.2018.0156
    [27] NOBILI M D, CONTIN M, MONDINI C, et al. Soil microbial biomass is triggered into activity by trace amounts of substrate [J]. Soil Biol Biochem, 2001, 33(9): 1163 − 1170. doi:  10.1016/S0038-0717(01)00020-7
    [28] KUZYAKOV Y, BOL R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar [J]. Soil Biol Biochem, 2006, 38(4): 747 − 758. doi:  10.1016/j.soilbio.2005.06.025
    [29] LANDI L, VALORI F, ASCHER J, et al. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils [J]. Soil Biol Biochem, 2006, 38(3): 509 − 516. doi:  10.1016/j.soilbio.2005.05.021
    [30] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nat Clim Change, 2015, 5(6): 588 − 595. doi:  10.1038/nclimate2580
    [31] BERTIN C, YANG X, WESTON L A. The role of root exudates and allelochemicals in the rhizosphere [J]. Plant Soil, 2003, 256(1): 67 − 83. doi:  10.1023/A:1026290508166
    [32] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. Plant Soil, 2009, 321(1/2): 5 − 33.
    [33] KUZYAKOV Y. Review: factors affecting rhizosphere priming effects [J]. J Plant Nutr Soil Sci, 2002, 165(4): 382 − 396. doi:  10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
    [34] WANG Qitong, CHEN Lanying, XU Hang, et al. The effects of warming on root exudation and associated soil N transformation depend on soil nutrient availability [J].Rhizosphere, 2021, 17(3): 100263. doi: 10.1016/j.rhisph.2020.100263.
    [35] WEI He, YUAN Yuanshuang, ZHANG Ziliang, et al. Effect of N addition on root exudation and associated microbial N transformation under Sibiraea angustata in an alpine shrubland [J]. Plant Soil, 2021, 460: 469 − 481. doi:  10.1007/s11104-020-04753-4
    [36] MOORHEAD D L, SINSABAUGH R L. A theoretical model of litter decay and microbial interaction [J]. Ecol Monogr, 2006, 76(2): 151 − 174. doi:  10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
    [37] HESSEN D O, AGREN G I, ANDERSON T R, et al. carbon sequestration in ecosystems: the role of stoichiometry [J]. Ecology, 2004, 85(5): 1179 − 1192. doi:  10.1890/02-0251
    [38] CHEN Ruirui, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories [J]. Global Change Biol, 2014, 20(7): 2356 − 2367. doi:  10.1111/gcb.12475
    [39] JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps [J]. Plant Soil, 2003, 248(1): 31 − 41.
    [40] JOHANSSON E M, FRANSSON P M A, FINLAY R D, et al. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2 [J]. Soil Biol Biochem, 2009, 41(6): 1111 − 1116. doi:  10.1016/j.soilbio.2009.02.016
    [41] 罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12): 3496 − 3504.

    LUO Yongqing, ZHAO Xueyong, LI Meixia. Ecological effect of plant root exudates and related affecting factors: a review [J]. Chin J Appl Ecol, 2012, 23(12): 3496 − 3504.
    [42] 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景[J]. 土壤学报, 2021, 58(3): 545 − 557.

    LU Yufang, SHI Weiming. Progress in research and agricultural application prospect of biological nitrification inhibitors [J]. Acta Pedol Sin, 2021, 58(3): 545 − 557.
    [43] 王莉, BOWATTE S, 侯扶江. 生物硝化抑制剂(BNI)在提高农业生产系统中氮利用率方面的研究进展[J]. 草业科学, 2020, 37(3): 592 − 601. doi:  10.11829/j.issn.1001-0629.2019-0190

    WANG Li, BOWATTE S, HOU Fujiang. Research progress of biological nitrification inhibitor (BNI) in improving nitrogen use efficiency in agricultural production systems [J]. Pratacultural Sci, 2020, 37(3): 592 − 601. doi:  10.11829/j.issn.1001-0629.2019-0190
    [44] SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification [J]. Plant Soil, 2008, 313(1/2): 89 − 99.
    [45] SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization [J]. Plant Soil, 2013, 366(1/2): 243 − 259.
    [46] NARDI P, AKUTSU M, PARIASCA-TANAKA J, et al. Effect of methyl 3-4-hydroxyphenyl propionate, a Sorghum root exudate, on N dynamic, potential nitrification activity and abundance of ammonia-oxidizing bacteria and archaea [J]. Plant Soil, 2013, 367(9): 627 − 637.
    [47] O’SULLIVAN C A, FILLERY I R P, ROPER M M, et al. Identification of several wheat landraces with biological nitrification inhibition capacity [J]. Plant Soil, 2016, 404(2): 61 − 74.
    [48] LI Sun, LU Yufang, YU Fangwei, et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency [J]. New Phytol, 2016, 212(3): 646 − 656. doi:  10.1111/nph.14057
    [49] JUAN P T, PIERFRANCESCO N, MATTHIAS W. Nitrification inhibition activity, a novel trait in root exudates of rice [J].Aob Plants, 2010, 9(17): plq014. doi: 10.1093/aobpla/plq014.
    [50] SAHRAWAT K L, MUKERJEE S K. Nitrification inhibitors. I. studies with karanjin, a furanolflavonoid from karanja (Pongamia glabra) seeds [J]. Plant Soil, 1977, 47(1): 27 − 36. doi:  10.1007/BF00010365
    [51] MAJUMDAR D. Suppression of nitrification and N2O emission by karanjin-a nitrification inhibitor prepared from karanja (Pongamia glabra Vent. ) [J]. Chemosphere, 2002, 47(8): 845 − 850. doi:  10.1016/S0045-6535(01)00287-9
    [52] SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification [J]. Plant Soil, 2008, 313: 89 − 99. doi:  10.1007/s11104-008-9682-5
    [53] SUBBARAO G V, KISHII M, NAKAHARA K, et al. Biological nitrification inhibition (BNI): is there potential for genetic interventions in the Triticeae? [J]. Breed Sci, 2009, 59(5): 529 − 545. doi:  10.1270/jsbbs.59.529
    [54] 黄益宗, 张福珠, 刘淑琴, 等. 化感物质对土壤N2O释放影响的研究[J]. 环境科学学报, 1999, 19(5): 478 − 482. doi:  10.3321/j.issn:0253-2468.1999.05.003

    HUANG Yizong, ZHANG Fuzhu, LIU Shuqin, et al. Effect of allelochemicals on N2O emission from soil [J]. Acta Sci Circumstantiae, 1999, 19(5): 478 − 482. doi:  10.3321/j.issn:0253-2468.1999.05.003
    [55] ZHANG Xiaonan, LU Yufang, YANG Ting, et al. Factors influencing the release of the biological nitrification inhibitor 1, 9-decanediol from rice (Oryza sativa L. ) roots [J]. Plant Soil, 2019, 9(1): 253 − 265.
    [56] ZENG Houqing, DI Tingjun, ZHU Yiyong, et al. Transcriptional response of plasma membrane H+-ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots [J]. Plant Soil, 2016, 398(1/2): 301 − 312.
    [57] WOLDENDORP J W, LAANBROEK H J. Activity of nitrifiers in relation to nitrogen nutrition of plants in natural ecosystems [J]. Plant Soil, 1989, 115(2): 217 − 228. doi:  10.1007/BF02202590
    [58] MAHMOOD T, ALI R, MALIK K A, et al. Denitrification with and without maize plants (Zea mays L. ) under irrigated field conditions [J]. Biol Fert Soils, 1997, 24(3): 323 − 328. doi:  10.1007/s003740050251
    [59] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 2013, 11(11): 789 − 799. doi:  10.1038/nrmicro3109
    [60] GROFFMAN P M, BUTTERBACH-BAHL K, FULWEILER R W, et al. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models [J]. Biogeochemistry, 2009, 93(1/2): 49 − 77.
    [61] 庄姗, 林伟, 丁军军, 等. 不同根系分泌物对土壤N2O排放及同位素特征值的影响 [J]. 中国农业科学, 2020, 53(9): 1860 − 1873. doi:  10.3864/j.issn.0578-1752.2020.09.013

    ZHUANG Shan, LIN Wei, DING Junjun, et al. Effects of different root exudates on soil N2O emission and isotopic characteristic values [J]. China Agric Sci, 2020, 53(9): 1860 − 1873. doi:  10.3864/j.issn.0578-1752.2020.09.013
    [62] GILES M E, DANIELL T J, BAGGS E M. Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community [J]. Soil Biol Biochem, 2017, 106(11): 90 − 98.
    [63] GUYONNET J P, FLORIAN V, GUILLAUME M, et al. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites [J]. FEMS Microbiol Ecol, 2017, 93(4): 4 − 22.
    [64] 马舒坦, 颜晓元. 甲酸盐和葡萄糖对2种土壤N2O排放的刺激作用[J]. 农业环境科学学报, 2019, 38(1): 235 − 242. doi:  10.11654/jaes.2018-0227

    MA Shutan, YAN Xiaoyuan. Stimulative effects of formate and glucose on N2O emission from two soils [J]. J Agro-Environ Sci, 2019, 38(1): 235 − 242. doi:  10.11654/jaes.2018-0227
    [65] 童亮, 李平衡, 周国模, 等. 竹林鞭根系统研究综述[J]. 浙江农林大学学报, 2019, 36(1): 183 − 192.

    TONG Liang, LI Pingheng, ZHOU Guomo, et al. A review of research about rhizome-root system in bamboo forest [J]. J Zhejiang A&F Univ, 2019, 36(1): 183 − 192.
    [66] ZUMFT W G. Cell biology and molecular basis of denitrification [J]. Microbiol Mol Biol Rev, 1997, 61(4): 533 − 616.
    [67] MURRAY P J, HATCH D J, DIXON E R, et al. Denitrification potential in a grassland subsoil: effect of carbon substrates [J]. Soil Biol Biochem, 2004, 36(3): 545 − 547. doi:  10.1016/j.soilbio.2003.10.020
    [68] MOUNIER E, HALLET S, CHÈNEBY D, et al. Influence of maize mucilage on the diversity and activity of the denitrifying community [J]. Environ Microbiol, 2010, 6(3): 301 − 312.
    [69] MORLEY N J, RICHARDSON D J, BAGGS E M, et al. Substrate induced denitrification over or under estimates shifts in soil N2/N2O ratios [J]. PLoS One, 2014, 9(9): 792 − 800.
    [70] HENRY S, TEXIER S, HALLET S, et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates [J]. Environ Microbiol, 2010, 10(11): 3082 − 3092.
  • [1] 张崑, 徐坚, 鲁长根, 邵建均, 蔡广越, 张艳, 吴家森.  不同施肥对稻-菜种植模式氮磷吸收及径流流失的影响 . 浙江农林大学学报, 2021, 38(4): 784-791. doi: 10.11833/j.issn.2095-0756.20200593
    [2] 原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡.  不同林龄榧树林地土壤碳氮磷化学计量特征 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200761
    [3] 褚淑祎, 赖政钢, 李锷, 邵建雷, 黄志达, 肖继波.  3种块茎类挺水植物的净水效能及资源化利用 . 浙江农林大学学报, 2020, 37(6): 1224-1229. doi: 10.11833/j.issn.2095-0756.20200124
    [4] 张震, 刘伸伸, 胡宏祥, 何金铃, 马友华, 王一帆, 代宇雨, 徐微.  3种湿地植物对农田沟渠水体氮、磷的消减作用 . 浙江农林大学学报, 2019, 36(1): 88-95. doi: 10.11833/j.issn.2095-0756.2019.01.012
    [5] 裴建川, 张书廷, 杨金艳, 张进.  立体生态模块处理杭州市玉皇山南基金小镇水体氮的效果 . 浙江农林大学学报, 2018, 35(6): 987-996. doi: 10.11833/j.issn.2095-0756.2018.06.001
    [6] 郭茜, 陆扣萍, 胡国涛, 杨兴, 袁国栋, 沈磊磊, 王海龙.  死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响 . 浙江农林大学学报, 2017, 34(2): 244-252. doi: 10.11833/j.issn.2095-0756.2017.02.007
    [7] 徐炜杰, 郭佳, 赵敏, 王任远, 侯淑贞, 杨芸, 钟斌, 郭华, 刘晨, 沈颖, 柳丹.  重金属污染土壤植物根系分泌物研究进展 . 浙江农林大学学报, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [8] 朱仁欢, 李玮, 郑子成, 李廷轩, 洪月, 何秋佳, 田宗渠.  退耕植茶地土壤碳氮磷生态化学计量学特征 . 浙江农林大学学报, 2016, 33(4): 612-619. doi: 10.11833/j.issn.2095-0756.2016.04.009
    [9] 欧静, 刘仁阳, 张仁嫒, 谌端玉, 王丽娟, 陈训.  杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响 . 浙江农林大学学报, 2014, 31(6): 926-931. doi: 10.11833/j.issn.2095-0756.2014.06.015
    [10] 俞静芳, 余树全, 张超, 李土生.  应用CASA模型估算浙江省植被净初级生产力 . 浙江农林大学学报, 2012, 29(4): 473-481. doi: 10.11833/j.issn.2095-0756.2012.04.001
    [11] 邵东华, 任琴, 宁心哲, 白淑兰.  油松和虎榛子不同林型根系分泌物组分及化感效应 . 浙江农林大学学报, 2011, 28(2): 333-338. doi: 10.11833/j.issn.2095-0756.2011.02.026
    [12] 郝瑞军, 方海兰, 沈烈英, 车玉萍.  上海典型植物群落土壤有机碳矿化特征 . 浙江农林大学学报, 2010, 27(5): 664-670. doi: 10.11833/j.issn.2095-0756.2010.05.005
    [13] 张圆圆, 窦春英, 姚芳, 叶正钱.  氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响 . 浙江农林大学学报, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [14] 徐涌, 叶正钱, 姜培坤, 周国模, 吴家森, 姚芳.  太湖源林区水系源头水质时空变异与原因探析 . 浙江农林大学学报, 2009, 26(5): 607-612.
    [15] 张利, 何新华, 陈虎, 李一伟, 张超兰.  铅胁迫下杨梅根系分泌有机酸的研究 . 浙江农林大学学报, 2009, 26(5): 663-666.
    [16] 蒋宗垲.  福建柏与杉木人工林细根氮磷养分现存量的动态变化 . 浙江农林大学学报, 2007, 24(1): 33-38.
    [17] 房莉, 俞元春, 余健, 张平究, 朱强根.  低分子量有机酸对森林土壤磷的活化作用 . 浙江农林大学学报, 2007, 24(1): 28-32.
    [18] 詹伟君, 余有祥, 程晓建, 吴家森, 郑炳松.  仙客来夏季休眠期叶片光合速率和植株氮磷钾质量分数的变化 . 浙江农林大学学报, 2005, 22(2): 176-179.
    [19] 李淑芬, 俞元春, 何晟.  南方森林土壤溶解有机碳与土壤因子的关系 . 浙江农林大学学报, 2003, 20(2): 119-123.
    [20] 姜培坤, 蒋秋怡, 徐秋芳, 钱新标, 金磊.  利用碳14研究杉木苗根系分泌物 . 浙江农林大学学报, 1994, 11(3): 241-246.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210293

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/5/1

计量
  • 文章访问数:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-07-31

模拟根系分泌物输入对森林土壤氮转化的影响研究综述

doi: 10.11833/j.issn.2095-0756.20210293
    基金项目:  贵州省科技厅基础条件平台建设项目(黔科合平台人才〔2019〕5701号);贵州大学引进人才科研项目(贵大人基合字〔2017〕68号)
    作者简介:

    蔡银美(ORCID: 0000-0001-7686-6749),从事森林土壤生态研究。E-mail: 1830056589@qq.com

    通信作者: 赵庆霞(ORCID: 0000-0002-9774-6612),讲师,博士,从事逆境下植物生理生态适应机制研究。E-mail: qxzhao@gzu.edu.cn
  • 中图分类号: S714

摘要: 在全球气候变化加速植物生长和生物量积累的背景下,氮素是森林生态系统初级生产力的主要限制因子之一。根系分泌物所介导的根际微生物过程在驱动森林生态系统土壤养分循环和增加氮素有效性方面具有重要意义。基于此,本研究综述了模拟根系分泌物输入对森林土壤氮素矿化、硝化与反硝化过程的影响及其机制。发现根系分泌物中的有机酸、糖类和氨基酸等物质均能促进有机质的分解和氮素矿化,在一定程度上能缓解植物对氮的需求。不同碳含量和碳氮比的根系分泌物输入驱动根际微生物行使不同养分利用策略,通过生物和非生物作用,根系分泌物矿化有机质中的氮素供给植物吸收利用;根系分泌物中的生物硝化抑制剂能抑制土壤硝化作用,减少氮素的淋溶;根系分泌物还通过控制根际与氮转化相关的反硝化细菌群落来促进土壤反硝化作用。综上,植物通过增加根系分泌物的输入能提高地下碳分配,影响根际土壤氮素转化,在维持森林土壤氮素循环和缓解养分限制等方面具有重要作用。表2参70

English Abstract

蔡银美, 张成富, 赵庆霞, 李昕颖, 何腾兵. 模拟根系分泌物输入对森林土壤氮转化的影响研究综述[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210293
引用本文: 蔡银美, 张成富, 赵庆霞, 李昕颖, 何腾兵. 模拟根系分泌物输入对森林土壤氮转化的影响研究综述[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210293
CAI Yinmei, ZHANG Chengfu, ZHAO Qingxia, LI Xinying, HE Tengbing. Effect of simulated root exudates input on soil nitrogen transformation: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210293
Citation: CAI Yinmei, ZHANG Chengfu, ZHAO Qingxia, LI Xinying, HE Tengbing. Effect of simulated root exudates input on soil nitrogen transformation: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210293

返回顶部

目录

    /

    返回文章
    返回