留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系

黄恺翔 俞重阳 钱海蓉 上官方京 汤璐瑶 张博纳 谢江波

魏继华, 李佳益, 刘宏, 等. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
引用本文: 黄恺翔, 俞重阳, 钱海蓉, 等. 鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系[J]. 浙江农林大学学报, 2022, 39(2): 244-251. DOI: 10.11833/j.issn.2095-0756.20210628
WEI Jihua, LI Jiayi, LIU Hong, et al. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity[J]. Journal of Zhejiang A&F University, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
Citation: HUANG Kaixiang, YU Chongyang, QIAN Hairong, et al. Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve[J]. Journal of Zhejiang A&F University, 2022, 39(2): 244-251. DOI: 10.11833/j.issn.2095-0756.20210628

鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系

DOI: 10.11833/j.issn.2095-0756.20210628
基金项目: 国家自然科学基金资助项目(31901280,31770651,41730638);中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室开放基金资助项目
详细信息
    作者简介: 黄恺翔(ORCID: 0000-0001-8650-8320),从事植物水分关系研究。E-mail: 543451857@qq.com
    通信作者: 谢江波(ORCID: 0000-0003-1392-8396),副教授,博士,从事植物水分关系研究。E-mail: 0208xiejiangbo@163.com
  • 中图分类号: S718.5

Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve

  • 摘要:   目的  木质部解剖结构是植物水力功能和水分利用策略的基础。散孔材和环孔材的导管分布和形态存在显著差异,对2种材性树种木质部解剖结构和水力功能的关系进行比较,有助于理解不同材性树种的水分适应机制。  方法  选取河南省信阳市鸡公山自然保护区中的3个散孔材树种(枫香Liquidambar formosana、旱柳Salix matsudana、深山含笑Michelia maudiae)和3个环孔材树种(槲树Quercus dentata、楝Melia azedarach、野核桃Juglans cathayensis),研究2种材性树种的枝水力功能(比导率和栓塞抗性)和解剖结构的关系。  结果  3个环孔材树种比导率更大,3个散孔材树种栓塞抗性更强;在物种水平上,只有散孔材树种深山含笑比导率和栓塞抗性呈显著负相关(P<0.05),存在水力效率-安全权衡。3种散孔材树种相较于3种环孔材树种具有更大的导管密度、导管壁厚度跨度比和更小的导管直径、导管壁厚度。  结论  环孔材树种倾向于通过增大导管直径显著提高其输水效率,从而避免水势下降、降低潜在栓塞风险。散孔材树种木质部结构中的导管壁厚度和导管壁厚度跨度比对植物水分传输功能具有重要影响。图5表1参32
  • 沙棘Hippophae rhamnoides又名醋柳,是胡颓子科Elaeagnaceae沙棘属Hippophae的落叶性灌木[1]。作为药食同源植物的沙棘不仅在食疗、医药、农林牧渔等领域具有较大的经济价值,在水土保持、恢复生物链及防风固沙中也具有极大的生态价值[2-5]。生长过程中沙棘根部会遭受土壤中放线菌、细菌的侵染形成根瘤。部分菌种会在根瘤中高度富集发挥固氮、促生长、抵御逆境胁迫、防止有害病菌侵染等功能[6-8]。传统的微生物研究方法主要以培养基进行分离纯培养,再进而探究其培养特征、显微结构、生理特性等[9]。而自然界中90%以上的微生物为不可培养微生物,且现有培养基与培养技术不适应未知菌群的生长,或部分菌群生长缓慢、丰度较小等情况都会对菌群的多样性评估产生影响[10]。以二代高通量测序为基础的16S rDNA技术通过对编码原核核糖体小亚基rRNA的DNA序列进行测序,不仅克服了传统方法难以获得不可培养菌株的弊端,还能对样品中的物种相对丰度进行排序,并分析各群组样品中发挥重要作用的优势物种,解析样品中微生物之间的相互作用。该技术对研究沙棘根瘤内生菌微生物多样性与环境关系以及微生物资源的开发利用有重要的理论和现实意义[11-16]

    本研究通过16S rRNA测序技术对沙棘根瘤内生菌进行物种注释、分类学分析、α多样性分析、β多样性分析、组间差异显著性分析,比较高通量测序和纯培养方法的差异与优劣,为发掘具有应用价值的根瘤内生菌资源提供科学依据。

    采样地为内蒙古自治区巴彦淖尔市磴口县中国林业科学研究院沙漠林业实验中心试验林场(40°29′34″N,106°74′06″E)。该研究区海拔为1 054 m,年平均气温为7.4 ℃。2020年7月,选取人为干扰因素较少的沙漠边缘地带采集沙棘根瘤样品。在每个样地10 m×10 m的区域内用网格法定9个点,运用梅花形采样法在边角及中心共5个点分别采集根瘤样品并进行混合,共设计6组重复样,分别命名为M1、M2、M3、M4、M5、M6。

    1.2.1   沙棘根瘤内生菌的分离

    依据文献[17-18]的方法进行修改,使其更加适宜沙棘根瘤内生菌的分离。详细步骤如下:选取新鲜饱满的根瘤,冲洗掉土粒泥沙,将根瘤团用解剖刀分割成带有单柄的瘤瓣,用纱布包裹,先用体积分数为95%的酒精溶液浸泡30 s,再用体积分数为10%的次氯酸钠溶液表面灭菌5 min,取出后用无菌水冲洗数次。在灭菌滤纸上,用无菌解剖刀先切取根瘤头部,再将其均分成2~3份薄片,置于固体培养基中28 ℃恒温暗处静置培养。根据相关研究,本研究选取BAP[19]、S[20]、JA[19]、高氏一号培养基[19]进行分离培养。

    1.2.2   沙棘根瘤内生菌的鉴定

    提取纯培养的沙棘根瘤内生菌DNA后,对16S rDNA全长进行PCR扩增。序列引物采用YU等[21]设计的细菌通用引物(引物序列27F:5′-AGAGTTTGATCMTGGCTCAG-3′,1492R:5′-GGYTACCTTGTTACGACTT-3′),PCR总反应体系为50 μL,包括10×缓冲液(KOD buffer) 5 μL、2 mmol·L−1三磷酸脱氧核糖核苷酸混合液(dNTPs) 5 μL、基因组DNA (genomic DNA) 1 μL、上游引物(forward primer) (10 μm) 1 μL、下游引物(reverse primer) (10 μm) 1 μL、DNA聚合酶(KOD DNA polymerase) 1 μL、超纯水(ddH2O) 36 μL。PCR反应程序:94 ℃预变性 3 min,94 ℃变性 30 s,58 ℃退火 30 s,72 ℃延伸1 min,35个循环,最后72 ℃延伸10 min。用质量分数为1%的琼脂糖凝胶电泳,确定有特异扩增后,进行PCR产物回收和测序注释,并参考文献[22-25]进行比对校验。

    1.3.1   建库测序

    提取沙棘根瘤总DNA后,根据16S rDNA保守区设计引物(引物序列335F:5′-CADACTCCTACGGGAGGC-3′,769R:5′-ATCCTGTTTGMTMCCCVCRC-3′),在引物末端加上测序接头,便于建库时添加能区分样本的碱基序列的条码/索引(barcode/index)。再进行PCR扩增并对其产物进行紫外分光光度计定量及混样、过柱纯化和均一化形成测序文库,建好的文库先进行文库质检,质检合格的文库用Illumina HiSeq 2500进行测序[26]。高通量测序得到的原始图像数据文件,经碱基识别分析转化为原始测序序列,结果以FASTQ (简称为fq)文件格式存储[27]

    1.3.2   测序数据处理

    首先使用 Trimmomatic v.0.33软件[28],对测序得到的原始测序序列进行过滤;其次使用cutadapt 1.9.1软件进行引物序列的识别与去除,得到不包含引物序列的高质量测序序列;然后使用FLASH v1.2.7软件[29],按照最小重叠(overlap)长度为10 bp、重叠区允许的最大错配比率为0.2的要求,对每个样品高质量的一小段短的基因测序片段(reads)进行拼接,得到的拼接序列即原始序列质控后的高质量测序序列(clean reads);最后使用UCHIME v4.2软件[30],鉴定并去除嵌合体序列,得到最终有效数据。使用Usearch软件对reads在97.0%的相似度水平下进行聚类,获得分类操作单元(OTU)[31],以测序所有序列数的0.005%作为阈值过滤OTU[32]。以SILVA (http://www.arb-silva.de/)为参考数据库使用朴素贝叶斯分类器对特征序列进行分类学注释,可得到每个特征对应的物种分类信息,进而在各水平(门、纲、目、科、属、种)统计样品群落组成,利用QIIME软件生成不同分类水平上的物种丰度表,再利用R语言工具绘制样品分类学水平下的群落结构图[33]。使用QIIME软件对样品α多样性进行评估和t检验(显著性水平为0.01)。利用Mothur v1.30软件和R语言工具包绘制稀释曲线。基于独立OTU,采用加权分析方法和Bray-Curtis算法,使用QIIME软件进行非加权组平均法(UPGMA)分析,比较各组样品间的物种差异。

    使用Usearch软件对clean reads在97.0%的相似度水平下进行聚类,共计获得651个OTU。各样品OTU个数分布较为均匀,样品M1~M6分别为551、583、579、518、593、589个。如图1所示:6组样品中共有的OTU数为417个。M3、M5、M6中分别有4、2、9个特有的OTU,为样品特有OTU,非单个样品特有或所有样品间共有的OTU在图1未做展示。从整体来看,不同地点的各样品间的OTU差异性远小于共性,说明采样方法设计合理。

    图 1  沙棘(M1~M6)根瘤样品分类操作单元(OTU)花瓣图
    Figure 1  Petal image of operational taxonomic unit (OTU) of H. rhamnoides root nodule sample (M1-M6)

    对6组样品测序共获得 810 039对reads,双端reads质控、拼接后共产生617 188条clean reads。其中质量≥20的碱基占总碱基数的比例(Q20)为98.7%,质量≥30的碱基占总碱基数的比例(Q30)为95.4%,表明测序质量较好。从图2可见:各样品稀释性曲线趋向平缓,表明在持续抽样下新物种出现的速率逐渐趋于平缓,此环境中物种数量不会随测序数量的增加而显著增多[34],说明取样合理,能较好体现6组样品中根瘤内生菌的多样性,可以进行数据分析。M5的Shannon和Simpson指数最大(表1),说明物种多样性最高。同理,M4的物种多样性最低。物种丰度方面M5与M6差别不大,均有较高水平。M4根瘤样品的物种丰度最低。样点的Shannon指数平均为4.24,Simpson指数平均为0.70,Ace指数平均为585.79,Chao1指数平均为595.47,样本文库平均覆盖率为99.95%。说明采样地的沙棘根瘤内生菌的物种丰富且多样性较大,各物种分配相对均匀,其微生物物种信息得到了充分体现。

    图 2  各样品稀释性曲线
    Figure 2  Dilution curve of each sample
    表 1  各组样品的α多样性指数
    Table 1  Alpha diversity index for each group of samples
    样品Shannon
    指数
    Simpson
    指数
    Ace
    指数
    Chao1
    指数
    覆盖
    率/%
    M12.530.47568.45598.5799.95
    M24.730.79595.09600.6099.95
    M34.280.75600.58607.4599.95
    M42.520.44542.32543.5299.94
    M56.580.95605.66610.7199.94
    M64.820.77602.63611.9799.94
    平均4.240.70585.79595.4799.95
    下载: 导出CSV 
    | 显示表格

    通过传统分离方法从BAP、JA、S、高氏一号培养基中得到纯培养菌株96株。所有菌株均可传代培养,但菌株之间培养周期差异较大,培养周期在1~30 d呈离散型分布。对各菌株进行分子鉴定,共有4门8纲8目13科19属。在门的分类水平分别为变形菌门Proteobacteria、放线菌门Actinobacteria、厚壁菌门Firmicutes和柔膜菌门Tenericutes。在属的分类水平上,96株菌分属于支原体属Mycoptasma 1株、慢生根瘤菌属Bradyrhizobim 6株、土壤杆菌属Agrobacterium 7株、肠杆菌属Enterobacter 6株、小坂菌属Kosakonia 8株、柠檬酸杆菌属Citrobacter 1株、约克氏菌属Yokenella 1株、欧文氏菌属Erwinia 1株、克罗诺杆菌属Cronobacter 2株、泛菌属Pantoea 1株、莫拉菌属Moraxella 1株、贪噬菌属Variovorax 1株、草螺菌属Herbaspirillum 1株、假单胞菌属Pseudomonas 5株、链霉菌属Streptomyces 14株、小单孢菌属Micromonospora 1株、短杆菌属Brevibacterium 6株、葡萄球菌属Straphylococcus 1株和芽孢杆菌属Bacillus 32株。其中,优势门为变形菌门和厚壁菌门,优势属为芽孢杆菌属和链霉菌属。

    高通量测序分析发现:6组样品共有14门34纲89目148科314属。将相对丰度大于0.1%的门与相对丰度前10的属进行汇总(图3表2表3)发现:在门的分类水平上,6组样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。其次为拟杆菌门Bacteroidetes、杆菌门Patescibacteria、厚壁菌门、酸杆菌门Acidobacteria。在属的分类水平上,弗兰克氏菌属Frankia占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。其次为根瘤菌属Rhizobium、类固醇杆菌属Steroidobacter、糖单孢菌属Saccharimonadales、肠杆菌属、泛菌属、欧文氏菌属、假黄色单胞菌属Pseudoxanthomonas、鞘脂单胞菌属Sphingomonas、假单胞菌属、固氮弓菌属Azoarcus、伯克氏菌属Burkholderia、芽单胞菌属Blastomonas、聚集杆菌属Congregibacter、拉恩氏菌属Rahnella、鞘氨醇菌属Chitinophaga、独岛杆菌属Dokdonella、普雷沃氏菌属Prevotella、链霉菌属、Microtrichales属。

    表 2  沙棘微生物区系门水平的相对分布
    Table 2  Relative abundance of microbiota taxa at the level of phylum
    分类6组样品在门水平的相对丰度/%
    M1M2M3M4M5M6
    放线菌门73.5547.5651.2476.0927.7357.68
    变形菌门22.3841.9141.6321.0160.3529.82
    拟杆菌门0.891.421.300.402.184.42
    杆菌门 0.315.663.890.731.421.72
    厚壁菌门2.182.741.301.212.184.42
    酸杆菌门0.150.260.420.181.160.53
    其他  0.540.450.220.380.750.60
    下载: 导出CSV 
    | 显示表格
    表 3  沙棘微生物区系属水平的相对分布
    Table 3  Relative abundance of microbiota taxa at the level of genus
    分类6组样品在属水平的相对丰度/%
    M1M2M3M4M5M6
    弗兰克氏菌属 72.6244.4549.5074.8120.1247.41
    根瘤菌属   1.171.972.892.043.134.13
    类固醇杆菌属 0.730.831.052.207.192.87
    糖单孢菌属  0.285.613.850.711.411.68
    肠杆菌属   6.932.191.050.080.220.40
    泛菌属    0.635.194.690.010.050.11
    欧文氏菌属  0.604.663.770.100.180.23
    假黄色单胞菌属0.851.981.670.753.560.68
    鞘脂单胞菌属 0.391.062.101.552.101.64
    假单胞菌属  0.511.275.600.030.210.09
    其他     15.2930.7923.8317.7261.8340.76
    下载: 导出CSV 
    | 显示表格
    图 3  6组根瘤样品的非加权组平均法(UPGMA)聚类树与物种分布柱状图
    Figure 3  UPGMA clustering tree and the species distribution histogram of the six groups of nodule samples are combined drawing

    在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。在门水平上,纯培养菌株中占比较高的厚壁菌门在高通量测序中占比并不高。在属水平上,纯培养菌株中占比较高的芽孢杆菌属和链霉菌属皆在高通量测序中占比很低。该对比结果差异性较大,说明高通量测序在微生物多样性分析中占据优势地位,要优于纯培养方法。同时也说明,沙棘根瘤内共生细菌群落结构更为复杂,群落更为稳定。

    在运用传统方法分离纯培养微生物时,共分离纯培养菌株96株,分属于4门8纲8目13科19属,未获得弗兰克氏菌属的菌株,可能是培养基中弗兰克氏菌属的菌株生长缓慢,易被其他菌群取代,因此仍需探索新的培养基与培养方法以遏制根瘤中其他菌株的繁殖。在微生物多样性分析中,由于环境中的微生物复杂多样,各环境之间组成差异较大,通常采用非加权方法进行分析。该方法简单易操作,主要考虑物种的有无,但未考虑物种的丰度,所以采用非加权的方法难以区别各样品间的差异。

    高通量测序分析共检测到14门34纲89目148科314属。在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。与纯培养获得的菌株相比,高通量测序分析结果更加完整地揭示了沙棘根瘤内生菌的微生物多样性。高通量测序表明:在门的分类水平上,样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。在属的分类水平上,弗兰克氏菌属占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。

    张爱梅等[35]和刘志强等[36]分别对甘肃榆中、辽宁通辽、内蒙古赤峰等地沙棘根瘤内生菌微生物多样性做过类似研究,其高通量测序所得的微生物多样性高于本研究结果,说明沙棘根瘤内生菌微生物多样性受地理位置、土壤成分、气候条件、宿主种类及生长环境等多种因素的影响。本研究的沙棘取样于内蒙古乌兰察布沙漠边缘地带,采样地荒漠化土壤与干旱少雨气候对内生菌多样性有特别影响。

    属于非豆科Leguminosae植物的沙棘根瘤共生固氮体系是以弗兰克氏菌属为主导的[37]微生物—微生物—植物互作体系。高通量测序分析显示:弗兰克氏菌属所占比例较高,然而本次传统方法分离却未得到纯培养菌株,这可能是由于培养基中缺乏某种信号物质或与其他菌属竞争存在劣势导致的,建议添加制霉菌素、萘啶酮酸和放线菌酮抑制其他菌群的繁殖[18]。非豆科植物结瘤固氮过程,单一属的菌株难以完成此任务。有研究[38]表明:纯培养分离的贪噬菌属是复杂微生物组中维持根生长的核心菌属,并且具有产生和降解生长素的能力,是细菌—细菌—植物通讯网络的关键角色。小单孢菌是植物益生菌,在促进植物生长的同时还可以分泌细胞壁降解酶促进细胞壁的降解,进而便于弗兰克氏菌的侵染[39-40],但是小单孢菌的快速繁殖也对弗兰克氏菌的生长起到抑制作用。沙棘作为胡颓子科植物,根部结瘤侵染方式为细胞间侵入。研究[41]表明:草螺旋菌属Spirillum、慢生根瘤菌属、肠杆菌属的相关细菌与弗兰克氏菌存在负相关性(即抑制关系),以上3个菌属均在豆科、禾本科Poaceae植物中发挥固氮相关的重要作用,但在胡颓子科中此类细菌与弗兰克氏菌属相互作用的机制尚未明确。

  • 图  1  6个树种枝条木质部横切面照片

    Figure  1  Photographs of cross-sections of xylem of 6 tree species

    图  2  2种材性树种的比导率(Ks)与栓塞抗性(P50)

    Figure  2  Comparison of specific sapwood conductivity (Ks) and cavitation resistance (P50) of tree species with two wood properties

    图  3  2种材性树种解剖结构性状

    Figure  3  Comparison of the structural characteristics of two wood-based tree species

    图  4  6个树种比导率(Ks)与栓塞抗性(P50)的关系

    Figure  4  Relationship between specific conductance (Ks) and embolic resistance (P50) of six tree species

    图  5  6个树种枝条木质部结构与水力功能的相关性

    Figure  5  Correlation between xylem structure and hydraulic function of six tree species

    表  1  散孔材和环孔材样树的基本特性

    Table  1.   Basic characteristics of diffuse- and ring-porous sampled trees

    材性树种树高/m胸径/cm树龄/a冠幅/m
    散孔材枫香  17.45±0.3516.26±0.1215~204.10±0.22
    旱柳  12.75±0.2512.18±0.2410~152.14±0.07
    深山含笑12.41±0.4313.65±0.5415~203.45±0.14
    环孔材槲树  13.32±0.2513.34±0.2715~205.86±0.08
    楝   8.78±0.119.15±0.4210~152.54±0.23
    野核桃 11.33±0.1713.42±0.1515~204.02±0.21
      说明:数值为平均值±标准误;样本数为20 株·种−1
    下载: 导出CSV
  • [1] KRAMER P J. Water Relation of Plants[M]. New York: Academic Press, 1983: 342 − 489.
    [2] ADAMS H D, ZEPPEL M J B, ANDEREGG W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality [J]. Nat Ecol Evol, 2017, 1: 1285 − 1291.
    [3] 陆世通, 陈森, 李彦, 等. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系[J]. 植物生态学报, 2021, 45(6): 659 − 669.

    LU Shitong, CHEN Sen, LI Yan, et al. Relationships among xylem transport, anatomical structure and mechanical strength in stems and roots of three Podocarpaceae species [J]. J Plant Ecol, 2021, 45(6): 659 − 669.
    [4] 叶琳峰, 李彦, 王忠媛, 等. 湿润地区3种松属植物枝和根导水系统的效率-安全关系[J]. 林业科学, 2021, 57(7): 194 − 204.

    YE Linfeng, LI Yan, WANG Zhongyuan, et al. Efficiency-safety relationships of hydraulic conducting system for branch and root of three Pinus species growing in humid area [J]. Sci Silv Sin, 2021, 57(7): 194 − 204.
    [5] TYREE M T, EWERS F W. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 1991, 119(3): 345 − 360.
    [6] 李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2): 301 − 305.

    LI Jiyue, ZHAI Hongbo. Hydraulic architecture and drought resistance of woody plants [J]. J Appl Ecol, 2000, 11(2): 301 − 305.
    [7] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought [J]. Nature, 2012, 491: 752 − 755.
    [8] WILLIGEN C V, SHERWIN H W, PAMMENTER N W. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions [J]. New Phytol, 2000, 145: 51 − 59.
    [9] HACKE U G, SPICER R, SCHREIBER S G, et al. An ecophysiological and developmental perspective on variation in vessel diameter [J]. Plant Cell Environ, 2017, 40(6): 831 − 845.
    [10] COCHARD H. Vulnerability of several conifers to air embolism [J]. Tree Physiol, 1992, 11(1): 73 − 83.
    [11] SPERRY J S, NICHOLS K L, SULLIVAN J E M, et al. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska [J]. Ecology, 1994, 75(6): 1736 − 1752.
    [12] NIU C Y, MEINZER F C, HA G Y. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature [J]. Funct Ecol, 2017, 31(8): 1550 − 1560.
    [13] BUSH S E, PATAKI D E, HULTINE K R, et al. Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees [J]. Oecologia, 2008, 156(1): 13 − 20.
    [14] 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16): 5087 − 5094.

    ZUO Lixiang, LI Junhui, LI Yangyang, et al. Comparison of hydraulic traits in branches and leaves of diffuse-and ring-porous species [J]. Acta Ecol Sin, 2012, 32(16): 5087 − 5094.
    [15] 李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2015, 39(8): 838 − 848.

    LI Rong, JIANG Zaimin, ZHANG Shuoxin, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. J Plant Ecol, 2015, 39(8): 838 − 848.
    [16] 金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7): 702 − 710.

    JIN Ying, WANG Chuankuan. Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties [J]. J Plant Ecol, 2016, 40(7): 702 − 710.
    [17] COCHARD H, BARIGAH S T, KLEINHENTZ M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species [J]. J Plant Physiol, 2008, 165(9): 976 − 982.
    [18] JACOBSEN A L, BRANDON P R. Going with the flow: structural determinants of vascular tissue transport efficiency and safety [J]. Plant Cell Environ, 2018, 41(12): 2715 − 2717.
    [19] 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255 − 263.

    LI Rong, DANG Wei, CAI Jing, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees [J]. Chin J Plant Ecol, 2016, 40(3): 255 − 263.
    [20] ZIV B, SAARONI H, PARGAMENT R, et al. Trends in rainfall regime over Israel, 1975 − 2010, and their relationship to large-scale variability [J]. Reg Environ Change, 2014, 14(5): 1751 − 1764.
    [21] SHI Benlin, ZHU Xinyu, HU Yunchuan, et al. Drought characteristics of Henan Province in 1961 − 2013 based on standardized precipitation evapotranspiration index [J]. J Geogr Sci, 2017, 27(3): 311 − 325.
    [22] 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1): 81 − 91.

    ZHOU Honghua, LI Weihong. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica [J]. Chin J Plant Ecol, 2015, 39(1): 81 − 91.
    [23] HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure [J]. Oecologia, 2001, 126(4): 457 − 461.
    [24] MATHENY A M, BOHRER G, VOGEL C S, et al. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest [J]. J Geophys Res Biogeosci, 2014, 119: 2292 − 2311.
    [25] PETERS E B, MCFADDEN J P, MONTGOMERY R A. Biological and environmental controls on tree transpiration in a suburban landscape[J/OL]. J Geophys Res Biogeosci, 2015, 115: G04006[2021-08-28]. doi: 10.1029/2009JG001266.
    [26] COCHARD H, BREDA N, GRANIER A, et al. Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Leibl, Q. pubescens Willd, Q. robur L. ) [J]. Ann For Sci, 1992, 49(3): 225 − 233.
    [27] 丁俊杰, 张鑫, 楚光明, 等. 3种荒漠植物导管特征及其可塑性研究[J]. 干旱区资源与环境, 2016, 30(9): 171 − 177.

    DING Junjie, ZHANG Xin, CHU Guangming, et al. Study on vessel characteristics and plasticity of three desert plants [J]. J Arid Land Resour Environ, 2016, 30(9): 171 − 177.
    [28] NARDINI A, PEDA G, ROCCA N L. Trade-offs between leaf hydraulic capacity and drought vulnerability: morphoanatomical bases, carbon costs and ecological conesquences [J]. New Phytol, 2012, 196(3): 788 − 798.
    [29] HARGRAVE K R, KOLB K J, EWERS F W, et al. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae) [J]. New Phytol, 1994, 126(4): 695 − 705.
    [30] HACKE U G, SPERRY J S, WHEELER J K, et al. Scaling of angiosperm xylem structure with safety and efficiency [J]. Tree Physiol, 2006, 26(6): 689 − 701.
    [31] SCHULDT B, KNUTZEN F, DELZON S, et al. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?[J] New Phytol, 2016, 210: 443 − 458.
    [32] GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species [J]. New Phytol, 2016, 209(1): 123 − 136.
  • [1] 徐军亮, 候佳玉, 毋彤, 翟乐鑫, 罗鹏飞, 卫苗, 章异平.  4个环孔材树种木质部年内生长动态及与气候因子的关系 . 浙江农林大学学报, 2024, 41(6): 1105-1113. doi: 10.11833/j.issn.2095-0756.20240574
    [2] 上官方京, 赵明水, 张博纳, 汤璐瑶, 钱海蓉, 谢江波, 王忠媛.  亚热带植物水力性状与木质部解剖结构的关系 . 浙江农林大学学报, 2022, 39(2): 252-261. doi: 10.11833/j.issn.2095-0756.20210813
    [3] 陈森, 陆世通, 李彦, 谢江波, 叶琳峰, 王忠媛.  杉科植物枝/根木质部水分运输功能、机械强度与解剖结构的关系 . 浙江农林大学学报, 2022, 39(2): 233-243. doi: 10.11833/j.issn.2095-0756.20210248
    [4] 尹诗恒, 张绍勇, 刘骕骦, 吴酬飞, 王俊伟, 李阳, 张立钦.  松材线虫侵染对马尾松苗不同部位内生细菌菌群结构的影响 . 浙江农林大学学报, 2021, 38(4): 846-853. doi: 10.11833/j.issn.2095-0756.20200562
    [5] 张华锋, 陈思宇, 刘刚, 王懿祥.  松材线虫病疫木卫生伐对马尾松纯林林分结构的影响 . 浙江农林大学学报, 2020, 37(4): 745-751. doi: 10.11833/j.issn.2095-0756.20190487
    [6] 金明, 丁贵杰.  贵州马尾松单株木二元材种出材率表的编制 . 浙江农林大学学报, 2011, 28(4): 576-582. doi: 10.11833/j.issn.2095-0756.2011.04.009
    [7] 王正国, 王朝晖, 段新芳, 周宇.  4类染料对棕榈藤藤材上染率的研究 . 浙江农林大学学报, 2011, 28(2): 293-298. doi: 10.11833/j.issn.2095-0756.2011.02.020
    [8] 尹增芳, 樊汝汶.  美洲黑杨次生木质部导管分化进程的超微结构分析 . 浙江农林大学学报, 2008, 25(4): 431-436.
    [9] 张叶田, 何礼平.  竹集成材与常见建筑结构材力学性能比较 . 浙江农林大学学报, 2007, 24(1): 100-104.
    [10] 金春德, 张美淑, 文桂峰, 汤燕平, 徐策.  人工林赤松幼龄材与成熟材力学性质的比较 . 浙江农林大学学报, 2006, 23(5): 477-481.
    [11] 谢东锋, 马履一, 王华田.  7 种造林树种木质部栓塞脆弱性研究 . 浙江农林大学学报, 2004, 21(2): 138-143.
    [12] 童再康, 郑勇平, 罗士元, 杨惠平, 史红正.  黑杨派南方型新无性系纸浆材材性变异与遗传 . 浙江农林大学学报, 2001, 18(1): 21-25.
    [13] 童再康, 郑勇平, 罗士元, 杨惠平3, 朱玉球.  黑杨派南方型新无性系纸浆材材性株内变异规律 . 浙江农林大学学报, 2000, 17(4): 345-349.
    [14] 江希钿, 黄增, 杨锦昌.  杉木人工林林分出材率表编制方法的研究 . 浙江农林大学学报, 2000, 17(3): 294-297.
    [15] 徐有明, 林汉, 万伏红.  马尾松纸浆材材性变异和采伐林龄的确定* . 浙江农林大学学报, 1997, 14(1): 8-15.
    [16] 汪企明, 徐福元, 葛明宏, 王章荣, 陈天华.  13年生马尾松39个种源对松材线虫抗性变异初步研究 . 浙江农林大学学报, 1997, 14(1): 29-34.
    [17] 马灵飞, 杨云芳, 许英超.  木塑复合材性能的研究 . 浙江农林大学学报, 1996, 13(1): 104-108.
    [18] 谢哲根, 唐正良, 翁卫松, 戴俊强, 王洪喜.  材种出材率预估模型研究 . 浙江农林大学学报, 1996, 13(4): 392-396.
    [19] 董幼斐, 郑荣贵.  膨润土废渣作水泥混合材的应用 . 浙江农林大学学报, 1995, 12(4): 412-417.
    [20] 何福基, 马灵飞, 许元科.  杉木不同优树材性的比较研究 . 浙江农林大学学报, 1995, 12(1): 24-30.
  • 期刊类型引用(5)

    1. 高佩,王彬贤,马亚琼,郭思雨,马玉花. 青海野生中国沙棘根际解磷菌的分离、鉴定及其对蕹菜的促生作用. 江苏农业科学. 2024(11): 247-253 . 百度学术
    2. 方宇,刘彩玲,林陈强,陈济琛,贾宪波. 不同紫云英品种根瘤内生细菌的类群和多样性分析. 福建农业学报. 2024(06): 730-737 . 百度学术
    3. 马福林,马秀芳,刘瑞,马玉花. 西藏沙棘AQP基因的扩增及生物信息学分析. 青海科技. 2023(02): 107-111 . 百度学术
    4. 马福林,王昌玲,仁增卓玛,刘瑞,冶贵生,马玉花. 西藏沙棘根瘤内生菌假单胞菌属的分离与鉴定. 甘肃农业大学学报. 2023(03): 76-81+90 . 百度学术
    5. 翟柯尧,刘娟,董玥,李亚涛,贺义才,孙海红,马玉超. 沙棘通过自主选择塑造根瘤内生微生物组. 微生物学通报. 2023(09): 3881-3898 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210628

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/2/244

图(5) / 表(1)
计量
  • 文章访问数:  1949
  • HTML全文浏览量:  269
  • PDF下载量:  77
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-12-20
  • 录用日期:  2022-01-17
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-03-25

鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系

doi: 10.11833/j.issn.2095-0756.20210628
    基金项目:  国家自然科学基金资助项目(31901280,31770651,41730638);中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室开放基金资助项目
    作者简介:

    黄恺翔(ORCID: 0000-0001-8650-8320),从事植物水分关系研究。E-mail: 543451857@qq.com

    通信作者: 谢江波(ORCID: 0000-0003-1392-8396),副教授,博士,从事植物水分关系研究。E-mail: 0208xiejiangbo@163.com
  • 中图分类号: S718.5

摘要:   目的  木质部解剖结构是植物水力功能和水分利用策略的基础。散孔材和环孔材的导管分布和形态存在显著差异,对2种材性树种木质部解剖结构和水力功能的关系进行比较,有助于理解不同材性树种的水分适应机制。  方法  选取河南省信阳市鸡公山自然保护区中的3个散孔材树种(枫香Liquidambar formosana、旱柳Salix matsudana、深山含笑Michelia maudiae)和3个环孔材树种(槲树Quercus dentata、楝Melia azedarach、野核桃Juglans cathayensis),研究2种材性树种的枝水力功能(比导率和栓塞抗性)和解剖结构的关系。  结果  3个环孔材树种比导率更大,3个散孔材树种栓塞抗性更强;在物种水平上,只有散孔材树种深山含笑比导率和栓塞抗性呈显著负相关(P<0.05),存在水力效率-安全权衡。3种散孔材树种相较于3种环孔材树种具有更大的导管密度、导管壁厚度跨度比和更小的导管直径、导管壁厚度。  结论  环孔材树种倾向于通过增大导管直径显著提高其输水效率,从而避免水势下降、降低潜在栓塞风险。散孔材树种木质部结构中的导管壁厚度和导管壁厚度跨度比对植物水分传输功能具有重要影响。图5表1参32

English Abstract

魏继华, 李佳益, 刘宏, 等. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
引用本文: 黄恺翔, 俞重阳, 钱海蓉, 等. 鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系[J]. 浙江农林大学学报, 2022, 39(2): 244-251. DOI: 10.11833/j.issn.2095-0756.20210628
WEI Jihua, LI Jiayi, LIU Hong, et al. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity[J]. Journal of Zhejiang A&F University, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
Citation: HUANG Kaixiang, YU Chongyang, QIAN Hairong, et al. Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve[J]. Journal of Zhejiang A&F University, 2022, 39(2): 244-251. DOI: 10.11833/j.issn.2095-0756.20210628
  • 在全球气候变暖背景下,由水分胁迫引起的树木死亡和作物减产等事件频发,水分胁迫带来的损失甚至超过其他环境胁迫所造成的损失总和[1]。研究表明:水力失效是导致植物死亡的主要原因[2]。研究植物的水力功能(水力效率和安全性)是量化植物抗旱能力的关键,而木质部结构是水力功能的基础,因此,结构和功能关系的定量研究是树木干旱胁迫研究的热点之一[3-4]

    导水率(Kh)和比导率(Ks)是衡量植物水力效率的重要参数[5],是植物为适应特定环境条件及物种竞争而形成的不同水力功能特征[6]Ks越大,说明单位有效面积输送水分的能力越强,输水效率越高。此外,一般用导水率损失50%时的木质部水势(P50)来表征植物栓塞抗性,P50是确定木本植物抗旱极限的一个重要性状[7],不同类群植物的栓塞抗性差异很大[8]。有研究指出:水力效率与栓塞抗性之间可能存在一种权衡关系,即水力效率越大栓塞抗性就越小[9]。虽然水力效率-安全权衡存在与否仍有争议,但现有证据表明:在全球尺度上,效率和安全之间存在微弱的负相关[10-11]

    不同树种的材性、解剖等结构性状会影响树木的水分运输效率和水分利用策略[11-12]。按照次生木质部横截面上的导管管孔特征,双子叶植物可大致分为散孔材和环孔材2种功能类群[13-14]。在面对干旱诱导形成的栓塞产生的环境胁迫时,2种材性树种在水力结构上会进化不同的适应性策略。环孔材树种往往导管直径较大,具有较高的水分运输效率,但在水分胁迫条件下更容易遭受空穴化和栓塞胁迫[12]。而没有明显的早材和晚材区别的散孔材树种,它们较小的导管抵抗水分胁迫产生空穴化和栓塞的能力较强[5, 14]。除导管直径外,导管壁厚度、木材基本密度等对散孔材和环孔材树种水力效率和栓塞抗性都具有一定的影响[15-16]。COCHARD等[17]研究指出:导管壁厚度与栓塞抗性呈正相关,且厚度跨度比与栓塞抗性的相关性显著。此外,木质部在结构上形成了一个相互连通的网络管道结构,导管在木质部网络的空间排列影响了木质部的功能特性[18]。与散孔材树种相比,环孔材树种存在导管密度小、导管连接度低的特性,使其通过相邻导管或纹孔运输水分的概率显著小于散孔材树种,故而环孔材树种导管较散孔材更易发生栓塞[19]。因此,研究木质部结构与水力效率、栓塞抗性的关系,可揭示树木干旱致死机制。

    目前,多年干旱和降水降低趋势可能是未来气候的开端[20],在这种气候背景下,物种的抗旱能力是生态系统稳定性与可持续发展的关键。河南省作为气候变化敏感区,自1961年以来,干旱发生频率和发生范围不断扩大[21],这对鸡公山国家级自然保护区内具有生态、经济和药用价值的园林树种的生长和生存产生潜在影响。基于此,本研究选取河南省鸡公山国家级自然保护区内园林树种中的3个散孔材和3个环孔材树种,对2种功能树种的枝条木质部解剖结构和水力功能性状差异进行分析,从植物水力结构的角度探讨植物的水分运输和抗旱性,以期为研究区园林植物的保护和开发提供指导意见。

    • 研究样地位于河南省信阳市南部的鸡公山国家级自然保护区(31°46′~31°52′N,114°01′~114°06′E),该区地处北亚热带边缘,具有北亚热带向暖温带过渡的季风气候和山地气候特征。四季分明,光、热、水同期,年均气温为15.2 ℃,年均降水量为1 118.7 mm,植被以亚热带常绿阔叶林以及暖温带落叶阔叶林为主。保护区内森林茂密、生物资源丰富,为河南省物种最为丰富的区域之一。

    • 选取鸡公山国家自然保护区2种材性的6个园林树种作为研究对象(表1),包括3个散孔材树种(枫香Liquidambar formosana、旱柳Salix matsudana、深山含笑Michelia maudiae)和3个环孔材树种(槲树Quercus dentata、楝Melia azedarach、野核桃Juglans cathayensis)。2019年6—9月,随机选取生长状况良好,株高、胸径、冠幅相似的植株,选择向阳生长的当年生枝条,所截枝条基部直径为6~8 mm,长为30~50 cm,每个树种取3~5株树,每株树4~6个重复,每个树种20个重复。

      表 1  散孔材和环孔材样树的基本特性

      Table 1.  Basic characteristics of diffuse- and ring-porous sampled trees

      材性树种树高/m胸径/cm树龄/a冠幅/m
      散孔材枫香  17.45±0.3516.26±0.1215~204.10±0.22
      旱柳  12.75±0.2512.18±0.2410~152.14±0.07
      深山含笑12.41±0.4313.65±0.5415~203.45±0.14
      环孔材槲树  13.32±0.2513.34±0.2715~205.86±0.08
      楝   8.78±0.119.15±0.4210~152.54±0.23
      野核桃 11.33±0.1713.42±0.1515~204.02±0.21
        说明:数值为平均值±标准误;样本数为20 株·种−1
    • 将符合实验要求的枝条样品取下后,立刻浸入水中并用不透光容器保存带回。实验开始之前,将样品置于水中进行60~120 min的暗适应,之后在水下修剪样品,并在样品中间部位剪取一段约16~17 cm的茎段。将茎段基部表皮剥离,随后连接到木质部导水率与栓塞测量系统XYL’EM-Plus(Bronkhorst, Montigny-les-Cormeilles, 法国),用于测量导水率。首先用冲洗液(20 mmol·L−1氯化钾+1 mmol·L−1氯化钙)在低压下测得茎段的原位导水率(K0, kg·m·s−1·MPa−1),用0.15 MPa的压力冲刷枝条,直至枝条管胞内无气泡溢出为止,然后测量最大导水率(Kmax,kg·m·s−1·MPa−1)[22]。最大导水率测量结束后,将茎段放入压力腔中并保持茎段两端露出压力腔外,将压力表连在压力腔上[11]。在一定压力梯度下持续加压一定时间以诱导茎段发生栓塞,这个过程以0.2 或0.3 MPa的增量重复进行(取决于植物),直至导水率损失达90%以上,同时记录相应压力下的导水率(Kh, kg·m·s−1·MPa−1)。导水率损失百分比(PLC)计算如下:PLC=(1−Kh/Kmax)×100%。将所得压力值和PLC值在Origin软件中用sweibull分布函数进行拟合,获得脆弱曲线和导水率损失50%时对应的茎段木质部水势(P50)。比导率(Ks, kg·s−1·m−1·MPa−1)通过Kmax除以无髓、无树皮的基部边材横截面积得到。

    • 从用于测定脆弱曲线的枝条上截取4段0.5 cm长的茎段。样品经固定、软化后采用番红固绿对染法制作石蜡切片。使用Leica DM 3000光学显微镜在50和400倍镜下摄像(图1)。用Image-J软件分析所摄照片,测量参数包括导管直径(μm)、导管壁厚度(μm)、导管密度(个·mm−2)以及导管壁厚度跨度比。

      图  1  6个树种枝条木质部横切面照片

      Figure 1.  Photographs of cross-sections of xylem of 6 tree species

    • 根据HACKE等[23]的方法测量样本的木材基本密度。将木材样品树皮用剃刀除去后浸没在蒸馏水中。采用排水法测定木材新鲜样品的体积(V,cm3)。然后将样品放置在75 ℃的烘箱烘48 h,测量干质量(W,g)。木材基本密度(WBD)计算公式为:WBD(g·cm−3)=W/V

    • 采用Minitab 18.1软件对数据进行单因素方差分析(one-way ANOVA), 显著性水平为0.05。采用Pearson相关分析检验各功能性状间的相关性。利用Origin软件作图。

    • 图2可见:2种材性树种枝条比导率(Ks)和栓塞抗性(P50)差异均显著(P<0.05)。散孔材树种Ks为(1.43±0.07) kg·s−1·m−1·MPa−1,显著小于环孔材树种(P<0.05);散孔材树种P50为(−2.20±0.10) MPa,显著小于环孔材树种(P<0.05)。3个散孔材树种Ks均显著小于环孔材树种槲树和野核桃(P<0.05);3个散孔材树种P50均显著大于3个环孔材树种(P<0.05)。

      图  2  2种材性树种的比导率(Ks)与栓塞抗性(P50)

      Figure 2.  Comparison of specific sapwood conductivity (Ks) and cavitation resistance (P50) of tree species with two wood properties

    • 2种材性树种枝条木质部结构导管直径、导管密度、导管壁厚度跨度比和导管壁厚度均存在显著差异(图3P<0.05)。散孔材树种平均导管直径显著小于环孔材树种(图3AP<0.05),平均导管密度显著大于环孔材树种(图3BP<0.05),平均导管壁厚度跨度比显著大于环孔材树种(图3CP<0.05),平均木材基本密度无显著差异(图3DP>0.05)。散孔材树种平均导管壁厚度显著小于环孔材树种(图3EP<0.05),其中环孔材树种楝和野核桃的导管壁厚度显著大于其他4个树种(P<0.05)。

      图  3  2种材性树种解剖结构性状

      Figure 3.  Comparison of the structural characteristics of two wood-based tree species

    • 散孔材树种枫香(图4A)和旱柳(图4B)的比导率与栓塞抗性不相关,深山含笑的比导率与栓塞抗性呈显著负相关(P<0.05,图4C);环孔材树种楝的比导率与栓塞抗性呈显著正相关(P<0.05,图4D),槲树(图4E)和野核桃(图4F)的比导率与栓塞抗性不相关。6个树种中,仅散孔材树种深山含笑的比导率与栓塞抗性之间存在权衡,其他5个树种的比导率与栓塞抗性之间没有类似的权衡关系。

      图  4  6个树种比导率(Ks)与栓塞抗性(P50)的关系

      Figure 4.  Relationship between specific conductance (Ks) and embolic resistance (P50) of six tree species

    • 散孔材树种中,枫香的比导率与导管直径呈显著正相关(P<0.05),与导管壁厚度跨度比呈极显著负相关(P<0.01);枫香的栓塞抗性与导管直径呈显著正相关(P<0.05,图5A)。旱柳木质部结构与水力功能之间不存在显著相关(图5B)。深山含笑的比导率与导管壁厚度跨度比呈显著负相关(P<0.05),与导管密度呈极显著负相关(P<0.01);深山含笑的栓塞抗性与导管直径呈显著负相关(P<0.05),与导管密度呈极显著正相关(P<0.01,图5C)。

      环孔材树种中,槲树的比导率与导管壁厚度呈极显著负相关(P<0.01),与导管壁厚度跨度比呈显著负相关(P<0.05);槲树的栓塞抗性与木材基本密度呈显著负相关(P<0.05,图5D)。楝的木质部结构与水力功能之间不存在显著相关(图5E)。野核桃的比导率与导管密度、导管壁厚度跨度比呈极显著负相关(P<0.01),与木材基本密度呈显著正相关(P<0.05,图5F)。

      图  5  6个树种枝条木质部结构与水力功能的相关性

      Figure 5.  Correlation between xylem structure and hydraulic function of six tree species

    • 本研究表明:散孔材树种的水分运输效率低于环孔材树种,但栓塞抗性比环孔材树种更强,这与SPERRY等[11]的研究结果相符。这2种材性植物的导管结构特征导致水分生理调节存在显著差异[24-25]。本研究的3个环孔材树种的平均木质部导管直径显著大于3个散孔材树种。大的导管直径虽然提升了水力效率,但是也会导致较小的栓塞抗性[26]。在木质部边材面积一定的情况下,单个导管的横截面积越大,边材所能容纳的导管数量也会相应减少[27]。本研究的3个散孔材树种的平均导管密度显著大于3个环孔材树种。虽然环孔材树种较大的导管直径使其获得较高的水分运输能力,但是其较大的导管直径在水分运输上的优势会被较低的导管密度抵消[28]。导管数量的增加对于水分运输能力的提升是有限的,对水分运输能力的影响远远没有导管直径增加带来的影响大[27]。本研究的3个散孔材树种的平均导管壁厚度跨度比显著大于3个环孔材树种,根据Pearson相关分析:导管壁厚度跨度比与散孔材和环孔材树种的KsP50相关显著。虽然木质部栓塞抗性与导管直径、导管壁厚度均存在相关关系[29],但COCHARD等[17]研究发现:导管壁厚度跨度比与栓塞抗性的相关性更紧密,导管壁厚度跨度比越大,树种栓塞抗性越强。本研究表明:不同材性树种水分利用策略不同,水力功能与解剖结构相协调;与其他结构指标相比,导管壁厚度跨度比能更好地指示不同材性树种栓塞抗性的强弱。

      “安全”的木质部意味着对导管的充分保护,主要是防止空穴化和栓塞的发生,“效率”意味着一定导管组织投资下,导管水力阻力较低。在“安全”和“效率”之间存在权衡关系,即水分运输效率高的物种易发生栓塞,导致其安全性低;而水分运输效率低的物种则栓塞抗性高[30]。本研究中,除散孔材深山含笑外,其他树种比导率与栓塞抗性均呈正相关或无明显相关性,表明这些物种不存在水力效率-安全权衡。研究表明:树种中的KsP50之间只存在微弱的权衡或没有权衡[31]。GLEASON等[32]研究发现:栖息地、环境条件和植物生理结构的差异可能会造成一部分植物不存在水力效率与安全性之间的权衡。综上所述,木质部效率-安全权衡仍存在争议,不同生境或不同分类单元的植物可能具有物种特异性。

      散孔材与环孔材树种枝输水效率、栓塞抗性间显著差异,且KsP50的高低均与枝木质部解剖结构特性相关。输水效率低的树种需要构建一个安全的木质部以降低栓塞风险。散孔材树种的导管直径小,导管密度和导管壁厚度跨度比大,因此,与环孔材树种相比,散孔材树种的栓塞抗性更强,在遭受水分胁迫时能更好地保证树体的存活。此外,2种材性树种中5个树种水力效率与水力安全均不存在权衡关系,这可能与植物生长所需的环境条件和植物生理结构上的差异有关。但水力功能性状与结构性状对生态功能的预测能力,以及对环境变化的响应等问题都是因地而异,仍需在不同尺度上开展大量的研究。

参考文献 (32)

目录

/

返回文章
返回